# **Finite Element Modelling in Geosciences** FEM in 2D for viscous materials

Introduction to Finite Element Modelling in Geosciences Summer 2019 Antoine Rozel & Patrick Sanan Lecture by Marcel Frehner

Finite Element Modelling in Geosciences

FEM 2D viscous

# **Recap from 2D continuum mechanics and rheology**

| Equations                                                                                                                                                                                                                                     | Matrix notation                                                                                                                                                                                                                                                                                                                  | Short form                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Incompressibility</b><br>$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$                                                                                                                                           | $\begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix} \begin{cases} v_x \\ v_y \end{cases} = 0$                                                                                                                                                                                               | $\nabla \tilde{\mathbf{v}} = 0$                                                                                     |
| Conservation of linear mome                                                                                                                                                                                                                   | ntum (i.e., force balance equation)                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| $\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + F_x = 0$ $\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + F_y = 0$                                                   | $\begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} + \begin{bmatrix} F_x \\ F_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$         | $\tilde{\mathbf{B}}^{T}\tilde{\boldsymbol{\sigma}}+\tilde{\mathbf{F}}=0$                                            |
| <b>Rheology</b><br>$\sigma_{xx} = 4\eta/3\dot{\varepsilon}_{xx} - 2\eta/3\dot{\varepsilon}_{yy} - \tilde{p}$ $\sigma_{yy} = -2\eta/3\dot{\varepsilon}_{xx} + 4\eta/3\dot{\varepsilon}_{yy} - \tilde{p}$ $\sigma_{xy} = \eta\dot{\gamma}_{xy}$ | $\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = \begin{bmatrix} 4\eta/3 & -2\eta/3 & 0 \\ -2\eta/3 & 4\eta/3 & 0 \\ 0 & 0 & \eta \end{bmatrix} \begin{bmatrix} \dot{\varepsilon}_{xx} \\ \dot{\varepsilon}_{yy} \\ \dot{\gamma}_{xy} \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \tilde{p}$ | $\tilde{\boldsymbol{\sigma}} = \mathbf{D}\tilde{\dot{\boldsymbol{\varepsilon}}} - \mathbf{M}\tilde{\boldsymbol{p}}$ |
| Kinematic relation<br>$\dot{\varepsilon}_{xx} = \partial v_x / \partial x$<br>$\dot{\varepsilon}_{yy} = \partial v_y / \partial y$<br>$\dot{\gamma}_{xy} = \partial v_x / \partial y + \partial v_y / \partial x$                             | $ \begin{cases} \dot{\varepsilon}_{xx} \\ \dot{\varepsilon}_{yy} \\ \dot{\gamma}_{xy} \end{cases} = \begin{bmatrix} \partial/\partial x & 0 \\ 0 & \partial/\partial y \\ \partial/\partial y & \partial/\partial x \end{bmatrix} \begin{cases} v_x \\ v_y \end{cases} $                                                         | $\tilde{\dot{\epsilon}} = \tilde{\mathbf{B}}\tilde{\mathbf{v}}$                                                     |

Finite Element Modelling in Geosciences

## **Total system of equations**



Finite Element Modelling in Geosciences

FEM 2D viscous

#### Force balance equation: Deriving the weak form

• Test functions:  $\mathbf{N} = \begin{bmatrix} N_1 & \cdots & N_9 \end{bmatrix}$ 

① Multiplication with test functions:

$$\mathbf{N}^{T} \frac{\partial}{\partial x} \left[ \frac{4}{3} \eta \frac{\partial v_{x}}{\partial x} - \frac{2}{3} \eta \frac{\partial v_{y}}{\partial y} \right] + \mathbf{N}^{T} \frac{\partial}{\partial y} \left[ \eta \left( \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x} \right) \right] - \mathbf{N}^{T} \frac{\partial p}{\partial x} + \mathbf{N}^{T} F_{x} = 0$$
$$\mathbf{N}^{T} \frac{\partial}{\partial y} \left[ -\frac{2}{3} \eta \frac{\partial v_{x}}{\partial x} + \frac{4}{3} \eta \frac{\partial v_{y}}{\partial y} \right] + \mathbf{N}^{T} \frac{\partial}{\partial x} \left[ \eta \left( \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x} \right) \right] - \mathbf{N}^{T} \frac{\partial p}{\partial y} + \mathbf{N}^{T} F_{y} = 0$$

## <sup>(2)</sup> Spatial integration

$$\int_{0}^{\Delta x} \frac{\Delta y}{\partial x} \mathbf{N}^{T} \frac{\partial}{\partial x} \left[ \frac{4}{3} \eta \frac{\partial v_{x}}{\partial x} - \frac{2}{3} \eta \frac{\partial v_{y}}{\partial y} \right] dxdy + \int_{0}^{\Delta x} \frac{\Delta y}{\partial y} \mathbf{N}^{T} \frac{\partial}{\partial y} \left[ \eta \left( \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x} \right) \right] dxdy - \int_{0}^{\Delta x} \frac{\Delta y}{\partial x} \mathbf{N}^{T} \frac{\partial p}{\partial x} dxdy + \int_{0}^{\Delta x} \frac{\Delta y}{\partial y} \mathbf{N}^{T} F_{x} dxdy = 0$$

$$\int_{0}^{\Delta x} \frac{\Delta y}{\partial y} \mathbf{N}^{T} \frac{\partial}{\partial y} \left[ -\frac{2}{3} \eta \frac{\partial v_{x}}{\partial x} + \frac{4}{3} \eta \frac{\partial v_{y}}{\partial y} \right] dxdy + \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}^{T} \frac{\partial}{\partial x} \left[ \eta \left( \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x} \right) \right] dxdy - \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}^{T} \frac{\partial p}{\partial y} dxdy + \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}^{T} F_{y} dxdy = 0$$

#### Force balance equation: Deriving the weak form

# ③ Integration by parts and dropping arising boundary terms



## This is the weak form of the force balance equation!

**Finite Element Modelling in Geosciences** 

FEM 2D viscous

## The finite element approximation

#### **2D** elasticity

$$u_{x}(x, y) \approx N_{1}u_{x,1} + N_{2}u_{x,2} + N_{3}u_{x,3} + N_{4}u_{x,4}$$
$$= \begin{bmatrix} N_{1} & N_{2} & N_{3} & N_{4} \end{bmatrix} \begin{cases} u_{x,1} \\ u_{x,2} \\ u_{x,3} \\ u_{x,4} \end{cases} = \mathbf{N}\mathbf{u}_{x}$$
$$u_{y}(x, y) \approx \mathbf{N}\mathbf{u}_{y}$$

#### **Requirements for the shape functions:**

- Equal 1 at one nodal point
- Equal 0 at all other nodal points
- Sum of all shape functions has to be 1 in the whole finite element.

## **2D viscosity**

$$v_{x}(x,y) \approx N_{1}v_{x,1} + N_{2}v_{x,2} + \dots + N_{9}v_{x,9}$$
$$= \begin{bmatrix} N_{1} & N_{2} & \dots & N_{9} \end{bmatrix} \begin{cases} v_{x,1} \\ v_{x,2} \\ \vdots \\ v_{x,9} \end{cases} = \mathbf{N}\mathbf{v}_{x}$$

 $v_y(x,y) \approx \mathbf{N}\mathbf{v}_y$ 

 $p(x, y) \approx N_1^p p_1 + N_2^p p_2 + N_3^p p_3 + N_4^p p_4$ 

•9 bi-quadratic shape functions for velocity

•4 bi-linear shape functions for pressure (the same as for 2D elasticity)

Finite Element Modelling in Geosciences

#### The Q2Q1-element: bi-linear pressure shape functions



#### The Q2Q1-element: bi-quadratic velocity shape functions



#### Force balance equations: The FE-approximation

④ Apply finite element approximation

$$\int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial x} \left[ \frac{4}{3} \eta \frac{\partial \mathbf{N}}{\partial x} \mathbf{v}_{x} - \frac{2}{3} \eta \frac{\partial \mathbf{N}}{\partial y} \mathbf{v}_{y} \right] dy dx + \int_{0}^{\Delta y} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial y} \eta \left( \frac{\partial \mathbf{N}}{\partial y} \mathbf{v}_{x} + \frac{\partial \mathbf{N}}{\partial x} \mathbf{v}_{y} \right) dx dy - \int_{0}^{\Delta x} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial x} \mathbf{N}_{p} \mathbf{p} dx dy = \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}_{x}^{T} F_{x} dx dy$$

$$\int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial y} \left[ -\frac{2}{3} \eta \frac{\partial \mathbf{N}}{\partial x} \mathbf{v}_{x} + \frac{4}{3} \eta \frac{\partial \mathbf{N}}{\partial y} \mathbf{v}_{y} \right] dx dy + \int_{0}^{\Delta x} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial x} \eta \left( \frac{\partial \mathbf{N}}{\partial y} \mathbf{v}_{x} + \frac{\partial \mathbf{N}}{\partial x} \mathbf{v}_{y} \right) dy dx - \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial y} \mathbf{N}_{p} \mathbf{p} dx dy = \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}_{p}^{T} F_{y} dx dy$$

 Take nodal values out of integration

$$\int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial x} \frac{4}{3} \eta \frac{\partial \mathbf{N}}{\partial x} dy dx \mathbf{v}_{x} - \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial x} \frac{2}{3} \eta \frac{\partial \mathbf{N}}{\partial y} dy dx \mathbf{v}_{y} + \int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial y} \eta \frac{\partial \mathbf{N}}{\partial y} dx dy \mathbf{v}_{x}$$

$$+ \int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial y} \eta \frac{\partial \mathbf{N}}{\partial x} dx dy \mathbf{v}_{y} - \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial x} \mathbf{N}_{p} dx dy \mathbf{p} = \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}^{T} F_{x} dx dy$$

$$- \int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial y} \frac{2}{3} \eta \frac{\partial \mathbf{N}}{\partial x} dx dy \mathbf{v}_{x} + \int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial y} \frac{4}{3} \eta \frac{\partial \mathbf{N}}{\partial y} dx dy \mathbf{v}_{y} + \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}}{\partial y} dy dx \mathbf{v}_{x}$$

$$+ \int_{0}^{\Delta y} \int_{0}^{\Delta x} \frac{\partial \mathbf{N}^{T}}{\partial x} \frac{2}{3} \eta \frac{\partial \mathbf{N}}{\partial x} dy dx \mathbf{v}_{y} - \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}^{T}}{\partial y} \mathbf{N}_{p} dx dy \mathbf{p} = \int_{0}^{\Delta x} \int_{0}^{\Delta y} \frac{\partial \mathbf{N}}{\partial x} \mathbf{N}_{y} \frac{\partial \mathbf{N}}{\partial y} dy dx \mathbf{v}_{x}$$

Finite Element Modelling in Geosciences

FEM 2D viscous

#### Force balance equation: Some reorganization

• Writing everything as one equation in vector-matrix form

$$\int_{0}^{\Delta x} \frac{\Delta y}{\int_{0}^{\sqrt{t}} \left( \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}{\partial y} + \frac{\partial \mathbf{N}^{T}}{\partial x} + \frac{\partial \mathbf{N}^{T}}$$

1v

Reorganization



Finite Element Modelling in Geosciences

#### Force balance equation: The final equation







**Finite Element Modelling in Geosciences** 

FEM 2D viscous

#### Incompressibility equation: Steps ① – ④

- Original equation:
- Test functions (use pressure functions):
   ① Multiplication with test functions:

<sup>(2)</sup> Spatial integration:

③ NO integration by parts!!!

④ Apply FE-approximation:

$$\int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}_{p}^{T} \frac{\partial \mathbf{N}}{\partial x} dx dy \mathbf{v}_{x} + \int_{0}^{\Delta x} \int_{0}^{\Delta y} \mathbf{N}_{p}^{T} \frac{\partial \mathbf{N}}{\partial y} dx dy \mathbf{v}_{y} = 0$$

 $\int_{a}^{\Delta x} \int_{a}^{\Delta y} \mathbf{N}_{p}^{T} \frac{\partial v_{x}}{\partial x} dx dy + \int_{a}^{\Delta x} \int_{a}^{\Delta y} \mathbf{N}_{p}^{T} \frac{\partial v_{y}}{\partial y} dx dy = 0$ 

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$
$$\mathbf{N}_p = \begin{bmatrix} N_1^p & \dots & N_4^p \end{bmatrix}$$
$$\mathbf{N}_p^T \frac{\partial v_x}{\partial x} + \mathbf{N}_p^T \frac{\partial v_y}{\partial y} = 0$$

Finite Element Modelling in Geosciences

#### Incompressibility equation: Some reorganization

• Writing everything as one equation in vector-matrix form



•

# **Final set of equations**

- Force balance:
- Incompressibility:

 $\mathbf{K}\mathbf{v} - \mathbf{G}\mathbf{p} = \mathbf{F}$  $\mathbf{G}^T \mathbf{v} = \mathbf{0}$ 

• Everything together:





# What's new?

- New physical parameters (viscosity instead of elastic parameters)
- Numerical grid and indexing is different because of bi-quadratic shape functions (9 nodes per element).
  - So, you need to change
    - EL\_N
    - EL\_DOF

You need to newly introduce

- EL\_P, which provides a relationship between element numbers and pressure-node numbers
- New set of shape functions (4 bi-linear for pressure stay the same, 9 bi-quadratic for velocity are new)
- New set of integration points (9 instead of 4)
- Calculate G inside the loop over integration points in a similar way as K.
   For this you need the shape function derivatives in a vector format (instead of matrix B).
- Put K, G, and F together to form the super-big K and super-big F.
- Your solution is now a velocity. So, introduce a time increment Δt and update your coordinates as GCOORD = GCOORD + Δt\*velocity. Then you can write a time-loop around your code and run it for several time steps.

#### Problem to be solved

- Homogeneous medium
- Boundary conditions
  - Left and bottom: Free slip (i.e., no boundary-perpendicular velocity, boundary-parallel velocity left free)
  - Right and top: Free surface (both velocities left free)
- Calculate several time steps

