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a b s t r a c t

Geodynamic processes are in many cases coupled to surface processes such as erosion of mountains or
deposition of sediments in basins. Numerical models that study the effect of such surface processes on
the dynamics of the lithosphere use either a self-consistent free surface approach or approximate it by
adding a weak, low density “air” layer on top of the model domain. A main problem with such setups,
however, is that they are numerically unstable, which is caused by the fact that the density difference
that drives geodynamic processes (∼30–100 kg/m3) is much smaller than the density difference between
rocks and air (∼3000 kg/m3). In order to retain isostatic balance, one should thus employ a time step that
is at least 30 times smaller than in models with a free slip upper boundary condition, which makes such
models computationally very expensive.

Here we describe a new free surface stabilization approach (FSSA) that largely overcomes this time step
restriction. In this work, we apply the stabilization technique to consistent free surface models utilizing a
finite element discretization. The approach is based on the observation that most geodynamical simula-
tions perform time-dependent simulations by solving the static Stokes equations and then updating the
material or temperature fields in a separate step. If, however, the time-dependency of these quantities

is taken into account during the discretization of the momentum equations, additional surface traction
terms appear in the weak form of the FE formulation. These terms, which depend on the employed time
step and velocity, essentially correct for the change of forces in an element due to advection or distortion
of every element. By time-discretizing them, they act as a stabilizing term that largely increases the time
steps that can be employed (by a factor 20–100 depending on the time stepping criteria that is used).

acy a
subd
We illustrate the accur
instability and with a free

. Introduction

Recently, there has been an increased interest in understanding
he interactions between surface processes and deep tectonic pro-
esses (e.g., Braun, 2006; Braun and Yamato, in press; Kaus et al.,
008; Willett, 1999). In order to model the interaction between
uch processes in a self-consistent manner, one has to take the
ree surface of the Earth into account. In the past, the free sur-
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
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ace of the Earth was incorporated into mantle convection codes
y adding a surface traction on the upper (undeformable) boundary
e.g., Gurnis et al., 1996; Zhong et al., 1996). Whereas such models
ive important insights and probably capture the first order, long
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nd power of this method with examples of a free surface Rayleigh–Taylor
uction experiment.
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wavelength, picture of mantle–surface interaction (Poliakov and
Podladchikov, 1992), there are cases in which this is not sufficient.
Examples include models of coupled sedimentation and erosion
in a deforming fold-and-thrust belt (Simpson, 2006), as well as a
benchmark study on free subduction (Schmeling et al., 2008).

Particularly, this last study pointed out the potential importance
of a free surface on slab dynamics. One of the purposes of the study
was to reproduce laboratory experiments on free subduction in
which a viscous slab sinks into a viscous mantle. Whereas labo-
ratory experiments show slab bending and unbending, numerical
experiments with a free slip boundary condition develop a dripping
instability (Fig. 1). If a free surface boundary condition is employed
instead, or if a “sticky air” layer is taken into account, the numerical
hm for geodynamic numerical simulations with a free surface. Phys.

models behave fairly similar to laboratory experiments (see Fig. 1
for an example).

Both approaches, however, pose severe restrictions on the com-
putational time step. The simulation with free slip upper boundary
condition of Fig. 1, for example, was done with an average time step

dx.doi.org/10.1016/j.pepi.2010.04.007
http://www.sciencedirect.com/science/journal/00319201
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Fig. 1. Free subduction experiment in which a linear viscous slab sinks into a linear viscous mantle. The upper boundary condition is either free slip (left) or free surface (right).
C ics, a
T ee sur
a the in
s de bo

o
h
p
m
s
w
v

F
a
p
5
c

learly, the upper boundary condition has a significant effect on subduction dynam
he average time step for the free surface case is significantly smaller than for the fr
nd a viscosity of � = 1023 Pa s, whereas the mantle has � = 3200 kg/m3, � = 1020 Pa s,
ubducted with an angle of 34◦ . Free slip conditions are applied on the lower and si

f ∼800,000 years. For stability reasons, the free surface simulation
ad a time step restriction that limited the maximum vertical dis-
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
Earth Planet. In. (2010), doi:10.1016/j.pepi.2010.04.007

lacement to no more than 10 m during a single time step (and to no
ore than 10,000 years at any time). As a result, the average time

tep during this simulation was ∼1300 years. Compared to cases
ith a free slip upper boundary condition, it is thus numerically

ery expensive to perform free surface simulations.

ig. 2. Rayleigh–Taylor instability of a dense, more viscous layer (� = 3300 kg/m3, � = 1021 P
re free slip, the lower boundary is no-slip and the upper boundary is a free surface. The b
erturbation was sinusoidal with initial amplitude of 5 km. A constant time step of 2500
1 × 51 nodes. Whereas the 2500 years simulation evolves smoothly, the simulation w
hanges direction from one time step to the other.
nd only the free surface case is consistent with results of laboratory experiments.
face case. Model parameters employed are: the slab has a density of � = 3250 kg/m3

itial slab was 50 km thick, 1500 km long, and has a 125 km long notch that initially
undaries, and gravitational acceleration was 9.81 m/s2.

The numerical instabilities that develop if a too large time step
is employed in combination with a free surface, can be illustrated
hm for geodynamic numerical simulations with a free surface. Phys.

with a Stokes-flow example, which is taken here as a lithospheric
detachment in which a material of high density and viscosity moves
downwards through an underlying mantle lithosphere of lower
density and viscosity (Fig. 2A). If a constant time step of 2500
years is employed, the simulation evolves in a stable manner and

a s), sinking through a less dense fluid (� = 3200 kg/m3, � = 1020 Pa s). Side boundaries
ox is 500 × 500 km in size, and gravitational acceleration was 9.81 m/s2. The initial
years (A) or 5000 years (B) was employed, with Q2P−1 quadrilateral elements and
ith �t = 5000 years results in a sloshing instability, in which the velocity pattern

dx.doi.org/10.1016/j.pepi.2010.04.007
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Fig. 3. Depth of the interface at x = −250 km versus time for the free surface simu-
lations of Fig. 2. The inset shows that the simulation with constant �t of 5000 years
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esults in a numerical instability. For comparison we also show a simulation with
free slip upper boundary condition. In this case, a time step of �t = 50,000 years

ould be employed without causing a numerical instability.

opography builds up gradually and decays with time once the high
ensity material sinks to the bottom of the model box (Fig. 2A).

However, if the same simulation is performed with a con-
tant time step of 5000 years an instability occurs which we term
he “sloshing instability” or the “drunken sailor effect” (Y. Pod-
adchikov, personal communication, 2000). Instead of dripping
ownwards (as the analytical solution would predict), the simula-
ion develops an unphysical velocity field that flips direction from
ne time step to the other (Fig. 2B). Models in which the upper
oundary is a free slip boundary, on the other hand, can be per-
ormed with a time step of 50,000 years without any evidence of
umerical instabilities (Fig. 3).

Empirical experimentation indicates that the density contrast
etween rocks and air is the key parameter, which restricts the
ime step in these simulations. Typical densities of rocks are
∼ 3000 kg/m3, whereas typical density differences between the

ithosphere and mantle, which drive lithospheric-scale processes,
re 30–100 kg/m3.

The driving force from the topography of the lithosphere-mantle
nterface is thus 30–100 times smaller than that of the air-rock
nterface. Since the stress �, is proportional to � ∝ ��gA, one can
onclude that changing the surface topography A by one meter,
nduces stresses that are 30–100 times larger than those caused
y moving the bottom of the lithosphere by 1 m. Using too large
time step might bring the topography out of isostatic equilib-

ium with the rest of the model, with a numerical instability as
result. Using higher-order time stepping algorithms, such as a

ourth order Runga–Kutta algorithm (instead of the Eulerian time
tepping method used in Fig. 1), does not improve the situation,
ince it essentially requires one to perform several explicit iter-
tion steps during one time step. The system might come out of
sostatic equilibrium during any of these iterations, which will yield
on-physical results.

We observed that the above mentioned instability does not
nly occur during the initial stages of the model, but also during
ore evolved stages, particularly in cases with a subduction setup

Schmeling et al., 2008) or with erosion and lithospheric deforma-
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
Earth Planet. In. (2010), doi:10.1016/j.pepi.2010.04.007

ion (Kaus et al., 2008). A workaround is to limit the time step in
uch a manner that the changes in the topography are no more
han 10–50 m per time step (for Earth-like densities). The result-
ng time steps, however, are very small, which makes the models
 PRESS
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computationally very expensive, particularly compared to free slip
models.

Another potential solution to eliminate the instability is to com-
bine a Lagrangian finite element method with a fully implicit time
stepping algorithm, in which the nodal coordinates of a mesh are
treated as additional degrees of freedom. The resulting system of
equations, however, is considerably larger than the original Stokes
problem. In addition, it becomes nonlinear and may require sig-
nificantly more CPU time to solve than the original problem (e.g.,
Cuvelier et al., 1986). This can be solved by either using a Picard-
type iteration approach (e.g., Nickell et al., 1974; Ramanan and
Engelman, 1996) or by using a full Newton–Rhapson iteration
scheme in which the stiffness matrix is recomputed in the new
geometry (e.g., Cuvelier and Schulkes, 1990; Kistler and Scriven,
1984). Most existing research on free surface flows focuses on flows
in which inertial terms or surface tension is relevant. Here we
describe a different approach, appropriate for inertial-free geody-
namic models, which requires only minor modifications to existing
(FEM) velocity–pressure Stokes solvers, but which allows the use
of significantly larger time steps, thereby providing a drastic reduc-
tion in the run time for free surface simulations.

2. Governing equations

In geodynamics, we commonly use the Boussinesq approxima-
tion, which assumes that rocks are incompressible on geological
timescales, and for which the governing equations can be written
as

Dii = 0, (1)

�ij,j = �gi, (2)

where Dij = 1/2(vi,j + vj,i) is strain rate, vi velocity, gi gravitational
acceleration, � density, xi are the spatial Cartesian coordinates, �ij =
−P + �ij stresses, P = −(�ii)/3 pressure and �ij deviatoric stresses.

The rheology we use in this work is Newtonian viscous, which
is given by

�ij = 2�Dij, (3)

where � denotes viscosity. In general, the viscosity is a function
of many parameters including temperature. Moreover, rheologies
typically employed in lithospheric-scale geodynamic codes are
visco-(elasto)-plastic rather than viscous. In this work, such addi-
tional complexities are ignored as a viscous free surface model is
sufficient to illustrate the underlying problem. The methodology
we propose can be directly applied to more complex rheologies, as
well as to problems involving the energy equation.

In addition to the Stokes equations, an evolutionary equation is
present which advects a material field � according to

�,t + vi∇� = 0 (4)

Eqs. (1)–(4) thus forms a system of four equations with four
unknowns.

3. Numerical formulation

3.1. Classical weak formulation of the momentum equation

In most numerical codes employed in geodynamics, the
mechanical Eqs. (1)–(3) are solved independently from material
advection Eq. (4). The weak finite element formulation of the
hm for geodynamic numerical simulations with a free surface. Phys.

momentum Eq. (2) is obtained by multiplying the governing equa-
tions by a test function wi and integrating it over the domain:∫

V

(�ij,j − �gi)widV = 0, (5)

dx.doi.org/10.1016/j.pepi.2010.04.007
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hich yields

V

(�ijwi,j − �giwi)dV −
∫

�

witid� = 0, (6)

here ti = �ijnj is a given surface traction vector, nj is the outward
nit normal vector of the boundary d� , and the weight function
i vanishes on those parts of the surface where velocities are pre-

cribed.

.2. Weak formulation with time-evolution

The numerical simulation of a fluid flow problem which includes
he evolution of a Lagrangian free surface is nonlinear as the
uid velocity, pressure and coordinates defining the spatial dis-
retizations are all unknown (Zienkiewicz and Taylor, 2000a,b).
or economy, rather than solve the fully coupled nonlinear system,
uch problems are usually solved using a predictor step, followed
y a number of correction steps which are designed to drive the
ystem towards mechanical equilibrium (e.g., Cuvelier et al., 1986;
an Keken, 1993). A critical factor affecting the accuracy of the
redictor step is the choice of reference geometric state of the con-
inuum (or reference configuration) used at the beginning of each
ime step. The reference configuration defines the geometric state
rom which all subsequent configurations are constructed. If we
efine the coordinates of our continuum by xi, then one possible
eference configuration for the subsequent time step is

i → xi + 	�tvi (7)

here 0 ≤ 	 ≤ 1 and �t is a small but finite time step.
A possible higher order, or tangent, formulation for the predictor

tep may be obtained by inserting Eq. (7) into the differential quo-
ients included in Eq. (6) and expanding the result as a Taylor series,
ncluding only terms, which are linear in vi. As a consequence, only
he gravity force term in the virtual power expression in Eq. (6) is

odified according to

V(xi+	vi�t)

�giwidV

≈
∫

V(xi)

[�giwi + 	�t(�giwi),kvk + 	�t(�giwi)vk,k]dV + · · ·

≈
∫

V(xi)

[�giwi + 	�t(�giwivk),k]dV (8)

Applying Gauss theorem yields:

V(xi)

(�giwi + 	�t(�giwivk),k)dV

=
∫

V(xi)

�giwidV +
∫

� (xi)

	�t�giwivnd� (9)

here the surface normal velocity is defined as vn = vini. Insert-
ng Eq. (9) into Eq. (6) yields the weak form of the boundary value
roblem for the predictor step at each time step:

V(xi+	vi�t)

(�ijwi,j − �giwi)dV −
∫

� (xi+	vi�t)

witid�

≈
∫

(� w − �g w )dV
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
Earth Planet. In. (2010), doi:10.1016/j.pepi.2010.04.007

V(xi)
ij i,j i i

−
∫

� (xi+	vi�t)

wi(ti + 	�t�givn)d� = 0 (10)

r
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∫
V(xi)

(�ijwi,j − �giwi)dV −
∫

� (xi)

wi(ti + tg
i
)d� = 0 (11)

where we have now introduced an additional boundary trac-
tion term tg

i
=

∫
�

	�t�
ngiwid� . In the special case that
nk = constant = (0, 0, 1) (i.e., slopes on the free surface are small),
we obtain, tg

3 = 	�t�gv3, tg
1 = 0, tg

2 = 0.

3.3. Mixed finite element formulation

We solve Eq. (11), subject to the incompressibility constraint Eq.
(1), using standard mixed finite elements. Accordingly, we split the
total stress into a deviatoric part (�ij) and a pressure (p) via

�ij = �ij − pıij

Employing this formulation, Eq. (11) becomes∫
V

wi,j�ijdV −
∫

V

wi,jpıijdV +
∫

�

wit
g
i
d�

=
∫

V

wi(�gi)dV +
∫

�

witid�, (12)

with the weak incompressibility constraint

−
∫

V

qui,idV = 0

In the above, wi and q are suitably chosen test functions which
vanish on the Dirichlet boundaries. We refer the reader to standard
finite element textbooks (see, e.g., Cuvelier et al., 1986; Hughes,
1987) for a complete discussion of the weak formulation for incom-
pressible Stokes flow and the admissible choices for (wi, q).

The discrete problem is defined by sub-dividing the domain
� into a set of non-overlapping elements with domain �e, and
replacing the continuous test functions by piecewise defined func-
tions over each element. We denote the discrete test functions via
(Nv

i
, Np). We adopt the Galerkin formulation, thus our continuous

unknowns (vi, p) are approximated over each element via

v(x) ≈
∑

Nv
k(x)vk

e

p(x) ≈
∑

Np
k
(x)pk

e

, (13)

where (vk
e, pk

e) are the nodal velocities and pressures associated
with element e.

By introducing the discrete functions Eq. (13) into Eq. (12), the
continuous problem can be written out in a matrix form, over each
element, as

Keve + Gepe + Leve = Fe

GT
e ve = 0

(14)

The discrete operators Ke, Ge, Fe are standard finite element stiff-
ness matrices, however for completeness we present them below

Ke =
∫

˝e

BT DBdV

Ge = −
∫

˝e

BT mNpdV

Fe =
∫

˝e

Nv(�g)dV +
∫

� e

Nvtd�

(15)
hm for geodynamic numerical simulations with a free surface. Phys.

The traction introduced by the time-discretization Le, is given
by

Le =
∫

� e

Nv(	��tg)nd�.

dx.doi.org/10.1016/j.pepi.2010.04.007
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ig. 4. Two-dimensional linear quadratic element with outward pointing normal
ector.

Since Le depends on velocity, we can write the system of equa-
ions as

K̃e Ge

GT
e 0

)(
ve

pe

)
=

(
Fe

0

)
(16)

here

˜ e = Ke + Le

Obviously, Le = 0 if 	 = 0 (and we recover the “classical” Stokes
quations).

We now discuss how to evaluate the stabilizing traction bound-
ry integral Le. In finite element analysis, the evaluation of surface
ntegrals is typically performed by only integrating along the edges
f the elements, which form part of the boundary of the domain
. This is appropriate as the surface integrals along the element

dges interior to � will all cancel, leaving behind only the con-
ribution from element edges which are not shared by any other
lement. In this work, we perform the surface integrals over every
dge of the element domain �e. We prefer this approach as (i) the
omputational cost of evaluating the additional surface integrals on
he element edges is comparable to evaluating the stiffness matrix
, both of which are negligible compared to time taken to perform

he solve and (ii) including the interior element edges will naturally
ncorporate any internal density interfaces within the domain �, in
ddition to the density jump at the free surface. In regions where
wo elements possess a shared boundary with matching densities
n either side, the surface integral contributions from each element
ill cancel. Conversely, if the neighbouring elements possess dif-

erent densities, then the surface integrals will not cancel and the
orrect stabilizing contribution will be introduced.

.4. Implementation aspects

In the above, we represented the discrete part of the problem
ssociated with stabilizing surface integral as an element stiffness
atrix. This choice was partially for notation simplicity and par-

ially because we wish to evaluate the surface integral along all of
he element edges. In addition, it is computationally convenient to
erform an element-based assembly as this is consistent with the
nite element framework of assembling element stiffness matrices.
he non-zero structure of the element stiffness matrix of such a pro-
edure is described below. Consider the 2D, four node quadrilateral
lement shown in Fig. 4. We will assume that the element-nodal
elocity unknowns are ordered according to
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
Earth Planet. In. (2010), doi:10.1016/j.pepi.2010.04.007

e = (vx
0, vy

0, vx
1, vy

1, vx
2, vy

2, vx
3, vy

3). (17)

Using this ordering and the node numbering shown in Fig. 4,
nd if we include all the element edges in the surface integral, we
 PRESS
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will obtain a matrix with the following non-zero structure

Le =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X X X X X X
X X X X X X
X X Y Y Y Y
X X Y Y Y Y

Y Y Y Y X X
Y Y Y Y X X

X X X X X X
X X X X X X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

For each edge E of an element e, we can explicitly define the
traction contribution (in 2D) as

L̂
E =

⎛
⎜⎜⎝

∫
� e

�t�gxnxNv
i Nv

j dS

∫
� e

�t�gxnyNv
i Nv

j dS

∫
� e

�t�gynxNv
i Nv

j dS

∫
� e

�t�gynyNv
i Nv

j dS

⎞
⎟⎟⎠ (19)

The indices i,j are determined by the edge index E (see Fig. 4).
The complete traction term defined over the entire element is

computed by performing the typically finite element summation,
i.e.

Le =
all edges∑

�
LE. (20)

To contrast with the classical FE approach, if we let the edge
defined by nodes 1 and 2 (from Fig. 4) denote an interface and we
only integrated along this surface, than the only non-zero entries in
Le will those denoted by Y in Eq. (18). Using the same free surface
example, and assuming we only wish to incorporate corrections
from the density jump at the free surface, the special case (in 2D),
when nk = constant = (0, 1) will yield t2 = −(�gy�t)vy, t1 = 0. The
corresponding edge correction matrix is given by

�
LE =

⎛
⎝ 0 0

0

∫
� e

�t�gynyNv
i Nv

j dS

⎞
⎠ (21)

If the non-zero entry was approximated via nodal integration,
then the resulting element traction correction matrix would be

Le ≈ L̄e = diag( 0 0 0 T 0 T 0 0 ) (22)

where

T = 1
2

�t�gyny�L

where �L is the length of the edge segment.
Note that in general, each element stiffness matrix

�
LE will be

non-symmetric. This is an immediate consequence of the fact that
the terms gxny and gynx will generally not be equal. For a simulation
in which the fluid possesses a single density and a free surface,
all the surface integrals performed over the shared element faces
will exactly cancel. Only the entries associated with the boundary
nodes along the free surface will produce non-symmetric entries in
K̃. Preserving the symmetry of the discrete problem is potentially
advantageous for both factorization techniques and preconditioned
iterative methods, which are used to solve the matrix problem. We
consider two methods to evaluate

�
LE:

(I) Use Gauss–Lobatto quadrature to evaluate the full matrix
�
LE ,

in which the integration points are located at the nodal points.
hm for geodynamic numerical simulations with a free surface. Phys.

We will call this the free surface stabilization algorithm 1 (FSSA
1). This algorithm does typically not yield a symmetric system
of equations.

(II) Use a “lumped” version of
�
LE , where rather than using the full

matrix, the diagonal version of
�
LE is used in combination with

dx.doi.org/10.1016/j.pepi.2010.04.007
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Gauss–Legendre quadrature and off-diagonal terms are set to
zero. This results in a symmetric system of equations (FSSA 2).

In Section 4, we illustrate via a number of numerical examples
hat both choices produce stable numerical results, and that the
numerically faster) FSSA2 method yields very similar results as
he FSSA1 method.

From an implementation point of view, the only modification to
he classical Stokes equations consists of evaluating Le and adding
t to the standard element stiffness matrix Ke.

After assembling the element stiffness matrixes, the global stiff-
ess matrix becomes

K̃ G

GT 0

)(
V

p

)
=

(
F

0

)
(23)

here K̃ is the global stiffness matrix, formed by summing K̃e, G
he discrete gradient operator, and F contains terms related to the
ody forces and the prescribed tractions.

. Results

We have implemented the approach described in Section 3
ithin MILAMIN VEP, which is a two-dimensional geodynamic
odelling code that is based on the fast MATLAB-based Stokes

olver MILAMIN (Dabrowski et al., 2008) but include remeshing,
isco-elasto-plastic rheologies as well as a tracer-based method
o advect material properties (Kaus, 2009; Kaus et al., 2009). MIL-
MIN VEP works both for triangular unstructured and quadrilateral
tructured meshes. Here, we employ both 7-node triangular ele-
ents (T2P−1) with discontinuous pressures, as well as Q2P−1

uadrilateral elements.
Here we illustrate the potential of our method with two geody-

amically relevant examples, and discuss the optimal choice of 	.

.1. Free surface Rayleigh–Taylor test

The RT test described in the introduction (Fig. 2) was repeated
ere with two different time stepping criteria. The first employs a
onstant time step �t, whereas the second uses a Courant criteria
iven by

t = C
min(�� e)
max(vx,vz)

here �� e indicates the edge length of an element and vx, vz

ertical and horizontal velocities. If neither stabilization (FSSA1
r FSSA2) is employed, the maximum time step that gives stable
esults is �t = 2500 years or C = 0.003 for the two time step criteria
espectively. The models initially closely follow the results of a thick
late semi-analytical solution (which is described in more detail in
aus and Becker, 2007), but deviate from this after the layer has

hickened to ∼150 km (which is to be expected as the analytical
olution is only valid for small amplitudes).

If the FSSA2 is employed (with 	 = 0.5), however, it is possible to
se time steps of �t = 50,000 years or C = 0.5, with nearly identical
esults (Fig. 5).

In order to better understand the accuracy of the method we
ave performed a series of systematic calculations to understand
1) the accuracy of our (Eulerian) time stepping algorithm, (2) the
ccuracy of FSSA1 versus FSSA2, and (3) the effect of varying 	.

The accuracy of the time stepping algorithm can be tested with
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
Earth Planet. In. (2010), doi:10.1016/j.pepi.2010.04.007

imulations in which the upper boundary condition is free slip,
ince these simulations are numerically stable even if the FSSA
lgorithm is not employed (	 = 0). In order to compare the var-
ous results, we measured the interface depth after 3 Myrs, and
ompare the results with the smallest time step simulation with
bilization algorithm. If the FSSA is not employed, the maximum time step for stable
calculations is 2500 years (if constant �t is employed), or C = 0.003 (if a Courant-
based time step criteria is used). With the FSSA (with 	 = 0.5), a time step that is
20–167 times larger can be employed, giving nearly identical overall results.

	 = 0. Results indicate that using a time step of 50,000 years gives
an error of around 1%, whereas the error is larger if a Courant cri-
terion of C = 1 is used (Fig. 6). If we employ the FSSA with 	 = 1
the errors are very similar, but with opposite sign. Very small dif-
ferences occur between simulations that use the FSSA1 and ones
that use the FSSA2. Simulations with 	 = 0.5, however, are signif-
icantly more accurate and within a percent of the ‘true’ solution
even for the largest tested time steps (Fig. 6). If the time step is fur-
ther increased, we found that simulations with 	 = 0.5 ultimately
become numerically unstable, whereas simulations with 	 = 1 are
stable for a somewhat larger range of time steps.

We have repeated these experiments for a setup with a free sur-
face upper boundary. The results are essentially the same, with little
differences between FSSA1/FSSA2 and 	 = 0.5 yielding the most
accurate results (Fig. 7).

The ‘optimal’ value of 	 = 0.5 can be interpreted as using half
the ‘old’ and half the ‘new’ position of the density interface. Inter-
estingly, the results that are obtained with 	 = 0.5 are significantly
more accurate than results of simulations that do not employ the
FSSA (	 = 0).

4.2. Free subduction

The second setup comes from a benchmark study of Schmeling
et al. (2008) in which an attempt was made to reproduce labora-
tory experiments of free subduction. In these laboratory studies,
a slab of high density and higher viscosity was placed in a tank
of lower density and viscosity. A range of numerical codes used a
setup that was inspired from the laboratory experiment (Fig. 8A),
and that employed either a ‘true’ free surface or that mimicked the
free surface with a ‘sticky air’ layer. It was found that the presence
of the (pseudo) free surface is important in these simulations, and
reasonable agreement between various codes was obtained for the
setup of Fig. 8. As described above, however, the presence of the
free surface poses severe time step restrictions and some of the
codes therefore required days to weeks of CPU time. This is clearly
hm for geodynamic numerical simulations with a free surface. Phys.

unsatisfying if one wants to study the dynamics of subduction in a
more systematic manner.

Here we therefore repeat the experiment with MILAMIN VEP,
and test the potential of the FSSA for this setup. Rather than using
a regular numerical grid (as in the Rayleigh–Taylor example), we

dx.doi.org/10.1016/j.pepi.2010.04.007
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Fig. 6. Effect of time step algorithm, time step size and FSSA algorithm on geometry error in simulations with a free slip upper boundary condition. The geometry error is
the difference of the maximum depth of the interface to the simulation with smallest time step and no FSSA (	 = 0). Clearly, the employed value of 	 has a large effect on
the accuracy. Cases with FSSA and 	 = 1 have a similar error convergence as cases without FSSA (although the sign is different). Cases with 	 = 0.5, on the other hand, are
significantly more even for large time steps. There is little difference between FSSA1 and FSSA2.

Fig. 7. As in Fig. 6, but with a free surface upper boundary condition. Cases without FSSA are numerically unstable for larger time steps; only the stable results are plotted.
As in the free slip runs, there is little difference between the particular implementation of the FSSA, but the choice of 	 does have a significant effect, with 	 = 0.5 yielding
the most accurate results.

Fig. 8. (A) Temporal evolution of a subduction experiment, designed to mimic laboratory experiments of free subduction. The slab has � = 1495 kg/m3 and � = 3.5 × 105 Pa s,
whereas the mantle has � = 1415 kg/m3 and � = 32 Pa s. Free slip boundary conditions are applied everywhere except at the top boundary, which is a free surface. An
unstructured triangular mesh is used for these simulations with 7-node T2P−1 shape functions. Results are in excellent agreement with a published subduction benchmark as
well as with laboratory experiments (Schmeling et al., 2008). (B) Slab-tip depth versus time for various time stepping algorithms. Also shown are the results of a laboratory
experiment as well as the results of FEMS-2D (which uses a different remeshing algorithm at the trench) and LaMEM (which is a FEM code with a structured mesh). Clearly,
the FSSA allows the use of significantly larger time steps with similar overall accuracy.

dx.doi.org/10.1016/j.pepi.2010.04.007
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Fig. 9. Error of time stepping algorithms for the free subduction experiment. If the
FSSA is not used, the maximum Cz that can be employed is ∼10−3, which shows
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hat the FSSA significantly increases the time steps that can be employed with this
etup. As in the Rayleigh–Taylor test, 	 = 0.5 yields more accurate results, although
he difference is less pronounced.

mploy triangular elements with quadratic velocity and linear, dis-
ontinuous, pressure shape functions. The slab and the free surface
re described by a marker chain and a finite element mesh is created
rom these chains with the help of the open-source code Triangle
Shewchuk, 2002). During a simulation, the mantle rolls on top of
he subducting slab, which requires remeshing. An accurate treat-

ent of the triple point was found to be important in such situations
Schmeling et al., 2008). Here we use an algorithm which kinemat-
cally moves mantle material on top of the subducting plate once
critical angle is exceeded. The new trench location is determined

n a mass-conserving manner. In Schmeling et al., we have tested a
umber of different remeshing algorithms (including a non mass-
onserving kinematic algorithm, which simply moved the trench
osition to the next node on the slab marker chain), and we found
hat little overall differences occur as long as the trench region is
umerically well-resolved. The specific algorithm used here is sim-

lar to that used by the code FEMS-2D (which is also an unstructured
EM code), but it was improved to deal with cases in which the
antle forms overhangs (which might occur during very large time

teps). Remeshing was performed every 5th time step or as soon as
critical trench angle of 20◦ was exceeded (which in many cases

esulted in a remeshing step at each time step).
In these simulations the size of the elements might vary sig-

ificantly between various regions of the model domain as well
s between different time steps. A purely Courant-based time
tepping criteria (which uses element edges as a length scale) there-
ore results in rapidly changing �t between different time steps,
epending on whether remeshing resulted in small elements or not.
e therefore here use a different criteria which takes the height of

he model domain H as characteristic length scale,

t = Cz H

max(vx, vz)

Results (Fig. 8B) show that by using FSSA we can speedup
he simulations by a factor 100 whilst still achieving very sim-
lar results. Also shown are the results of FEMS-2D (which are
Please cite this article in press as: Kaus, B.J.P., et al., A stabilization algorit
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eproduced quite closely), as well as the results of the laboratory
xperiment and that of a structured finite element code (LaMEM).

A convergence test, which measured slab-tip depth after 500 s,
howed that ∼2% error is introduced by increasing Cz from 5 × 10−4

o 0.1 (Fig. 9). Simulations with 	 = 0.5 are more accurate than sim-
 PRESS
anetary Interiors xxx (2010) xxx–xxx

ulations with 	 = 1, but the differences are less pronounced than in
the Rayleigh–Taylor experiment.

5. Discussion and conclusions

Geodynamics numerical simulations in which a free surface is
present can be numerically challenging, particularly if the lower
part of the model box consists of a weaker material (e.g., the litho-
sphere). One of the problems is that the time step in such models
has to be very small compared to similar models with a free slip
upper boundary condition, otherwise a sloshing instability will
occur.

Here, we describe a numerical algorithm that largely overcomes
this issue. The algorithm is based on an extension of the force bal-
ance equations to take into account the effect that the numerical
grid deforms from one time step to the other. By making an expan-
sion on the body force, one obtains an additional surface traction
term, which can be numerically integrated over every element and
which is essentially proportional to density jumps between adja-
cent elements. We explored two different finite element numerical
implementations of this free surface stabilization approach (FSSA),
and found that the easiest to implement algorithm (FSSA2) gives
nearly identical results to the more general method. If the FSSA is
employed, the stable time step which can be used within a simula-
tion can be increased by up to two orders of magnitude compared
to simulations without the FSSA.

Although we have not explored this here, we expect that the
FSSA will also stabilize Eulerian numerical codes that employ a
‘sticky air’ free surface (as the algorithm is sensitive to jumps in
density). Moreover, it should in principle be possible to extend the
algorithm to Eulerian finite difference codes, although an accurate
tracking of the free surface will be crucial here.
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