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a b s t r a c t

Numerical modeling of geodynamic problems typically requires the solution of the Stokes equations for
creeping, highly viscous flows. Since material properties such as effective viscosity of rocks can vary many
orders of magnitudes over small spatial scales, the Stokes solver needs to be robust even in the case of
highly variable viscosity. A number of different techniques (e.g. finite difference (FD), finite element (FE)
and spectral methods) are presently in use. The purpose of this study is to evaluate the accuracies of several
of these techniques. Specifically, these are staggered grid, stream function and rotated staggered grid finite
difference method (FDM) and an unstructured finite element method (FEM) with various arrangements
of elements. Results are compared with two different analytical solutions: (1) stress distribution inside
and around strong or weak viscous inclusions subjected to pure-shear and (2) density-driven flow of a
simple two-layer system. The comparison shows, in case of the three FD techniques, that the manner in
which viscosity parameters are defined in the numerical grid plays an important role. The application of
different viscosity interpolation methods yields differences in accuracy of up to one order of magnitude.
In case of the FEM, results show that the arrangement of the elements in the region of material interfaces
and the way in which material properties are defined also strongly affects the accuracy.

We derived a 1D analytical solution for a simple physical model where an interface separates two
domains of different viscosities. If the interface is located between two nodal points the effective vis-
cosity for this cell is a harmonic average of the two viscosities weighted according to the fraction of each
material in this cell. Numerically, fractions were evaluated by using markers bearing the material property
information.

The 2D problem differs from the 1D problem in that in 2D, two viscosities are necessary for a con-
servative FD formulation, one in the center and one at nodal points of a cell. Harmonic (in some cases
geometric) averaging of the viscosity from markers to center points and a second harmonic averaging
from center to nodal points is shown to give the most accurate FD results. In presence of density varia-
tions additionally a marker based arithmetic average for density should be applied. Results obtained by

an unstructured FEM with elements following exactly the material boundaries show accuracies of one
to two orders of magnitude better then results produced by Eulerian FD or FE methods. If viscosities are
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. Introduction
Numerical modeling of geodynamic processes on geological
imescales requires solving of Stokes-like equations regardless of
hether the rheology is viscous, non-Newtonian, visco-elastic or
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points, however, the FEM is less accurate than FD methods. Elementwise
imilar accuracies for both methods.

© 2008 Elsevier B.V. All rights reserved.

isco-elasto-plastic (e.g. Gerya and Yuen, 2003, 2007; Braun and
ambridge, 1994; Schmeling and Jacoby, 1981; Moresi et al., 2002,
003, 2007; Zhong et al., 2007; Schmalholz et al., 2001; Vasilyev et
l., 2001; Fullsack, 1995; Kaus et al., 2004). A major complication
n numerically solving such problems is that the effective mate-
ial properties of rocks vary many orders of magnitudes due to

ither changes in temperatures or differences in composition. For
xample, the effective viscosity of olivine has an Arrhenius-type
emperature dependence of the form � ∝ exp(Q/(nRT)). Represen-
ative values are Q ≈ 400 kJ/mol, R = 8.3145 J/(K mol). This results
n an effective viscosity contrast between near surface conditions

http://www.sciencedirect.com/science/journal/00319201
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T ≈ 400 K) and the upper mantle (T ≈ 1600 K) of �/�0 ∼ 1039 Pa s.
imilarly, to solve the problem of propagation of basaltic dikes (� ≈
00 Pa s; Shaw, 1969) through the visco-elastic upper crust (� ≈
023 Pa s; Ranalli, 1995), the numerical method should be capable
f handling viscosity contrasts of 1021 over length scales of tens of
eters. Similar difficulties, although slightly less dramatic, occur

n visco-plastic problems, in which the effective viscosity inside
shear zone typically is several orders of magnitude smaller than
utside the shear zone (with a width of a few numerical grid points).

The Stokes problem, in the case of constant viscosity, is one of the
lassical problems in numerical mathematics, as it is the prototype
quation for saddle-point problems. Therefore, numerous meth-
ds have been developed to solve the equations efficiently (see e.g.
lman et al., 2005, for an overview). Unfortunately these methods
re insufficiently studied for cases where viscosity is strongly vary-
ng as the Stokes equations become very ill-conditioned. This makes
t difficult to directly apply those methods and so far almost no the-
retical work seems to have been performed for geodynamically
elevant cases.

Moresi and Solomatov (1995) developed a multigrid method for
D convection problems capable of handling viscosity variations of
p to 14 orders of magnitude. Although this is an impressive result,
he reason why a solution could be found with iterative methods
ould be related to the relatively smooth variations in viscosity
which was also found by Auth and Harder, 1999; Kameyama et
l., 2005; Choblet, 2005). Sharp gradients in effective viscosities
ause a deterioration in the performance of numerical methods, and
ay also lead to non-convergence of solutions (e.g. Tackley, 2000;

hoblet, 2005; Albers, 2000; Trompert and Hansen, 1996). Indeed,
t was shown by Moresi et al. (1996), in which direct and multigrid

ethods were compared with analytical solutions, that the accu-
acy of the solution depends on the local (elementwise) variation
f viscosity. If the jump in material properties occurs exactly at the
lement boundary, the errors in velocity and pressure are relatively
ndependent of the total viscosity contrast. If the jump in material
roperties occurs inside an element, however, errors increased by
ore than two orders of magnitude. Finally, they demonstrated that

he errors in velocity are one to two orders of magnitudes smaller
han the errors in pressure.

This was also found in Schmid (2002), in which the dynamic
ressure solution around circular and elliptic inclusions was com-
ared with a numerical FE solution. Schmid found that it was
ecessary to use an unstructured FEM, together with higher order
Q2P−1) shape functions (instead of the linear shape functions
mployed by, e.g. Moresi et al., 1996) to obtain accurate pressure
olutions.

If one is interested in accurate velocity solutions only, most
ethods seem to be reliable provided no strong viscosity contrasts

ccur within an element. If one, however, is also interested in accu-
ate dynamic pressures one has to consider possible effects of the
efinition of material properties in numerical grids.

Motivation for the development of numerical techniques that
ccurately resolve the pressure field during deformation comes
rom a variety of sources:

It has become more common to track the pressure–temperature
evolution of rocks in numerical codes of lithospheric deformation,
for the purpose of comparison with observed data (e.g. Toussaint
et al., 2004; Jamieson et al., 2006; Burg and Gerya, 2006). Since
tectonic stress can be significant under certain circumstances

(Petrini and Podladchikov, 2000), it is crucial to use dynamic
pressure instead of lithostatic load for reconstructing P–T paths.
Treatment of plasticity requires knowledge of the absolute values
of stress. Using dynamic pressure for this improves the sharpness
of shear bands (Gerya and Yuen, 2007). Moreover, one of the inter-
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esting features of Mohr–Coulomb plasticity is that it lowers the
pressure inside the shear-band, which makes this rheology differ-
ent than that of ductile shear zones (Vermeer, 1990; Mancktelow,
2006).
Fluid flows down pressure gradients. Lowering the solid pressure
locally thus focuses fluids into brittle shear zones, a mechanism
that is often invoked to explain strain weakening (Huismans
and Beaumont, 2002). Self-consistent modeling of such strain-
weakening processes requires coupling of solid deformation with
Darcy-type flow, and hence requires accurate dynamic pressure
solutions (Morency et al., 2007).
Melt migration through compacting, two-phase flow materials
requires solving equations for the fluid and the solid matrix (e.g.
McKenzie, 1984; Scott and Stevenson, 1986). With few notable
exceptions (Katz et al., 2006; Scott, 1988; Spiegelman, 2003) most
formulations restrict their analysis to cases in which the solid
matrix is rigid. Whereas this greatly simplifies the analysis, a full
description of the problem seems necessary for certain problems
such as shear-localization in partially molten rocks (Katz et al.,
2006), and requires accurate stresses in the solid matrix.

These applications demonstrate that it is important to under-
tand the accuracy of numerical methods for Stokes flow in the
resence of large variations in material properties. As it is described
bove, the studies of Moresi et al. (1996) and Schmid (2002)
how that the FEM would be an appropriate tool to solve such
roblems. Its disadvantage is that it requires exact knowledge of

ocations of material interfaces; there are many situations in geo-
ynamic modeling in which this is not the case, or in which it
ould be prohibitively expensive to dynamically generate such a
esh. Examples are cases in which melt spontaneously localizes

nto small zones (e.g. Connolly and Podladchikov, 2007), models
ith shear-localization (e.g. Kaus and Podladchikov, 2006; Buiter

t al., 2006) and geodynamic models of multi-phase lithosperic-
cale deformation (e.g. Gorczyk et al., 2007; Fullsack, 1995). The
ost practical methods for such problems, in particular in 3D,

eem to be Eulerian or arbitrary Lagrangian–Eulerian methods with
uasi-structured grids as they are routinely employed in the mantle
onvection community.

Among the described methods there are other methods, which
ight be potentially powerful in tracking free surfaces such

s an interface between two different materials. Some exam-
les are Level-set, boundary integral or volume-of-fluid methods
Mühlhaus et al., 2007; Sussman et al., 1994). Each of this meth-
ds has its own advantages and disadvantages. The volume-of-fluid
ethod has difficulties to handle merging and folding interfaces. It
ould require reordering of the interface points and would result

n complex programming. Boundary integral methods require the
ntegral description of the equations and might become difficult to
mplement if viscosity is temperature dependent or if phase tran-
itions occur. While all these interface tracking methods work very
ell for simple problems with only few different materials and

nterfaces, its implementation for multi-phase problems is insuf-
ciently studied.

Thus the objective of this study is to obtain a better insight
n the accuracies of the dynamic pressure and velocity solution
or various 2D FDM and FEM of the Stokes equations. It has been
emonstrated that FD and finite volume methods are very efficient

n solving multi-component geodynamic problems (e.g. Gerya and
uen, 2007; Schott et al., 2000; Weinberg and Schmeling, 1992;

atz et al., 2006). The main aims of the present work are

To demonstrate that, with relatively simple suggestions, the accu-
racy of the pressure solution of the Stokes solver can be improved.
Many authors use FDM to model geodynamical problems. Mod-
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els using FDM require the application of interpolation schemes;
if the interpolation is carefully chosen the accuracy of solution
can be improved by almost one order of magnitude.
To compare the accuracy of FEM with those of FDM. Of interest
is also how accurate FEM soltions are if phase boundaries are not
exactly followed by the mesh (i.e. Eulerian FEM).

We employ three different FD formulations: (1) a staggered
rid velocity–pressure FDM, (2) a stream function FDM, and (3) a
otated staggered grid velocity–pressure FDM, which was recently
emonstrated to be effective for simulating wave propagation in
eterogeneous rocks and an unstructured FEM using different ele-
ent setups. Numerical solutions are compared with analytical

olutions for the flow around circular inclusions of different vis-
osity and with analytical solutions of density-driven flow. The
taggered grid and stream function FDM require viscosities to be
efined both at centers and at nodal points of a cell, while the
otated staggered grid FDM only requires viscosity defined at center
oints. We demonstrate that the manner in which viscosities are
efined at these locations is of extreme importance for the accuracy
f the overall solution. In case of the FEM the accuracy is affected
y the type of mesh as well as by the averaging method of viscosity.

In the following, we begin by describing the governing equa-
ions. We than illustrate the problem of viscosity interpolation with
1D problem for which an analytical solution can be found. We con-

inue with the description of the numerical methods, definition of
enchmark studies and a discussion of our results and conclusions.

. Governing equations

The governing continuum mechanics equations for slowly
oving Newtonian viscous, incompressible flow are the Stokes

quations (e.g. Turcotte and Schubert, 1982; Schubert et al., 2001):

∂vi
∂xi

= 0, (1)

∂�ij
∂xj

= �gi, (2)

˜ ij = 2�ε̇ij, (3)

˙ ij = 1
2

(
∂vi + ∂vj

)
, (4)
∂xj ∂xi

ij = −ıijP + �̃ij, (5)

here vi denotes velocity, �̃ij deviatoric stress,�ij total stress, P pres-
ure,�Newtonian viscosity,� density, gi gravitational acceleration,

3
�
l
v

ig. 1. Thin bar undergoing pure shear deformation. The bar is composed of two domai
onstant stress boundary conditions are applied at the right hand side, a free surface is co
nd Planetary Interiors 171 (2008) 92–111

ij the Kronecker delta, and the Einstein summation convention is
ssumed.

. 1D analytical solution and its numerical application

To obtain insight in the accuracy of numerical solutions in the
resence of strong viscosity variations, we derive an analytical solu-
ion for a quasi 1D case, which we employ to estimate the accuracy
f numerical solutions. We consider a thin bar of length L that is
omposed of two regions with different constant viscosity sepa-
ated by an interface. The system is subjected to stress boundary
onditions (Fig. 1).

.1. Analytical solution

.1.1. General derivation
For the given setup, we can assume that shear stresses are zero.

n this case, the governing equations (Eqs. (1)–(5)) simplify to

∂vx
∂x

+ ∂vz
∂z

= 0, (6)

∂�xx
∂x

= 0, (7)

∂�zz
∂z

= 0, (8)

xx = −P + 2�
∂vx
∂x
, (9)

zz = −P + 2�
∂vz
∂z
, (10)

here Eq. (6) represents conservation of mass, Eqs. (7) and (8) con-
ervation of momentum, and Eqs. (9) and (10) define the rheology.
he boundary conditions are constant stress on the right hand side,
ree slip at the left hand side and stress free on top and at the bottom
i.e. �zz = 0). Integrating Eq. (8) versus z, combined with the stress
ree upper boundary condition yields�zz = 0. From this and Eq. (10)
e obtain P = 2�(∂vz/∂z) or, after using Eq. (6), P = −2�(∂vx/∂x).

hus the resulting force balance in x-direction is

∂�xx
∂x

= 0, (11)

xx = 4�
∂vx
∂x
. (12)
.1.1.1. Velocity distribution. Integrating Eq. (11) versus x yields
xx = 4�(∂vx/∂x) = constant. From this follows that vx should be

inear versus x. If the velocity at the interface, located at a, is
a
x = vx(x = a), the velocities at the left and right boundary are

ns (1 and 2) with different viscosities �1 and �2, separated by a sharp interface.
nsidered at the top and bottom boundaries and free slip at the left hand side.
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ig. 2. Clip of 1D section showing two adjacent points x1 and x2, velocities vx(x1) an
f �1 and s representing the shift from the center between x1 and x2.

left
x = vx(x = −L/2) and vright

x = vx(x = L/2), then the velocity dis-
ribution for domain 1 and 2 is given by

x(x ≤ a) = vax − vleft
x

L/2 + a (x − a) + vax, (13)

x(x ≥ a) = vright
x − vax
L/2 − a (x − a) + vax. (14)

.1.1.2. Stress distribution. The horizontal stress�xx in domain 1 and
can be computed from Eq. (12) and is given by

xx(x ≤ a) = 4�1(vax − vleft
x )

L/2 + a , (15)

xx(x ≥ a) = 4�2(vright
x − vax)

L/2 − a . (16)

.1.1.3. Velocity at the interface. Since �xx(x ≤ a) = �xx(x ≥ a), we
an compute an expression for vax from Eqs. (15) and (16):

a
x = vleft

x �1(L − 2a) + vright
x �2(L + 2a)

�1(L − 2a) +�2(L + 2a)
. (17)

.1.1.4. Constant stress. Substituting vax into Eqs. (15) and (16)
esults in a stress, which is the same in the whole domain, �xx is

xx = 8(vright
x − vleft

x )�2�1

�1(L − 2a) +�2(L + 2a)
. (18)

.1.2. Effective viscosity at the interface
In order to compare the analytical with the numerical results one

eeds to know the effective viscosity at the interface x = a, where a
ump in viscosity occurs. Numerically, velocities and viscosities are
nly defined at discrete points in the domain. To derive the effective
iscosity at x = a, we calculate the velocity at two adjacent points
eft (x1) and right (x2) of the interface (Fig. 2) using Eqs. (13) and
14):

x(x1) = vax − vleft
x

L/2 + a (x1 − a) + vax, (19)

x(x2) = vright
x − vax
L/2 − a (x2 − a) + vax. (20)

Since �xx is constant and given by Eq. (18), we can calculate the
ffective viscosity �a at the interface a by substituting Eqs. (19),
20) and (17) in Eq. (12). Rearranging the equation yields
a = �1�2

�1((x2 − a)/dx) +�2((−x1 + a)/dx)
, (21)

here dx is the distance between x1 and x2. Eq. (21) can be refor-
ulated by substituting a = ((x1 + x2)/2) + s, which is the location

(

(

), interface located at x = a, effective viscosity�a , factor f representing the fraction

f the interface expressed by x1 and x2 and s representing the shift
rom the center within the two points x1 and x2 (Fig. 2). �a is then

a = �1�2

�1((((x2 − x1)/2) − s)/dx) +�2((((x2 − x1)/2) + s)/dx)
. (22)

Eq. (22) can be expressed by introducing a parameter f:

= ((x1 − x2)/2) + s
dx

, f ∈ [0,1], (23)

represents the fraction of�1 on one side of the interface and 1 − f
orresponds to the fraction of �2 on the other side of the interface
etween the two points x1 and x2. �a can then be rewritten as

a = �1�2

�1(1 − f ) +�2f
. (24)

.1.2.1. Special case. If a is located in the center between x1 and x2
f = 0.5) the effective viscosity simplifies to

a(f = 0.5) = 2�1�2

�1 +�2
. (25)

This is the harmonic average of the two viscosities �1 and �2.
represents the weighting according to the fraction of �1 and �2
ithin x1 and x2, where the viscosity jump occurs.

.2. Numerical solution

To solve the 1D problem outlined above numerically, we substi-
ute the rheological equation in x-direction (Eq. (12)), into the force
alance equation (Eq. (11)), which yields

∂

∂x

(
�
∂vx
∂x

)
= 0, (26)

ubject to the boundary conditions vx(x = −(L/2)) = 0 and �xx(x =
L/2)) = −1. Eq. (26) can be discretized with a standard, second
rder, finite difference scheme:(
�i+(1/2)

(
vi+1
x − vix

dx2

)
−�i−(1/2)

(
vix − vi−1

x

dx2

))
= 0, (27)

here we assume constant grid-spacing dx. Velocities are defined
t nodal points, whereas values of viscosity are defined at center
oints (Fig. 3(a) and (b)).

.2.1. Different locations of the interface
Generally the following two cases can be distinguished:
1) The interface between the two domains is located directly at a
node (Fig. 3(a)). In this case, viscosities at all center points are
unambiguously defined.

2) The interface between the two domains is located in between
two velocity points (Fig. 3(b)). In this case, the viscosity needs
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locations of the interface. Comparing now the numerical and ana-
lytical solutions yields different accuracies for the three averaging
schemes (Fig. 4). If the interface is exactly at the center point (Pos.
1) the harmonic average fits the analytical results perfectly. But if
ig. 3. Numerical scheme of 1D FD grid. Locations of velocity and viscosity are show
ocated in between two adjacent nodes.

to be effectively defined (�a). Through the analytical solution
(Section 3.1.2), however, we can derive the effective viscosity
value.

In case (1) the viscosities at all center points are clearly defined
o have either the value �1 or �2. The numerical solution is iden-
ical with the analytical solution. In the more interesting case (2),
n interpolation of the viscosity is required to obtain an appropri-
te viscosity value in a cell where two materials are present, with
ractions of viscosity of values �1 and �2.

In Section 3.1.2 we derived the effective viscosity analytically
Eq. (24)). It is shown that this viscosity should ideally be a
armonic weighted average according to the fractions of either
aterial. In numerical codes using Eulerian-type grids, volumetric

ractions of different materials can be evaluated by using mark-
rs, which bear the different material properties, also known as
arker-in-cell technique (Gerya and Yuen, 2003). While this is one
ay to solve this problem, in numerical codes, it is typically com-
on to sample the material properties directly at either center or

odal points. The values are then projected to the points where they
re required by interpolations. Therefore we evaluate the effect of
iscosity averaging schemes on the accuracy of the numerical solu-
ions. We compare numerical results with the analytical solution by
pplying interpolation methods such as simple averages and aver-
ges using markers to define material fractions and to locate the
nterface without knowing the exact location.

.2.1.1. Simple averaging from nodal to center points. For simplicity,
e restrict our analysis to cases in which viscosity is sampled at
odal points and then interpolated to center points using either
rithmetic, geometric or harmonic averaging (Fig. 3(b.1)):

arith = �1 +�2 , (28)

2

geom = (�1�2)0.5, (29)

harm = 2�1�2

�1 +�2
. (30)

F
o
v

) Case in which the interface is located at a node. (b) Case in which the interface is

Here, numerical simulations are performed using 10 grid points,
1 = 1, �2 = 1000, L = 2 and boundary conditions are vx(x =
(L/2)) = 0 and vx(x = (L/2)) = −0.2 so that �xx(x = (L/2)) ≈ −1.

Numerical accuracies are derived by calculating the absolute
rror between the numerical and the analytical solution:

rror = |vnum − vana|. (31)

Numerical solutions of either averaging scheme (Eqs. (28)–(30))
re independent of the location of the interface, assuming that the
nterface only shifts between two fixed nodes (Fig. 3(b)). The analyt-
cal solution, on the other hand, yields different results for different
ig. 4. Sketch of velocity distribution using simple averaging methods. Accuracies
f different averaging methods depend on the location of the interface and on the
iscosity contrast (≥ or ≤ 1).



arth a

t
p
f
a
t
h
a
t
p

3
s
b
−
p
(

i

f

w
(
c

m

�

�

�

t
w
(
r
r
m
d
l
g

F
s
4
−
i

T
e
r
r

r
w
i
a
y
v
P
c
n
a
e
b
t
s

4

4

−

−

r

Y. Deubelbeiss, B.J.P. Kaus / Physics of the E

he interface is shifted to the left node (Pos. 2), then at a certain
oint the geometric average is better. If the interface is shifted even
urther so that it is located at the left node (Pos. 3), the arithmetic
verage yields best results. If the interface is shifted in the direc-
ion of the right node (Pos. 4), the accuracy order is the following:
armonic, geometric and then arithmetic average with decreasing
ccuracy. This implies that the accuracy is dependent on the loca-
ion of the interface and in addition whether the viscosity jump is
ositive or negative.

.2.1.2. Averaging from marker to center points. Here, numerical
imulations are performed using �1 = 1, �2 = 1000, L = 2 and
oundary conditions are vx(x = −(L/2)) = 0 and vx(x = (L/2)) =
0.2 such that �xx(x = (L/2)) ≈ −1. Two different numbers of grid
oints (nx = 10 and nx = 20) and four different numbers of markers
nmarker = 49,99,999 and 1499) were tested (Fig. 3(b.2)).

A marker ratio is calculated which is similar to the parameter f
ntroduced in Eq. (24):

= nmarker(�1)
nmarker(�1) + nmarker(�2)

, (32)

here the marker ratio is the number of markers bearing �1
nmarker(�1)) divided by the total amount of markers within one
ell.

Further, the three averages (arithmetic, geometric and har-
onic) are applied to the marker ratios in the following way:

marker−arith = �1(f ) +�2(1 − f ), (33)

marker−geom = �f1�
1−f
2 , (34)

marker−harm = �1�2

�1(1 − f ) +�2(f )
. (35)

Comparison between the numerical and analytical results show
hat the harmonic marker ratio average yields the best results
hich is not surprising given the resemblance of Eq. (24) and Eq.

35). Fig. 5 shows that with increasing number of markers the accu-
acy of the numerical solution increases for the harmonic marker

atio average but remains poor for the arithmetic and geometric
arker ratio averages. Further tests show that the errors slightly

epend on the position of the interface and are best for an interface
ocated in the center but the relative accuracies of the harmonic,
eometric and arithmetic marker ratio averages remain the same.

ig. 5. Absolute error between numerical and analytical solution. Numerical
olutions are calculated by using four different numbers of markers nmarker =
9,99,999,1499. Number of gird points is nx = 10 and the interface is shifted by
0.08. By an increasing amount of markers only results using a harmonic average

mprove.
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ests with a higher resolution (nx = 20) indicate a slightly smaller
rror than results produced with nx = 10, but this improvement is
elatively small for the already good results of the harmonic marker
atio average.

The 1D analysis thus demonstrates that discontinuities in mate-
ial properties require careful tuning of the viscosity within the cell
here material properties change. If significant jumps in viscos-

ty occur between adjacent nodal points, harmonic marker ratio
veraging is to be preferred. Applying the findings of the 1D anal-
sis in 2D, however, shows that the 2D FD formulations and the
iscosity averaging methods are more complicated to understand.
art of the problem is that in the 2D numerical formulation, vis-
osity needs to be defined not only at center points but also at
odal points. One could speculate that a harmonic marker ratio
veraging, ones from markers to center points and once from mark-
rs to nodal points, should yield the best results in 2D. As it will
e shown next this is not entirely the case. Thus the connec-
ion between the 1D analysis and the 2D numerical results is not
traightforward.

. 2D governing equations and numerical methods

.1. 2D governing equations

The Stokes equations (Eqs. (1)–(5)) in 2D are

∂vx
∂x

+ ∂vz
∂z

= 0, (36)

∂P

∂x
+ 2

∂

∂x

(
�
∂vx
∂x

)
+ ∂

∂z

(
�

(
∂vx
∂z

+ ∂vz
∂x

))
= 0, (37)

∂P

∂z
+ 2

∂

∂z

(
�
∂vz
∂z

)
+ ∂

∂x

(
�

(
∂vx
∂z

+ ∂vz
∂x

))
= �g. (38)

Eq. (36) represents conservation of mass, Eqs. (37) and (38) rep-
esent conservation of momentum in x- and in z-direction.

In presence of highly varying viscosity, the Stokes solver is
ritical for accurate results. Therefore, accuracy tests for pres-
ure and velocity solutions are performed for three different FDM
nd an FEM using different arrangements of the elements. These
re

1) Staggered grid velocity–pressure FDM.
2) Stream function FDM.
3) Rotated staggered grid velocity–pressure FDM.
4) Unstructured velocity–pressure FEM.

The staggered grid velocity–pressure FDM is commonly used
o solve the Stokes equations (e.g. Gerya and Yuen, 2003; Katz
t al., 2007). The stream function FDM introduces an additional
arameter: the stream function � . The difference between the
tream function value at any two points gives volumetric flow
ate (flux) between the points. It is useful when studying fluid
ynamics since the velocity field can directly be calculated from
he stream function (as is often done in mantle convection codes,
chmeling and Jacoby, 1981). The rotated staggered grid FDM
as first introduced by Saenger et al. (2000). Advantages of the

otated staggered grid are that viscosity is defined only in the cen-
er of a cell and that velocities are calculated at the same nodal

oints.

Accuracy of the numerical methods is compared using two dif-
erent types of tests. One is a 2D analytical solution for the pressure
istribution around an inclusion embedded in a viscous matrix
eveloped by Schmid and Podladchikov (2003). A second test was
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ig. 6. Numerical grid for the three FDM employed in this work. Displayed are four c
re defined are shown. (a) Staggered grid FDM. Four adjoining center point-viscos
oint- and center point-viscosities. Interpolation is done the same way as for (a). (c

erformed for the analytical solution of Rayleigh–Taylor instabili-
ies (Biot, 1961; Biot and Odé, 1965).

The numerical codes have been developed for the purpose of
his work. The implementation was done in MATLAB®, and direct
olvers have been applied in all cases. Since the focus here is on the
ccuracy of the methods rather than on the formulation itself we
eep the technical discussion of each of the methods brief.

.1.1. Staggered grid velocity–pressure finite difference method
The 2D Stokes equations are solved on a staggered grid (e.g.

erya and Yuen, 2003), where pressure and both velocities in x-
nd z-direction are discretized at physically different positions on
he grid (Fig. 6(a)). Viscosity is defined in the center and at nodal
oints of a cell. Density is defined between two nodal points at the
osition of the velocity in z-direction.

Examples of the discretizations of Eq. (36) and the second part
f Eq. (37) (2(∂/∂x)(�(∂vx/∂x))) are

vi,j−(1/2)
x − vi−1,j−(1/2)

x

dx
+ vi−(1/2),j

z − vi−(1/2),j−1
z

dz
= 0,

nd

∂

∂x

(
�
∂vx
∂x

)
= 2

(
�i+(1/2),j−(1/2)(vi+1,j−(1/2)

x − vi,j−(1/2)
x )

dx2

)

−2

(
�i−(1/2),j−(1/2)(vi,j−(1/2)

x − vi−1,j−(1/2)
x )

dx2

)
.

(39)

Discretization of the Stokes equations (Eqs. (37) and (38))
equires the viscosity to be defined at both nodal and center
oints of a control volume. For the discretization of the deriva-
ive of the normal stress component ((∂�xx/∂x), (∂�zz/∂z)), as
hown, e.g. in Eq. (39), viscosity has to be defined in the cen-
er of the control volume. For the discretization of the derivative
f the shear stress component ((∂�xz/∂x), (∂�xz/∂z)) viscosity
eeds to be defined at nodal points (this can be derived simi-

arly).
It will be shown later that in the variable viscosity case, the man-

er in which viscosities are defined at center and nodal points is
mportant for the overall accuracy of the solution. Typically, viscos-
ty is defined at center points and then interpolated to nodal points.
ther cases are described later and discussed in details. Pressure is

lways located at the center of a cell.

.1.2. Stream function finite difference method
For the stream function finite difference method (e.g. Tannehill

t al., 1997; Fletcher, 1991) the Stokes equations are simplified by
liminating pressure P, and introducing a stream function� :
r each method. Locations where pressure, velocities, viscosity and other parameters
re interpolated to one nodal point-viscosity. (b) Stream function FDM with nodal
ted staggered grid FDM.

a) Pressure is eliminated by taking the derivative of Eq. (37) in
z-direction and subtracting the x-derivative of Eq. (38):

−4
∂2

∂x∂z

(
�
∂vz
∂z

)
+ ∂2

∂z2

(
�

(
∂vx
∂z

+ ∂vz
∂x

))

− ∂2

∂x2

(
�

(
∂vx
∂z

+ ∂vz
∂x

))
= − ∂

∂x
�g. (40)

b) The stream function � is introduced:

vx = ∂�

∂z
,

vz = −∂�
∂x
.

(41)

c) Substituting Eq. (41) into Eq. (40) results in a fourth order partial
differential equation for � :

4
∂2

∂x∂z

(
�
∂2 

∂x∂z

)
+ ∂2

∂z2

(
�

(
∂2 

∂z2
− ∂2 

∂x2

))

− ∂2

∂x2

(
�

(
∂2 

∂z2
− ∂2 

∂x2

))
= − ∂

∂x
�g. (42)

The advantages of the stream function approach are that it satis-
es the incompressibility condition exactly and that it reduces the
umber of variables (and equations) from three to one. The disad-
antage is that fourth order derivatives occur (rather than merely
econd order as in the velocity–pressure formulation). This makes
he implementation of boundary conditions cumbersome. More-
ver the stream function approach is more difficult to extend to 3D
Fletcher, 1991; Tannehill et al., 1997).

Eq. (42) is discretized at the nodal points of a staggered numer-
cal grid. Material properties (viscosity and density) are defined
t the center points of the cell (Fig. 6(b)). For discretization of
ifferential operators of second order in the same direction (e.g.
∂2/∂x2)(∂2/∂x2) or (∂2/∂x2)(∂2/∂z2)) viscosity needs to be defined
t the nodal points. Discretization of second order operators in
wo directions (e.g. (∂2/∂x∂z)(∂2/∂x∂z)) requires the viscosity to be
efined in the center of the cell. This is shown for the discretization
f the part ((∂2/∂z2)(�(∂2�/∂z2))) of Eq. (42), which requires the
iscosity at nodal points:

∂2

∂z2

(
�

(
∂2�

∂z2

))
= �i,j+1

dz2

(
�i,j+2 − 2�i,j+1 +�i,j

dz2

)

−2�i,j
(
�i,j+1 − 2�i,j +�i,j−1

)

dz2 dz2

+ �
i,j−1

dz2

(
�i,j − 2�i,j−1 +�i,j−2

dz2

)
. (43)
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Therefore viscosity is interpolated from center to nodal points
sing the same interpolation methods as in the case of the staggered
rid FDM.

Once the governing equations are solved for � , vx and vz can
e computed through Eq. (41). Pressure is computed by using Eq.
37) or (38). Pressure and velocities vx and vz , finally, are located at
he same positions as for the staggered grid FDM (Fig. 6(a) and (b)).
ensity is located at the position of the velocity in z-direction.

.1.3. Rotated staggered grid velocity–pressure finite difference
ethod

Both the staggered grid and the stream function formulation
equire viscosity to be defined at two different locations, which
ntroduces additional problems such as how viscosity should be
nterpolated from one point to the other. It therefore seems advan-
ageous to have a method in which material properties are defined
t a single location only. One such method is the rotated staggered
rid velocity–pressure formulation, first developed by Saenger et
l. (2000) in the context of seismic wave propagation in strongly
eterogeneous media. The main difference of this method to the
ormal staggered grid method is the rotation of the control volume
y 45◦. Directions of spatial derivatives are performed along the x̃-
nd z̃-axes (Fig. 6(c)). For example for Eq. (36) this is

1
2

⎛
⎝

(
vi+1,j+1
x − vi,j+1

x

)
dx

+

(
vi+1,j
x − vi,jx

)
dx

⎞
⎠

+1
2

⎛
⎝

(
vi+1,j+1
z − vi+1,j

z

)
dz

+

(
vi,j+1
z − vi,jz

)
dz

⎞
⎠ = 0, (44)

nd for the part (∂/∂z)(�(∂vz/∂x)) of Eq. (37) this is

∂

∂z

(
�

(
∂vz
∂x

))

= �i+(1/2),j+(1/2)

4

(
vi+1,j+1
z − vi,j+1

z + vi+1,j
z − vi,jz

dxdz

)

−�
i+(1/2),j−(1/2)

4

(
vi+1,j
z − vi,jz + vi+1,j−1

z − vi,j−1
z

dxdz

)

+�
i−(1/2),j+(1/2)

4

(
vi,j+1
z − vi−1,j+1

z + vi,jz − vi−1,j
z

dxdz

)

−�
i−(1/2),j−(1/2)

4

(
vi,jz − vi−1,j

z + vi,j−1
z − vi−1,j−1

z

dxdz

)
. (45)

See Saenger et al. (2000) for more details on differential opera-
ors using the rotated staggered grid.

The main advantage of the present method is that viscosity is
efined at center points only. Velocities are located at nodal points
nd pressure is located at center points. Densities are located at
odal points. A problem, however, is the appearance of a checker-
oard pressure (Saenger and Bohlen, 2004). A possible remedy,
hich was applied here, is to average pressure arithmetically in

he space domain over four neighboring points.

.1.4. Unstructured finite element method

The FD discretization techniques outlined above assumes pres-

ure to be continuous. In the case of strongly varying viscosity,
his is not the case and one could thus expect that methodologies
ith discontinuous pressures yield better results. In order to ver-

fy this, we also employed an unstructured FE code for the tests
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escribed here. Solving the incompressible Stokes equations with
FE approach is slightly tricky, since the employed elements should
atisfy the inf–sup stability condition (Cuvelier et al., 1986; Elman et
l., 2005). The widely used Q1 − P0 element (linear shape functions
or velocity and constant shape functions for pressure) does not sat-
sfy this condition and more complex elements have to be employed
nstead. Here, we use the FE code MILAMIN (see Dabrowski et al.,
008, for code and detailed description) that employs triangular
lements with inf–sup stable Q2 − P1 shape functions.

Since the code uses isoparametric elements, viscosity is sam-
led at integration points (6 for the cases shown here). For simple
etups, it is possible to use a mesh generator that creates a grid,
hich satisfies internal phase boundaries in such a way that each

lement has well-defined (and constant) viscosities. In more com-
lex marker-in-cell models, situations may occur in which different

ntegration points in the same element have different viscosities.
ince pressure is assumed to vary in a linear manner within each
lement, strong jumps in viscosity might result in numerical arte-
acts. One can than thus either (1) leave the viscosity as it is, i.e.
irectly sample at integration points or (2) average the viscosity at
n element-level using, e.g. arithmetic or harmonic averages. It will
e demonstrated below that the accuracy of the solution strongly
epends on the method of choice.

. Viscosity interpolation methods for finite difference
ethods

Discretization of the Stokes equations for the staggered grid and
tream function FDM requires viscosity to be defined at both nodal
nd center points of a control volume (Fig. 6(a) and (b)). The 1D
nalytical solution (Section 3) showed that an effective viscosity
hould be calculated if an interface intersects a cell. Markers can
e used to evaluate a more exact location of an interface inter-
ecting a cell (marker-in-cell method employed in Gerya and Yuen,
003; Weinberg and Schmeling, 1992; Tackley and King, 2003, to
efine material properties). In this case the marker ratio (Eq. (32))
or each cell is calculated. In the numerical algorithms viscosity
s defined in different ways. The different interpolation methods,
omenclature and general signature are summarized in Fig. 7.

nterpolations are performed with and without markers. Some
ombinations ((b)–(d)) are compared with the reference-methods
a). The reference-methods are

Without markers: directly defined viscosities at center points and
simply interpolated from center to nodal points (center2node).
With markers: combining the interpolation from markers to cen-
ter points (marker2center) and the interpolation from center to
nodal points (center2node).

For each of the used interpolation methods one of the three
verages is applied:

rithmetic average : An = a1 + a2 + a3 + · · · + an
n

,

armonic average : Hn = n

(1/a1) + (1/a2) + · · · + (1/an)
,

hereHn ≤ Gn ≤ An is always valid. This is the general formulation.
hen using markers the equations can be expressed by using the

arker ratios (Eqs. (33)–(35)).
Note that the rotated staggered grid FDM does not requires vis-

osity interpolation. However, markers were implemented for an
nterpolation from markers to center points for comparison and in
ases where an interface has to be resolved within a cell. The FEM
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Fig. 7. Schematic description of the viscosity interpolation methods, nomenclature and signatures used for FDM.
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ig. 8. Initial model setting of circular inclusion test showing pure shear boundary
onditions and other parameters described in the text.

equires no interpolation if a perfectly fitted mesh is employed. In
ome other cases, an averaged viscosity value for the element was
omputed. A detailed description of the different FE mesh genera-
ion and averaging techniques is given in Section 7.1.4.

. Model setups

The accuracy of the three different FD formulations was com-
ared to analytical solutions in two different cases: (1) a circular

nclusion test and (2) a Rayleigh–Taylor instability test. The FEM
esults were only compared with the circular inclusion test.

.1. Circular inclusion test

Numerical simulations were performed for a homogeneous cir-
ular inclusion embedded in a homogeneous matrix of different
iscosity (Fig. 8). Unless mentioned otherwise, the initial setup
f the model is a strong inclusion in a surrounding weak matrix
sing a non-dimensionalized viscosity contrast between inclu-
ion (clast) and matrix of 1000. All physical model parameters are
on-dimensionalized by using the characteristic scales given in

able 1.

Boundary conditions are pure shear background strain rate:
he analytical solution of the velocity of Schmid and Podladchikov
2003) is implemented at all four boundaries. The applied velocity
oundary conditions are compressive in horizontal and extensional

able 1
ll physical parameters for the model of a circular inclusion in a viscous matrix have
een non-dimensionalized by the characteristic scales

Value

haracteristic scales
Char. length scale Lc = H
Char. time scale tc = 1/ε̇BG

Char. viscosity �c = �matrix

odel parameters
Viscosity matrix (embedding material) �matrix = 1
Viscosity circular inclusion �clast = 1000 (strong inclusion)

�clast = 0.001 (weak inclusion)
Width of domain W = 2
Height of domain H = 2
Radius of circular inclusion R = 0.1
Strain rate ε̇BG = 1

C
s
l

T
A
u

C

M

ig. 9. Initial model setting for RT instability test showing free slip boundary con-
itions, gravity g and other parameters described in the text.

n vertical directions. Calculations are done for a static problem with
single time step.

.2. Rayleigh–Taylor instability test

Rayleigh–Taylor (RT) instabilities occur due to the fact that in
ase of a density inversion the lighter material tends to go on top
f heavy material (e.g. Biot and Odé, 1965; Burg et al., 2004).

The simplest form is a test using two horizontal layers with
heavy top layer overlying a lighter bottom layer and an ini-

ial perturbation of one wavelength, which drives the system
ithout any background driving force (Fig. 9). The analytical solu-

ion and the controlling parameters are discussed by different
uthors (e.g. Biot and Odé, 1965; Whitehead, 1988). Here, their
esults are employed to test accuracy of the different numerical
chemes.

A layer of thickness h, density �2, and viscosity �2 underlies a
ayer of thickness H − h, density �1, and viscosity �1. All physical

odel parameters are non-dimensionalized by using the charac-
eristic scales given in Table 2.

Boundary conditions are free slip at all four sides of the domain.

alculations are done for a static problem with a single time
tep. Simulations are performed for different dimensionless wave-
engths (	 = 0.5–6).

able 2
ll physical parameters for the RT instability models are non-dimensionalized by
sing the characteristic scales

Value

haracteristic scales
Char. length scale Lc = H
Char. viscosity �c = �2

Char. stress �c =
�gH
odel parameters
Viscosity top layer �1 = 1000
Viscosity bottom layer �2 = 1
Width of domain W = 	
Height of domain H = 1
Density of top layer �1 = 1
Density of bottom layer �2 = 2
Gravity g = 10
Amplitude A0 = 0.001H
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. Results

.1. Circular inclusion test

.1.1. 2D pressure distribution
In Schmid and Podladchikov (2003) a 2D analytical solution

s derived for the setup given in Section 6.1. Pressure is defined
hroughout the whole domain and is directly used to evaluate the
ccuracy of the numerical schemes. For the previously described
ure shear boundary conditions, the analytical solution has zero
ressure inside the strong clast and highest and lowest pressures
irectly at the clast–matrix boundary (Fig. 10(a)).

Fig. 10(b) shows the numerically computed pressure distri-
ution using the staggered grid FDM, with arithmetic viscosity
veraging (center2node). Differences in maximum pressure of up
o 244% occur versus the analytical solution. If, on the other hand,
20 × 20-marker-based harmonic average from markers to center
oints and then a harmonic average from center to nodal points

s used (reference interpolation method: HARM–HARM, Fig. 10(c)),
he accuracy of the method increases and the error is reduced to
1%. This large improvement is mainly due to the averaging type
nd only secondary due to the use of markers (Section 7.1.2).

For all methods, the highest errors occur close to the mate-
ial interface (at the boundary between clast and matrix). For the
taggered grid (Fig. 10(b) and (c)) and the stream function FDM
Fig. 10(d)) an oscillating pressure field can be observed. Large
ositive and large negative pressure values alternate along the
last–matrix boundary.

Pressure calculated with the rotated staggered grid finite dif-
erence method (Fig. 10(e)) has a checkerboard pressure at the
last–matrix boundary, if the pressure is unfiltered. Pressure-
veraging reduces the error, although some oscillations remain
Fig. 10(e)).

.1.2. Effect of viscosity interpolation for the staggered grid FDM
reference interpolation methods)

The influence of the viscosity interpolation methods is system-
tically tested using the reference interpolation methods with and
ithout markers. Since the results of the three numerical meth-

ds are very similar, only the results for staggered grid FDM are
resented here.

The error is computed as the root mean square error, which is

MS error =
√∫

A
(Xnum − Xana)2 dA∫
A

(Xana)2 dA
, (46)

here Xnum indicates numerically computed values and Xana the
nalytical solution at the same location, A is the total area of the
omain.

The RMS errors of the pressure and velocity versus numerical
esolution using the reference interpolation methods are shown in
ig. 11. The error generally decreases with increasing resolution.
he unstable behavior (alternating larger and smaller errors) of
he curves is a result of the numerical discretization of the inclu-
ion boundaries. With an equally spaced rectangular grid a circular
nclusion has a stair-shaped boundary. With increasing resolution,
he clast is filled with an incremental number of cells. During this
rocess the stair-shaped boundary of the clast varies slightly. Some
last shapes improve the accuracy of the pressure solution.

The results of the pressure error (Fig. 11(a)) and the velocity

rror (Fig. 11(b)) show an opposite behavior of the grouping related
o the viscosity interpolation method. The pressure models using
armonic average from center to nodal points show smallest errors
second interpolation step, solid-black lines) while the velocity

odels using harmonic average from marker to center points (first

s
c
s
t
t

nd Planetary Interiors 171 (2008) 92–111

nterpolation step, crosses) have more accurate results. Additional
esults produced by FEM with perfectly fitting elements around
he clast have results that are more than one to two orders of mag-
itude better than for the staggered grid FDM. For pressure and
elocity, the weight of the markers is too small to improve the
esults significantly. When an inappropriate interpolation method
uch as arithmetically (ARITH) averaged center2node interpolation
as chosen (dotted lines), then interpolation methods with and
ithout markers show all bad accuracies for the pressure error. The

ame is valid for the velocity models, a harmonically (HARM) aver-
ged center2node interpolation without markers shows as good
esults as methods using markers. Smallest errors are obtained for
marker-based method in which viscosity is harmonically averaged

rom markers to center points and from center to nodal points. For
ressure, geometrically averaged viscosities from marker to cen-
er and harmonic averages from center to nodal points yield more
ccurate results for higher resolutions, although the difference is
mall.

.1.3. 2-Times-marker, direct/marker and minimum/maximum
iscosity interpolation methods

A selection of other combinations of different viscosity interpo-
ation methods (Fig. 7) are compared with the results shown of
he staggered grid FDM (Fig. 11). These are the 2-times-marker,
irect/marker and minimum/maximum interpolation methods.
esults are plotted in the frame of the results of the staggered grid
DM (Fig. 12). One could expect that a double marker interpola-
ion, once from marker to center points and once from center to
odal points, would represent the findings from the 1D analysis
est. We showed that a harmonically averaged marker interpola-
ion represents the 1D analytical solution almost perfectly. Thus
double harmonic marker interpolation (2-times-marker) should
ield best results, which is not the case for the pressure, but only
or the velocity solution. A possible cause for this is that the 1D
olution is only solved for velocity. In addition, pressure is only
first order derivative compared to the second derivative of the

elocity. For three other averaging combinations (ARITH–HARM,
EOM–GEOM and GEOM–HARM) the improvements are very
mall.

Also the direct/marker and the minimum/maximum interpola-
ion methods are all within the given range of the error calculated
y the reference interpolation methods. Interesting is the fact that
ome interpolation methods correlate very well with the reference
ethods. For example, the simple harmonically averaged viscosi-

ies from center to nodal points (HARM reference solution) and the
olution using a directly sampled viscosity for the center points and
harmonic averaged marker to nodal points interpolation (DIRECT-
ARM direct/marker solution) differ only very little (Fig. 12(b)).
he only difference is that for the latter markers are used for
he interpolation, which again shows that markers have no sig-
ificant effect on the overall accuracy. The opposite behavior of
he ARITH-DIRECT and HARM-DIRECT for pressure and velocity
olutions leads to the assumption, that pressure solutions prefer
o have smooth viscosity steps between center and nodal points
hile for the velocity solutions large jumps at the nodal points are
referred. The minimum/maximum interpolation methods show
hat the ARITH–HARM reference solution correlates very well with
he MAX-MIN solution (Fig. 12(c)) which might be related to the
act that the arithmetic averages have the largest values and the
armonic averages the smallest. But the HARM–HARM reference

olution and the MIN-MIN solution do not correlate at all. The dis-
retized shape of the clast is strongly affected by the MIN-MIN
olution and creates probably a too small clast. The MIN-MIN solu-
ion does not represent the same as the HARM–HARM reference or
he HARM–HARM 2-times-marker solution.
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ig. 10. 2D pressure fields using a viscosity contrast of�clast/�matrix = 1000 and a re
olution. (b–e) Numerical solutions using reference interpolation methods. (b) Stag
nterpolation, 20 × 20 markers per cell. (d) Stream function FDM, HARM–HARM inter
.1.4. Comparison of numerical methods
To visualize the accuracy of the pressure and the veloc-

ty solution of the different numerical techniques the RMS
rror (Eq. (46)) is plotted versus resolution for some repre-
entative cases. The accuracy of the pressure solution (Fig. 13)

i
v
o
f
m

ion of 280 × 280 grid points. Contours are at −4, −3, −2, −1, 1, 2, 3, 4. (a) Analytical
grid FDM, ARITH-interpolation, no markers. (c) Staggered grid FDM, HARM–HARM
on, 20 × 20 markers per cell. (e) Rotated staggered grid FDM. See text for discussion.
s typically less than for velocity solution. The errors of the
elocity compared to the pressure solution are almost one
rder of magnitude less for the staggered grid and stream
unction FDM for the corresponding viscosity interpolation

ethods.
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Fig. 11. RMS error of pressure and velocity as a function of resolution for different viscosity interpolation methods (circular inclusion test). Staggered grid FDM and an FEM
with perfectly fitting elements around the clast are displayed. For the staggered grid FDM only reference interpolation methods (Fig. 7) are applied. For this figure different
line and symbol styles are used than defined in Fig. 7. Most cases employ markers in which viscosity is first interpolated from markers to center points (marker2center),
followed by a second interpolation from center to nodal points (center2node). In cases where no markers are employed (viscosity directly sampled at center points) only the
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econd interpolation step is applied. FEM-results show more than one order of magn
rrors (a) occur for HARM averaging from center to nodal points (grouping due to se
arker to center points (grouping due to first interpolation step) or without marke

The dependence on viscosity interpolation methods for pressure
nd velocity solution is clearly visible (Figs. 11 and 13). Errors dif-
er up to one order of magnitude for various viscosity interpolation

ethods. However, differences between the three FD formulations
re very small. Staggered grid and stream function FDM follow the
ame trend with only a minor shift, independent of the interpola-
ion procedure. The pressure solution for the rotated staggered grid
DM is in the range of the best results of the other two FDM. This
esult is not entirely surprising due to the advantage that viscosity
oes not need to be interpolated (see Section 4.1.3). The velocity
olution is in the intermediate range. If markers are implemented
or interpolation from markers to center points, results improve
lightly for geometric and harmonic averaging methods (where
armonic averaging is slightly better), but not for an arithmetic
veraging.

Applying none of the interpolation methods for the staggered
rid FDM but defining viscosity directly at both center and nodal
oints results in slightly more accurate pressures than for the ARITH
veraged viscosity (no markers) (Fig. 13, gray solid line). Neverthe-
ess, the pressure errors are larger than for most of the averaging

ethods. The velocity error is in the intermediate range.
Results obtained with the FEM largely depend on whether the

rid follows jumps in material properties or not (Fig. 14). If the grid
xactly fits the inclusion, results are superior to those obtained
ith FDM and converge quadratically with increasing resolution.

f the grid does not exactly follow the inclusion, averaging of vis-

osity from markers to integration points becomes important and
armonic averaging yields the most accurate results. The overall
ccuracy in those cases is comparable to the accuracy of FDM. The
seudo-adapted method (methods explained in Fig. 14(a)) which
akes an attempt to increase the number of elements around phase

m
a
S
e

smaller pressure- and velocity errors. For the staggered grid FDM smallest pressure
interpolation step) and smallest velocity errors (b) occur for HARM averaging from
M averaged center2node interpolation.

oundaries, yields more accurate results than non-fitted, pseudo-
egular mesh methods. If viscosity is sampled directly at integration
oints, errors in velocity and pressure are an order of magnitude

arger than those obtained with the least accurate FDM. A possi-
le explanation for this observation is that the Q2 − P1 elements
sed here assumes pressure to vary in a linear manner at most.

umps in material properties result in discontinuous pressures, and
pproximating discontinuities with linear functions might result in
serious overestimation of pressures. This way of sampling viscos-

ty should thus be avoided.

.1.5. Effect of viscosity contrast
The effect of the viscosity contrast on the accuracy of numerical

olutions is systematically tested for cases that go from a rigid inclu-
ion (viscosity contrast �clast/�matrix = 105) to a weak inclusion
viscosity contrast �clast/�matrix = 10−5). Numerical resolution is
00 × 200 grid points and 20 × 20 markers.

Here, we employ another type of error to get information about
he maximum pressure compared to the analytical solution, a so
alled overshoot. The overshoot is the difference between the max-
mum pressure of the numerical and the maximum pressure of the
nalytical solution normalized by the maximum pressure of the
nalytical solution:

vershoot = ‖Pnum‖inf − ‖Pana‖inf

‖Pana‖inf
. (47)
Results (Fig. 15) are only shown for the reference interpolation
ethods. Pressure overshoots generally occur for rigid inclusions

nd are generated at the clast–matrix boundary (see Section 7.1.1).
ome interpolation methods (e.g. ARITH averaged solution) have
rrors up to 160%. Weak inclusions generally show pressure under-
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Fig. 12. RMS error of pressure and velocity as a function of resolution for (a) 2-time-marker, (b) direct/marker and (c) minimum/maximum viscosity interpolation meth-
ods (circular inclusion test). The descriptions of the viscosity interpolation methods and nomenclature is given in Fig. 7. The gray area shows the range of the results of
the staggered grid FDM using the reference interpolation methods. None of these interpolation methods is significantly better. (a) The 2-times-marker method twice har-
monically averaged (HARM–HARM 2×-markers) is only for the velocity solution slightly better but not for the pressure, which is interesting since it is expected that this
m tween
m no cle
t

s
g

o
b

ethod might represent the findings of the 1D analysis. (b) The good correlation be
arkers do not affect the results. (c) Minimum/maximum solutions generally show

he text.
hoots (negative overshoot values) except for the rotated staggered
rid and the HARM–HARM averaged staggered grid FD simulations.

It is most likely that these large overshoots occur due to pressure
scillations at the clast–matrix boundary. These oscillations might
e numerical artifacts: depending on the interpolation method, it

m
c
i
o
v

DIRECT-HARM direct/marker and HARM reference solutions show that principally
ar improvements related to the reference-methods. Further details are described in
ight happen that, in certain cells at the clast–matrix boundary,
alculations are made by using much too high viscosity values
nstead of low (or vice versa). That is, numerically, the cell is inside
f the clast but analytically it should be outside of the clast (or
ice versa). The results show that such numerically induced errors
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Fig. 13. RMS error as a function of resolution for different FD formulations and reference interpolation methods for viscosity (circular inclusion test). Pressure error (top)
with worst result (ARITH), two best results (GEOM–HARM, HARM–HARM), and intermediate result (GEOM–GEOM). Velocity errors are almost one order of magnitude less
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han pressure errors (for the corresponding viscosity interpolation methods). Accura
agnitude. Errors between staggered grid and stream function FDM are very small,

rid FDM are small, while the velocity error is intermediate.

chieve much higher values for strong than for weak inclusions.
herefore, care has to be taken, since strong pressure gradients can
nduce flow.

.2. Rayleigh–Taylor instability test

Numerical simulations for the simple two-layer model with a
eavy top layer overlying a lighter bottom layer were performed.
he system is driven by an initial perturbation of one wavelength.
he induced velocity field is compared with the analytical solution
Biot, 1961; Biot and Odé, 1965; Whitehead, 1988). The maximum
mplitude of the interface of A0 = 0.001H is smaller than the grid
esolution. To drive the system the perturbation must be numer-
cally visible. This problem was solved by implementing 20 × 20

arkers to derive the volume fractions in the cells where the
nterface passes through. Therefore markers also carry the den-
ity information. This means that, in addition to viscosities, also
ensities are interpolated from markers to the corresponding den-
ity position in the FD grids (Fig. 6). This is different than for the
ircular inclusion test where only viscosities were averaged (den-
ity was constant). Viscosities, for this test, were interpolated with
he reference interpolation methods (Fig. 7). Other methods exist
e.g. Level-set, boundary integral, volume-of-fluid methods) which
an be used to track free surfaces, but for the sake of consistency
etween the circular inclusion and the Rayleigh–Taylor test the
arker method was used.

.2.1. Comparison of the tree finite difference methods

Unlike the circular inclusion test, the results of the

ayleigh–Taylor instability test are generally independent of
he viscosity interpolation method (Fig. 16). The interpolation
f density is extremely important to approximate the interface
deally. Results with an ARITH averaged density and any type of

v
w
o
b
d

ettween different viscosity interpolation methods change up to almost one order of
velocity error the difference is not visible. Pressure errors of the rotated staggered

iscosity interpolation leads to the best results. All three FDM,
taggered grid, stream function and rotated staggered grid FDM
ave very similar accuracies.

.2.2. Effect of viscosity contrast
The effect of viscosity contrast on the accuracy of numerical sim-

lations is shown in Fig. 17. Numerical resolution was 129 × 129
rid points and 20 × 20 markers per cell.

Results generally show overshoots except for the rotated stag-
ered grid FDM. The trend for all methods is the same, a decrease
f error close to a viscosity contrast of 1 (�top = �bottom). The
tream function FDM show slightly better results than the stag-
ered grid FDM. The staggered grid and stream function FDM show
est results for ARITH averaged density irrespective of the viscosity

nterpolation. For high or low (≥ 103 or ≤ 10−3) viscosity contrasts
harmonic average for the second viscosity interpolation (HARM

veraged viscosities from center to nodal points) have significantly
arger errors. For this specific resolution (129 × 129) the rotated
taggered grid FDM with GEOM averaged viscosity (markers to
enter points) has very small errors but they increase for higher
esolutions (Fig. 16). The rotated staggered grid with an ARITH aver-
ged viscosity has almost the same accuracy as the stream function
DM with an ARITH averaged density.

. Discussion

The analysis presented here demonstrates how material proper-
ies are defined in different FD formulations in presence of strongly

arying material properties, in particular viscosity. Quantitatively it
as shown that the accuracy of the pressure (circular inclusion test)
r velocity solution (circular inclusion and Rayleigh–Taylor insta-
ility test) is critically dependent on the averaging scheme. We also
emonstrated, that certain arrangements of elements in FEM show
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Fig. 14. RMS error as a function of resolution for FEM (circular inclusion test). (a) Different mesh generation techniques that have been employed in the test (each one has
≈ 30000 degrees of freedom). Element boundaries, location of integration points and location of the inclusion are indicated. The perfectly fitting mesh creates elements
that exactly follow the inclusion boundary. The pseudo-adapted mesh, interpolates material properties from marker-distributions to a regular grid and computes jumps in
material properties from this grid. The non-fitted, pseudo-regular mesh creates elements that have approximately the same area throughout the computational domain.
Integration points within an element may have different viscosities in the pseudo-adapted and non-fitted, pseudo-regular mesh case. If this occurs, the viscosity in an element
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ight be averaged elementwise (using harmonic or arithmetic averaging) or might
rids and element-averaging methods. The perfectly fitting mesh method clearly y
hat of FD techniques (gray area) if viscosity is averaged over the element. If viscos
echniques. (c) Velocity error vs. resolution.

arge differences in accuracies and have the same error amplitudes
s FDM.

.1. 1D analytical and numerical effective viscosity study

Problems generally arise due to the fact that material interfaces
an only be resolved in a discrete manner. In the present analysis
he interface of the circular inclusion is always bisecting cells. The
uestion addressed in this work is how material properties (here
iscosity) should be defined if significant changes occur within a
ell.

A 1D analytical solution was derived for a simple setup to
ompute an effective (optimal) viscosity in a cell where two dif-
erent materials are present. Marker ratio harmonic averages for
he viscosity represented the analytical solution very well. Simple

iscosity averaging (without markers) are dependent on the loca-
ion of the interface and the sign of the viscosity gradient which is
n difference to the marker ratio method.

Applying the findings of the 1D analysis directly in 2D is not
traightforward. For the 2D FD formulations, it was expected that a

i
g
o
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m

pled directly at the integration points. (b) Pressure error vs. resolution for various
the best results; the other methodologies have an accuracy that is comparable to
ampled directly at integration points, the results are less accurate than that of FD

ouble harmonic marker averaging, once from marker to center and
nce from marker to nodal points, yields the best results. Interest-
ngly, this was only the case for the velocity solution and improve-

ents were only minimal. This disagreement might be explained
y the order of the derivatives: velocities are solved by second order
erivatives, while pressure is only a first order derivative, addi-
ionally, in 1D we only solve for velocity solutions. Results using
irect/marker or minimum/maximum viscosities interpolation
ethods do not show better results as the ones produced by the ref-

rence interpolation methods (for definitions of methods see Fig. 7).

.2. 2D numerical models

One major reason that the generalization from the 1D to the 2D
olutions is not straightforward might be due the different viscos-

ty positions one has to deal with in 2D FD formulations (staggered
rid and the stream function FDM). One location is in the center and
ne at nodal points of a cell. The 2D numerical results for the setup
f the circular inclusion, however, indicate that a combination of
arker-based harmonic viscosity averaging to center points with
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ig. 15. Overshoot (Eq. (47)) vs. viscosity contrast�clast/�matrix for the three differen
i.e. the maximum pressure of the numerical solution is smaller than the maximum

armonic averaging from center to nodal points is advisable. The
ayleigh–Taylor instability test yields different results: here, arith-
etic interpolation of densities gives the best results. These differ-

nces are most likely due to different model setups, in particular
ow the systems are driven (kinematic or buoyancy/stress driven).

oreover, in the Rayleigh–Taylor instability test, resolving the

nterface is of major importance, and averaging density has a more
mportant effect on the overall accuracy than averaging of viscosity.
his might be due to the fact that such an interface is preferable rep-
esented by real volumetric fractions, which is an arithmetic mean

v

p
F
f

ig. 16. RMS error of growthrate (Eq. (46)) as a function of resolution for different densit
ensity interpolation is the factor, which groups the results. For the viscosity the referenc
lmost no effect on the results, except the HARM–HARM averages show very high errors.
chniques for the circular inclusion test. Gray region represents region of undershoot
ure of the analytical solution).

f two different material properties. Another explanation is that
he velocities of the Rayleigh–Taylor instabilities are related to the
ensity contrast and are influenced only globally by the viscosity
ontrast, while in the circular inclusion test the pressure distribu-
ion is directly dependent on the local viscosity contrast and the

elocity distribution in turn is dependent on the pressure.

Differences between the three FD schemes are secondary com-
ared to the manner in which viscosity or density are interpolated.
or both model setups (circular inclusion or two-layer model) dif-
erent averaging procedures cause significantly different results

y and viscosity interpolation methods for the Rayleigh–Taylor instability test. The
e interpolation methods were used. The combination of the viscosity averages has
ARITH averaged density yields best results.
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ig. 17. Overshoot (Eq. (47)) vs. viscosity contrast �top/�bottom for the three differe
actor, which groups the results. For the viscosity the reference interpolation met
esults, except the HARM–HARM or GEOM–HARM averages show very high errors.

nd accuracy can change up to one order of magnitude. The similar-
ty between results of the staggered grid and the stream function
DM might be due to the way that pressure is determined for the
tream function formulation. Integration of the force balance equa-
ions (Eqs. (37) or (38)) for pressure results in the same staggered
ositions for velocities and pressure as for the staggered grid FDM.
he good results of the rotated staggered grid FDM might be due to
he fact that no center to nodal point viscosity interpolation is nec-
ssary. In this case the findings of the 1D analysis seem to extend
ell to the 2D case.

The problem of averaging of material properties was also con-
idered by Moczo et al. (2002) for the case of a 3D heterogeneous
taggered grid FD model of seismic wave propagation with dis-
ontinuous material parameters such as the elastic moduli and
ensities. They obtained, in the 1D case, a similar result and
ound that the elastic coefficient should be harmonically aver-
ged whereas densities should be arithmetically averaged. An
ther interesting study (Moskow et al., 1997) considering non-
onforming Cartesian grid to interfaces using elliptic equations
iscusses two averaging schemes, which are dependent on the
irection of anisotropy and can only be applied to very simpli-
ed setups. They use arithmetic averages in directions parallel to
layering (creating the anisotropy) and harmonic averages per-

endicular to the layering (direction of changes). The methodology
ight potentially also be useful for solving variable viscosity Stokes

roblems.

.3. Different numerical methods

The problem of numerically induced artifacts such as oscil-
ations or checkerboard pressures along high viscosity contrasts
ould, theoretically, be largely resolved by using Lagrangian FEM in

hich the elements exactly follow the boundaries of viscosity con-

rast. We demonstrated the success of such an approach for the very
imple setup of a strong circular inclusion. But already small devi-
tions from a perfectly fitting mesh such as the pseudo-adapted or
he non-fitted, pseudo-regular meshing methods, where jumps in

g
l
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p

techniques for the Rayleigh–Taylor instability test. The density interpolation is the
ere used. The combination of the viscosity averages has almost no effect on the

ar represents region of undershoot. ARITH averaged density yields best results.

iscosity occur within an element, yield accuracies which are at best
qual to those of FDM. These findings are in agreement with those
f Moresi et al. (1996), who demonstrated that viscosity contrasts
hat occur inside an element may result in large errors in pressure,
hereas viscosity contrasts that occur along element boundaries

ield sufficiently accurate results.
Additionally, the results also show that direct sampling of vis-

osity at integration points might seriously degrade the accuracy
f the overall solution if sharp jumps are present, and should thus
e avoided. It is possible that this result is an artifact of the use
f higher-order elements, since the linear approximation for pres-
ure might result in overshoots at discontinuities. Future tests with
inear elements, such as the Q1 − P0 element, are required to bet-
er understand this phenomenon. Initial test results, obtained with
ALE, indicate that similar issues occur in this case (Landry et al.,
008). The results here also show that marker-in-cell FEM, in which
aterial properties are defined at markers and integration points
ove with markers, could suffer from similar problems if sharp

umps in properties occur.
A number of techniques have the potential to overcome some

f the problems described here. A split-element technique could
e applied that effectively splits the element in two if sharp
radients occur (e.g. Braun et al., this issue). Gradient recovery tech-
iques might improve the pressure accuracy in a post-processing
tep (Sharples et al., 2006). Extended FE techniques can be used,
hat adds degrees of freedom at the location of the discontinuity
Belytschko et al., 2001; Jäger et al., 2008). So far, however, none
f these techniques seem to have been compared with analytical
olutions such as the ones presented here. Moreover, some tech-
iques might be difficult to extend to three dimensions. More work

s thus required to evaluate the full potential of those methods.
Beside the fact that Lagrangian FEM techniques show very
ood accuracies, there are reasons why Eulerian techniques are
ikely to remain popular in computational geodynamics. Typical
ithospheric-scale problems require modeling of extreme defor-

ations alongside large variations in material properties. Such
roblems could, in theory, be solved with an unstructured FEM,
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hich automatically adapts the grid to every jump in material
roperties. In practice, this is nearly impossible since interfaces
nd layers may have a fairly fine structure or may evolve into
xtremely fine-structured features. Resolving this numerically and
nsuring that triangular elements have a close-to-optimal shape
equires a lot of elements, in particular, since layers might undergo
ignificant stretching and folding during the course of simulation
Gorczyk et al., 2007). Typically, extremely fine-scaled patterns
merge from relative simple initial structures. This means that
he number of elements increases significantly during the sim-
lation, which might therefore require a lot of memory and
pu-time.

.4. Pressure accuracy

A purpose of the present analysis is to address the question of
hether the pressure solution has sufficient accuracy for solving

oupled systems such as two-phase flow models, where the pres-
ure feeds back to the solution. The analysis of the overshoot versus
iscosity contrast for circular inclusions shows that the accuracy of
he pressure is particularly problematic for highly viscous inclu-
ions. Pressure solutions have oscillations around the clast–matrix
oundary. Models of two-phase flow (e.g. melt migration through
he mantle) are more likely to resemble the opposite case in which
lower viscosity fluid is embedded in a solid, viscously deformable
atrix. For this case the maximum pressures of the numerical solu-

ion are mostly slightly smaller than that of the analytical solution.
his might thus be less of a numerical issue. Generally, the pres-
ure gradient at locations of pressure oscillations can achieve much
igher values for strong than for weak inclusions. This gradient can

nduce fast flow, which is the consequence of numerical artifacts.
his overshoot can drastically be reduced by using an appropriate
iscosity interpolation method. Nevertheless, differences between
ifferent setups should be considered when choosing one of the
resented interpolation schemes.

. Conclusions

In this paper we have analyzed the effects of viscosity aver-
ging and numerical methodology on the accuracy of the Stokes
quations in the presence of viscosity variations.

In 1D analytical and numerical tests, we demonstrated that the
ptimal viscosity in a cell, where an interface is separating two
omains of different viscosities, is a harmonic average weighted
ccording to the fractions of the two viscosities. The harmonically
arker ratio average could represent the solution very well, while,

n the other hand, a simple harmonic average from nodal to center
oints is dependent on the location and the sign of the viscosity
ontrast.

In 2D numerical tests using FDM, we showed that for a setup
f a circular inclusion in a domain with kinematic boundary con-
itions, a marker-based harmonic averaging to center points and
harmonic averaging from center to nodal points yields best

esults. For the pressure solutions, however, a geometric averag-
ng to center points and a harmonic averaging from center to nodal
oints is slightly better for higher resolutions. Errors in velocity
re always about an order of magnitude smaller than errors in
ressure. However, for a buoyancy/stress driven system such as
he Rayleigh–Taylor instability test, the results are dominated by
he density interpolation and not by the viscosity interpolation.

n this case an arithmetic averaging for density must be applied

hile the viscosity interpolation can have any type of averaging
cheme. The differences between various numerical methodolo-
ies for both setups are small compared to the differences between
arious viscosity or density averaging schemes.

F
F

nd Planetary Interiors 171 (2008) 92–111

Viscosity interpolation methods are thus of crucial importance
n modeling geodynamic problems with FDM, particularly if the
ynamic pressure is of interest. While an ideal Eulerian numeri-
al method does not seem to exist, one can improve the accuracy
f such approaches by choosing the correct averaging method. We
lso demonstrate that a Lagrangian FEM for geodynamic problems
ith highly varying viscosity would be an appropriate tool but

nly if the elements perfectly fit the material boundaries. Prob-
ems can arise if large deformations should be modeled. Eulerian
E models have the same accuracies as the FD models or in case of
irect material sampling at integration points results are one order
f magnitude worse. Therefore, Eulerian approaches such as the
DM remain useful. On the basis of the tests performed here using
DM, we recommend the use of a harmonic averaging from marker
o center points and a harmonic averaging from center to nodal
oints. In presence of density variations, densities are preferably
arker-based arithmetically averaged. This findings were success-

ully applied for a free subduction benchmark study (Schmeling et.
l, this issue).
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