
Finite Element Modelling for Geosciences:
Code Verification and the Method of Manufactured

Solutions

Patrick Sanan

ETH Zurich

Patrick Sanan (ETH Zurich) 1d to 2d 1 / 11

The Problem

How do I know the code is working?

I As you’ve no doubt noticed, there are many, many ways to make
mistakes in your implementation

I How do you show that the code “works”?

I One way we’ve seen is to confirm that our finite element solution
looks “close” to an exact solution that we know beforehand

I But ..
I What does “close” mean?
I What if I don’t have an exact solution to compare with?

Patrick Sanan (ETH Zurich) 1d to 2d 2 / 11

Validation and Verification

I Verification
I Is your code solving the equations correctly?
I Does the code produce approximate solutions that converge at the

correct rate?
I The subject of Chapter 9 in the course notes

I Validation
I Does the code produce physically-meaningful results?
I Not covered in this course

Patrick Sanan (ETH Zurich) 1d to 2d 3 / 11

Error estimates

I If we can construct an exact solution to the continuous problem, we
can use it to verify our code

I The FEM is well-known to converge, if implemented correctly!

I Convergence is expressed in terms of the grid spacing and an error
norm

||u − uh||

I If an analytical expression is available, one can compute the solution
at different spacings and examine how quickly it converges

||u − uh|| ≤ Chk

I The rate of convergence can be computed by fitting a straight line to
a log-log plot of the grid spacing versus the error

I Obvious issue: what if we don’t know u?

Patrick Sanan (ETH Zurich) 1d to 2d 4 / 11

Computing errors

I The L2 error (∫
Ω

(
uh(x , y)− u(x , y)

)2
d~x

) 1
2

I An integral over the entire domain; compute it with quadrature!

Exact Solution

FEM SolutionError

I Sometimes one sees “superconvergence” if only comparing nodal
values.

err = sqrt(sum((T-T_exact).^2)) % Not an L^2 norm!

Patrick Sanan (ETH Zurich) 1d to 2d 5 / 11

The Method of Manufactured Solutions (MMS)

I General approach - works for most PDE.

I Intuition: choose the solution you want and adjust the forcing and
boundary terms to match.

I Choose (“manufacture”) your solution

I Plug it into your equations (physics + material properties)

I Extract the required boundary and forcing terms (CAS tools like
SAGE/SymPy/MAPLE/Mathematica/etc. are helpful)

I Now you can use your FEM code to compute an approximate
solution, and compare.

I How to choose your manufactured solution
I Make it complex enough
I In particular, avoid low-order polynomials which might be exactly

captured by your finite element basis functions
I Good choices are combinations of sinusoidal or exponential functions

Patrick Sanan (ETH Zurich) 1d to 2d 6 / 11

MMS Example

I Assume we’re interested in approximate solutions to the Poisson
equation (steady-state heat equation) on the unit square

∇ · (κ(x , y)∇T) = f (x , y), κ(x , y) = 1 + x

I Note that we specified the coefficient structure, but not the boundary
conditions or forcing

I Choose our own solution (depending on both x and y , not just a
polynomial)

TMMS
.

= sin(x)cos(2y)

Patrick Sanan (ETH Zurich) 1d to 2d 7 / 11

MMS Example

I Insert TMMS into our equation1 to obtain the forcing

f (x , y) =
∂

∂x

(
(1 + x)

∂TMMS

∂x

)
+

∂

∂y

(
(1 + x)

∂TMMS

∂y

)
= cos(2y) (cos(x)− 5(x + 1) sin(x))

I Use TMMS to define boundary conditions, for example Dirichlet
conditions

T (x , 0) = TMMS(x , 0), T (x , 1) = TMMS(x , 1), ∀x ∈ [0, 1]

T (0, y) = TMMS(0, y), T (1, y) = TMMS(1, y), ∀y ∈ [0, 1]

1I lazily just plugged this into Wolfram Alpha: Div[(1+x)*Grad[Sin[x]*Cos[2*y]]]
Patrick Sanan (ETH Zurich) 1d to 2d 8 / 11

L2 error computation MATLAB code snippet

L2_error_2 = 0;

for i_el = 1: el_tot

nodes_el = element_node_map (:,i_el);

coord_el = gcoord(:,nodes_el) ’;

T_el = T(nodes_el);

for i_pt = 1: pts_per_el

jac = dNdxi(:,:,i_pt) * coord_el;

det_jac = det(jac)

coord_pt = N(i_pt ,:) * coord_el;

T_mms_pt = T_MMS(coord_pt (1), coord_pt (2));

T_fe_pt = N(i_pt ,:) * T_el;

L2_error_2 = L2_error_2 + \

(T_mms_pt - T_fe_pt)^2 * det_jac * w(i_pt);

end

L2_error = sqrt(L2_error_2)

Patrick Sanan (ETH Zurich) 1d to 2d 9 / 11

I The expected convergence rate, from the course notes, is[∫
Ω

(T − T h)2d~x

] 1
2

≤ Chp+1

I Our modified code shows slopes of approximately 2 and 3 on a log-log
plot, so we are now much more confident that the implementation is
correct.

Bilinear elements, p = 1 Biquadratic elements, p = 2

Patrick Sanan (ETH Zurich) 1d to 2d 10 / 11

MMS: Wrinkle - non-physical forcing

I If using MMS for something like the Stokes equations (Friday), you
will perhaps run into the following issue

I As an example, let’s say that I have written a FE code to solve this
(very) simple PDE:

d

dx

(
k(x)

du

dx

)
= 0, u ∈ [0, 1], u(0) = 1, u(1) = 2

I What issue might I run into if I apply the MMS?

I I may have written my code assuming zero forcing!

I So I may have to modify my weak form to take the additional
forcing into account. Don’t forget to consider terms like

F =

∫
Ωe

NT f d~x

Patrick Sanan (ETH Zurich) 1d to 2d 11 / 11

MMS: Wrinkle - non-physical forcing

I If using MMS for something like the Stokes equations (Friday), you
will perhaps run into the following issue

I As an example, let’s say that I have written a FE code to solve this
(very) simple PDE:

d

dx

(
k(x)

du

dx

)
= 0, u ∈ [0, 1], u(0) = 1, u(1) = 2

I What issue might I run into if I apply the MMS?

I I may have written my code assuming zero forcing!

I So I may have to modify my weak form to take the additional
forcing into account. Don’t forget to consider terms like

F =

∫
Ωe

NT f d~x

Patrick Sanan (ETH Zurich) 1d to 2d 11 / 11

