
Numerical Modelling in
Fortran: day 3
Paul Tackley, 2020

Today’s Goals
1. Useful debugging options
2. Review points from reading homework

– Select case, stop, cycle, etc.
3. Input/output to ascii (text) files & namelist input
4. Modules
5. Interface blocks for external subroutines
6. Arrays: Initialisation and array functions
7. Application to solve 1-D & 2-D diffusion

equations

Debugging your code:
Useful compiler options

• Reporting the line number of an error
– gfortran –fbacktrace program.f90
– ifort –traceback program.f90

• Checking the bounds of arrays
– gfortran –fcheck=bounds program.f90
– ifort –check bounds program.f90

• Stopping when a floating point error occurs
– gfortran -ffpe-trap=invalid,zero,overflow,denormal,inexact
– ifort –fpe0

Debugging your code:
Useful compiler options

• Detecting uninitialized variables
– gfortran –finit-real=snan program.f90
– ifort –check bounds –init=snan,arrays program.f90

• Allowing the use of a debugger (gdb,idb)
– gfortran –g program.f90
– ifort –g program.f90

• Switching off optimization (which can sometimes
generate erroneous code)
– gfortran/ifort –O0 program.f90

• Consult documentation (e.g. “man gfortran”)

Debugging your code:
Useful compiler options

• Examples with many checks switched on:
Øgfortran –fbacktrace –fcheck=all –finit-real=snan -ffpe-

trap=invalid,zero,overflow –O0 program.f90
Ø ifort –traceback –check uninit,bounds –init=snan,arrays –

fpe0 –O0 program.f90

ØNote: The program will run more slowly with
checking options switched on. Use only when
developing/debugging your program.

ØNote: instead of typing all this every time use e.g.
alias gf=“gfortran –fbacktrace … –O0 ”

2. Review important points
from online reading

• select case statement
– does same thing as if...elseif...else..
– good for taking different actions based on

different outcomes of a single test
– the control variable must be of type integer,

logical or character
– example on next slide

‘if’ version from class 1

more things
• single line if (example next slide)
• stop to finish execution (example next slide)

– Since fortran 2008 there is also error stop
• nested do loops (example next slide)
• nested if blocks (example in reading)
• cycle inside a counted do loop goes to next

value before reaching end do.
– don’t use this, it makes the code confusing

‘do’ loop counters
(do a=a1,a2,a3)

• Up to f90: a* can be real or integer
• F95 onwards: must be integer

– gfortran gives an error if real
– ifort accepts real

• Conclusion: stick to integer so your code
works on any computer/compiler

0.0000000E+00
0.1000000
0.2000000
0.3000000
0.4000000
0.5000000
0.6000000
0.7000000
0.8000001
0.9000001

…
4.699998
4.799998
4.899998
4.999998
0.0000000E+00
0.1000000
0.2000000
0.3000000
0.4000000
0.5000000
0.6000000
0.7000000
0.8000000
0.9000000

…
4.700000
4.800000
4.900000
5.000000

Note inexact numbers with first version:

Inexact computer arithmetic

• Because computers store numbers &
calculate in binary (base 2), and some
exact decimal (base 10) numbers
cannot be represented exactly in binary

• Similarly, e.g. 1/3 or 1/7 cannot be
exactly represented in decimal.

Input & Ouput to ascii (text) files

• Use open() and close(), specifying a file
number
– The file number can be anything except 5

and 6, which correspond to the screen &
keyboard (i.e. stdout and stdin)

• Use the read() and write() statements
replacing the first * with the file number

• An output example next slide:

outputs array to text file

input & output (2)
• The file stuff.dat can be read into MATLAB

using “load stuff.dat”, then plot
• We will need to do this for visualising

results!
• Reading into f95 is easy if you know how

many numbers there are, but otherwise
requires care! Examples follow.

• Make sure there is a carriage return after
the last line of the file!

reading from ascii file

Tape recorder

Discussion
• iostat as 3rd argument

– 0 means successful read
– <0 means end of file
– >0 means some other error

• rewind to move back to start of file
• status=‘old’ means the file must

already exist, otherwise program will stop
with an error
– If this is not specified and the file does not

exist, then a new file will be created

namelist input
• A handy, flexible way of reading input

parameters from a text file
• The list of variables is defined in the program
• In the file they have the same names but can

be in any order
• Not all variables need to be present in the

file, so make sure to set defaults!
• One file can contain several namelists
• See example next slide
• Need a *carriage return* at the end of par file

Use a carriage return after /

MODULES (f90- only)
• Modules are collections of variables and/or

functions/subroutines that are
– defined outside main program
– can be used in a main program or other

subroutine, function or module
• The best way of sharing variables between

different routines
– replaces f77 common blocks

• The best way of defining functions and
subroutines that are used in several places

MODULES general form

• module name
• variable definitions
• contains
• functions & subroutines
• end module name

• main program is
typically in a
different file- to
compile specify
all source files
after gfortran

This one has only numbers

Interface blocks for External functions
(f90-)

• Defines all arguments in addition to function type
• All functions can be listed in one interface block
• Advantages

– minimises bugs: compiler checks arguments
– allows implicit size arrays (# of elements is passed in)
– allows optional arguments and n=4 type syntax

• Disadvantage
– makes code longer and messier
– If you change the function arguments then they must

also be changed in all the interface blocks
• Recommendation: Use modules instead of

external functions

recall this from class 2

• with interface
added

f77 things that you shouldn’t use

• common blocks: contain a list of
variables to be shared with other routines
having same common block. Use
modules instead

• include statement: includes a text file
(e.g., containing a common block
definition). Use modules instead

• goto: use proper control structures like
if...endif, do while, do...exit, case… etc.

’Spaghetti Fortran’ example

(https://craftofcoding.w
ordpress.com/tag/spag
hetti-code/)

Difficult to understand!

Example from
https://www.polyhedron.com/spag0html

https://www.polyhedron.com/spag0html

Returning an array from a
function

• Normally, a function returns a single
number, but you can return an array if
you define it carefully, either as:
– External function with interface block
– Internal function
– Module function

Array
function

as
external
function:

use
interface

block

As internal function

as a module

arrayAdd with no length argument!

Version with 2-dimensional arrays & allocation

Array initialisation, data, reshape
Array initialisation examples:
• real:: a(5)=(/1.2, 3.4, 5.6, 7.8, 9.0/)
• integer:: d(10)=(/i=1,10/)
• real:: x(3)=(/tan(x),sin(x),cos(x)/)
data statement examples
• data a /1.2, 3.4, 5.6, 7.8, 9.0/
• data b /4*1.2/ ! same as /1.2,1.2,1.2,1.2/
reshape example (converts 1D list to multiD array)
• real:: a(2,2)
• a=reshape((/1., 2., 3., 4./) , (/2,2/))

Homework

• Finish the following exercises and read
from

• http://www.cs.mtu.edu/%7eshene/COURSES/cs201/NOTES/fortran.html

– Functions and modules (particularly
modules and interface blocks)

– Subroutines
– One dimensional arrays

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html

Exercises
1. Write new module versions of last weeks

subprograms (i.e., 1. mean&std.dev; 2. second
derivative). Then use these in exercises 2 & 3:

2. Write a main program that
– reads numbers from an ascii file (one number per line,

the program should sense how many as in the example
program given),

– Uses your module to calculate the mean & standard
deviation, and

– writes the answers to the screen
3. Write a main program that solves (i.e., steps

forward in time) the 1-D diffusion equation, as
detailed on the next slide

4. Modify your 1-D diffusion program to solve the 2-D
diffusion equation

The diffusion equation

�

∂T
∂t

= κ ∂2T
∂x2

Diffusion of T

Simplify by assuming kappa=1
Represent T on a series of evenly-spaced grid points in space x
Calculate T at the next timestep using the explicit finite-difference
time derivative

�

Ti
t+Δt −Ti

t

Δt
= ∂2T

∂x2
⎛

⎝
⎜

⎞

⎠
⎟
i

t

hence Ti
t+Δt = Ti

t + Δt Ti−1
t +Ti+1

t − 2Ti
t

Δx2
⎛
⎝⎜

⎞
⎠⎟

Where the 2nd x derivative is calculated in your module, using
the equation from last week

• Grid points x0, x1, x2…xN
• Here xi=x0+i*h

• Function values y0, y1, y2…yN
• Stored in array y(i)

• (Fortran, by default, starts
arrays at i=1, but you can
change this to i=0)

Finite Difference grid in 1-D

dy
dx

⎛
⎝⎜

⎞
⎠⎟ i
≈ Δy
Δx

= y(i +1)− y(i)
h

Solving 1D diffusion equation
• Ask the user L, N, total_time (see flow chart)
• The user chooses to initialise the field with either random

noise or a delta function=spike (i.e. 0 at all points except
the central point, where it is 1.0). Write to an ascii file

• Take several time steps. For each timestep:
– Calculate the second derivative of the field
– Use explicit time integration to calculate the field a time deltat

later
– Boundary conditions T=0

• Write the final field to an ascii file
• Plot the initial and final field using e.g., Matlab or Excel,

and hence check the code is working correctly! If the time
step is too large it should go unstable!

Boundary conditions
• Assume T=0 at the boundaries

– Make sure your initial T field has T=0 at the
boundary points

– Make sure the T field has T=0 at the boundary
points after each time step

• You can ignore the boundaries when
calculating del-squared (set to 0)

TEST CASE
• L=1; Total_time=0.01; initial spike (delta function) in centre

Thermal diffusion in 2D with
constant diffusivity

• Now discretise this using finite differences

∂T
∂t

=κ ∂ 2T
∂ x2

+ ∂ 2T
∂ y2

⎛
⎝⎜

⎞
⎠⎟
=κ∇2T

Where k is the thermal diffusivity (m^2/s):

�

k = ρCκ

• nx points in x-direction, ny in y-direction, grid
spacing=h

• e.g., xi=xmin+(i-1)h
• Ti,j where i=1…nx, j=1…ny

• Finite-difference
‘stencil’

Apply time-integration method
• Discretise time derivative
• “Explicit”: like forward FD approximation

• T(t2) appears only on left-hand side, so
simple to program!

Ti, j
(t1+Δt) −Ti, j

(t1)

Δt
=κ

Ti−1, j
(t1) − 2Ti, j

(t1) +Ti+1, j
(t1)

(Δx)2
+
Ti, j−1
(t1) − 2Ti, j

(t1) +Ti, j+1
(t1)

(Δy)2
⎛

⎝⎜
⎞

⎠⎟

Ti, j
(t1+Δt) = Ti, j

(t1) + Δtκ
Ti−1, j
(t1) − 2Ti, j

(t1) +Ti+1, j
(t1)

(Δx)2
+
Ti, j−1
(t1) − 2Ti, j

(t1) +Ti, j+1
(t1)

(Δy)2
⎛

⎝⎜
⎞

⎠⎟

If Δx=Δy=h, simplifies to:

Ti, j
(t1+Δt) = Ti, j

(t1) + Δtκ
Ti−1, j
(t1) +Ti+1, j

(t1) +Ti, j−1
(t1) +Ti, j+1

(t1) − 4Ti, j
(t1)

h2
⎛

⎝⎜
⎞

⎠⎟

Store Ti,j in an array T(i,j)

A note about time stepping
• The explicit method is unstable if the time

step is too large. This means, you get
oscillations and the amplitude grows
exponentially with time.

• This depends on the grid spacing:

• where a is a constant (0.5 in 1D: you need
to determine this for 2D)

�

Δtcritical = a(Δx)2 /κ

Structure of the diffusion program
• Read in control parameters using namelist:

– number of grid points nx,ny
– kappa. Start with kappa=1
– total integration time total_time. Start with=0.1
– Time step constant ‘a’

• Set up variables and numerical details
– T field: random or spike
– dx=dy=1/(ny-1) (assume domain size =1 in y)
– time step dt, as where a is a constant -

try between 0.1 and 1.0
– number of time steps nsteps= total_time/dt

• Write a loop to perform nsteps steps, which
– find 2nd derivative using module function or subroutine
– update T field: T=T+dt*kappa*d2

�

Δt = a(Δx)2 /κ

Boundary conditions
• Assume T=0 at the boundaries

– Make sure your initial T field has T=0 at the
boundary points

– Make sure the T field has T=0 at the boundary
points after each time step

• You can ignore the boundaries when
calculating del-squared (set to 0)

Test input file

Tests
1. Test your programs for two initial T distributions

• (i) random (the solution should become smooth with time)
• (ii) a spike, i.e., 0 everywhere except 1 in the centre cell (the solution

should become a Gaussian).
2. Determine the critical value of ‘a’ above which the solution

goes unstable, displaying oscillations that grow exponentially.
Try different numbers of grid points: is critical ‘a’ the same?

Spike,
nx=2*ny
total_time=0.05

Writing a 2D array to a file, to
be read by Matlab

To read into Matlab & plot:

load T.dat
contourf(T)

Hand in

• All .f90 files
• Figures showing the results of the 1-D

and 2-D diffusion test cases (plotted
using Matlab, Excel or another program
of your choice)

• The critical ‘a’ value for 2-D diffusion

