Implicit time-stepping

Diffusion equation again

oT

—=V°T
ot



So far we have used explicit time

stepping
physical equation 8_T _ VzT
ot
explicit => calculate derivatives at old time
r -1,
=V°T
At

T =T, +AV°T,

new

each Tnew can be calculated from already-known Told

But: the value of del?(T) changes over dt



Implicit: calculate derivatives at new time

L., — Told

new

At

— V 2Tn€W

Put knowns on right-hand side, unknowns on LHS
2 —
Tnew o Atv Tnew o Told

More complicated to find Tnew: del2 term links all Tnew points.
Why use it? Because the timestep is not limited: stable for any dt

Eqn looks like Poisson’s equation: we can modify existing solver



How about accuracy?

Simple implicit and

first order accurate.

Several related met
accuracy, including
Kutta and semi-imp

explicit methods are both

nods give second-order
oredictor-corrector, Runge-

ICIt.

Of these, only the semi-implicit method has
an unlimited time step, so let’ s focus on that!

The semi-implicit method uses the average of
derivatives at the beginning and end of the

time step



semi-implicit diffusion

Tnew B Told _ VzYﬁnew T Vz710161
At 2

Now generalised equation to deal with all 3 cases:
explicit (beta=0), implicit (beta=1), semi-implicit (beta=0.5)
Tn Told

ew

At

Put knowns on right-hand side, unknowns on LHS

=pV°T,_ +(1-BV’T,

ew

Tnew o ﬁAtvanew — TOld T At(l o ﬁ)vaOZd



Rearrange to look like Poisson

Tnew o ﬁAtvanew — Told + At(l _ ﬁ)vaold

(V2 =1/(BAN)T,,, = - ﬁ [T+ At(1=BIVT,, |

S0, modify the Poisson solver to solve (V2 — C)T — f



Finite-difference "modified Poisson”

(V2-C)T=f

T +Tl+11+TlJl l]+1 (4+Ch2)T
h’ B
lterative correction:
2
R. . = T +T’+1J +TZJ 1+sz+1 (4+Ch )le B
i,j h2
2
Tn+l — Tn 4 OCh R

l,]



Final homework

Start with your favourite time-stepping program (either diffusion, advection-
diffusion, infinite-Pr convection or low-Pr convection). (Hint: diffusion is the easiest
one).

1. Restructure it so that all the main variables are in a derived type and all routines
are type-bound procedures, following the example of last week’s homework. The
main routine should then be very simple, such as:

program diffusion
use stuff
implicit none
type(everything):: all
real time
integer step

call all%read inputs()
call all%initialise()

time = 0.; step=0

do while (time<all%total time)
call all%sdiffuse()
time = time+all%dt; step=step+l
print*, 'Time, step:',time,step

end do

call allswriteT()

end program diffusion



Final homework

2. Modify it to include implicit diffusion.

If beta>0.5, allow very large diffusion time steps! (e.g. a_diff could be set to >>1)
Test for different values of beta (0, 0.5 and 1.0)

Due date: 14 December

(Hint: during 1. restructuring, it is easiest to leave the multigrid routines unchanged
— put them in the module but they do not need to be listed in the type. Call
Vcycle 2DPoisson from the appropriate type-bound procedure).



Implementing implicit diffusion

Modify your Poisson solver (iterations and multigrid)
passing the constant ‘C’ in as an extra argument.

— C=0 should give same result as before. Useful for
streamfunction calculation.

Add ‘beta’ to the namelist inputs

Modify diffusion calculation

— if beta>0 call multigrid, otherwise explicit like before
— use beta when calculating rhs term

— ignore diffusive timestep if beta>0.5

Run some tests with beta=0, 0.5 or 1.0 and see if you
can tell the difference. Choose your test case to be
one that has a low Ra (or B), and low Pr (if the latest
code) because diffusion dominates for low Ra/B.



Example: Low Pr convection
(the most complicated)

Temperature equation with variable beta:

T . —BAV°T

new new

=T + At((l -BV°T,, - (‘7 ' VT)OM)
Rearrange:

(V2 — 1/(ﬂAt))Tnew = _ﬁ[Tou + At((l - ﬁ)vaold B (; ' VT)old )}

Call the new ‘modified Poisson’ solver (V2 _ C)u =f
With (u=T)

C=1/(PAt); f= _ﬁ[Told +At((1_'B)V2Told _(;OVT)OM)}



Example: Low Pr convection (2)

Vorticity equation with variable beta:

= T
w”ew —Pr ﬁAtVzwnew = wold + At (Pr(l o ﬁ)vzwold - (V . VCO) — RaPr 8 . )

old o0x
Rearrange:
2 1 _ 1 2 - aTO
(V B PrﬂAt jwnew - PrﬁA[ |:a)old + At(Pr(l — ﬁ)v wold B (V . Vw)old — RaPr 8xld ):|

Call the new ‘modified Poisson’ solver (V2 — C)u =f

With (u=w)

! - oT
ETRWRTSSIS.S,

C= 1 ;
Pr BAt




INPUT
number grid points: nx,ny
Parameters: Ra, Pr
time-step as: a_dif, a_adv
integration time: total_time
Initial condition choice

TIME STEP
Calculate S (from w) -> v
Calculate dt_adv -> dt
Calculate v.grad(T), v.grad(w), dT/dx
Calculate del2(T_old), del2(w_old),
Calculate C and f for T equation
Call implicit diffusion solver -> T_new
Calculate C and f for w equation
Call impicit diffusion solver -> w_new

l

INITIALISE
h=1/(ny-1)
dt_dif=a*h**2/max(1,Pr)
Allocate T, w, S, vx, vy
Initialise T & w fields
S=v=0

No

time>total_time?




Note about boundary conditions

* |f your existing iteration routines assume
boundary conditions are O all round, they
need modifying for T field.

* T boundary conditions are 0 at top, dT/dx=0
at sides, and
— On fine grid: 1 at bottom
— On coarse grids: O at bottom

e Either pass a boundary condition switch into

the iteration routines, or write different
routines for S and T fields.



Hand in

e 190 files

* Results of test case(s) rerun using
— different values of beta and (if beta>0.5)

— different time steps including
* Time step > diffusive time step



Projects: Decide soon!

Agree topic with me
before or during final
lecture



