
Numerical Modelling in
Fortran: day 8
Paul Tackley, 2020

Today‘s Goals
1. Learn more about procedures

including pure procedures,
elemental procedures, generic
procedures and operators
(examples of overloading)

2. Write low-Prandtl number
convection program.

Projects: start thinking about

Agree topic with me
before final lecture

More about procedures
(=functions/subroutines)

• Passing procedure names as dummy
arguments

• Pure functions & subroutines
• Elemental procedures
• Impure elemental procedures
• Generic procedures and overloading

Passing
function

names as
function

arguments

• Also possible
with
subroutines
(declare as
external)

Pure functions

• Functions that have no side effects:
– Do not modify any arguments: all

arguments must be intent(in)
– Do not modify module variables
– No saved variables, external file I/O or stop

• Helpful for parallelisation of loops:
function can be executed
simultaneously with different loop
indices

Pure subroutines
• As with pure functions, but are allowed

to modify arguments declared as
intent(out) or intent(inout)

Elemental functions
• Are written for scalar arguments but

may also be applied to array arguments
• Intrinsic functions are elemental

functions, e.g.

...

Elemental functions
• Declare using the ”elemental” label

Elemental functions
• Must normally be pure functions
• All dummy arguments must be scalars
• No pointers (either for arguments or the

result)
• Dummy arguments must not be used in

type declaration statements
• Elemental subroutines are also

possible, with the same rules

Impure elemental procedures
• These can modify their calling arguments
• Must be declared with the impure keyword
• Arguments modified must be declared

intent(inout).
• When called with an array, execution is

element-by-element in index order, with
the first index changing most rapidly.

Generic procedures
(i.e., using a generic name to access different procedures)

• e.g., the intrinsic (built-in) sqrt function.
There are several versions: sqrt(real),
dsqrt(double precision), csqrt(complex).
Use the generic name and the correct one
will automatically be used.

• You can define the same thing. Define
similar sets of procedures then define a
generic interface to them (see example
next slide).

• Easiest way: in a module

generic
interface
apbxc

to functions
rapbxc and
iapbxc

A program
using this
generic
function

Overloading
• Overloading means that one operator or

procedure name is used to refer to several
procedures: which one is used depends on
the variable types.

• Examples
– apbxc is overloaded with rapbxc and iapbxc
– *,+,-,/ are overloaded with integer,real,complex

versions in different precisions
• You can overload existing operators, or

define new overloaded operators or
procedures

Overloading existing + and –
Useful for
derived types

Defining
new

operator
.distance.

Overloading “=“.
Useful for
conversion
between different
types: in this case
point to real.

Must use
subroutine with
1st argument
intent(out) and
2nd argument
intent(in).

Combine operators into 1 module

• Generic procedures
• New operators
• Overloaded operators (e.g., +, -, =)

The
interfaces

The
procedures

The test
program

Programming:
Finite Prandtl number convection

(i.e., almost any fluid)

Ludwig Prandtl (1875-1953)

Values of the Prandt number Pr

• Liquid metals: 0.004-0.03
• Air: 0.7
• Water: 1.7-12
• Rock: ~1024 !!! (effectively infinite)

Pr = ν
κ

Viscous diffusivity

Thermal diffusivity

Finite-Prandtl number convection

• Existing code assumes infinite Prandtl
number
– also known as Stokes flow
– appropriate for highly-viscous fluids like

rock, honey etc.
• Fluids like water, air, liquid metal have a

lower Prandtl number so equations
must be modified

Applications for finite Pr

• Outer core (geodynamo)
• Atmosphere
• Ocean
• Anything that’s not solid like the mantle

Equations
• Conservation of mass (=‘continuity’)
• Conservation of momentum (‘Navier-

Stokes’ equation: F=ma for a fluid)
• Conservation of energy

Claude Navier
(1785-1836)

Sir George Stokes
(1819-1903)

Finite Pr Equations

�

∇ ⋅
 v = 0

ρ ∂ v

∂ t
+ v ⋅∇v⎛

⎝⎜
⎞
⎠⎟ = −∇P + ρν∇2v + 2ρ


Ω× v + gραTŷ

�

∂T
∂t

+
 v ⋅ ∇T = κ∇2T + Q

Valid for constant viscosity only

ρ=density, ν=kinematic viscosity, g=gravity,
α=thermal expansivity

Coriolis force

“ma”

Navier-Stokes equation: F=ma for a fluid

continuity and energy equations same as before

Non-dimensionalise the equations

• Reduces the number of parameters
• Makes it easier to identify the dynamical

regime
• Facilitates comparison of systems with

different scales but similar dynamics (e.g.,
analogue laboratory experiments
compared to core or mantle)

Non-dimensionalise to thermal
diffusion scales

• Lengthscale D (depth of domain)
• Temperature scale (T drop over domain)
• Time to
• Velocity to
• Stress to

�

D 2 /κ

�

κ /D
ρνκ /D2

Nondimensional equations

�

∇⋅

v = 0

�

1
Pr

∂
 v
∂t

+
 v ⋅ ∇ v

⎛
⎝
⎜

⎞
⎠
⎟ = −∇P + ∇2 v + 1

Ek

Ω ×
 v + Ra.Tˆ y

∂T
∂ t

+ v ⋅∇T = ∇2T

�

Pr = ν
κ

�

Ra = gα∇TD 3

νκ
Ek = ν

2ΩD2

Prandtl number Ekman number Rayleigh number

As before, use streamfunction

vx =
∂ψ
∂ y vy = − ∂ψ

∂ x

Also simplify by assuming 1/Ek=0

Eliminating pressure
• Take curl of 2D momentum equation: curl

of grad=0, so pressure disappears
• Replace velocity by vorticity:
• in 2D only one component of vorticity is

needed (the one perpendicular to the 2D
plane),

�

 ω = ∇×

v

1
Pr

∂ω
∂ t

+ vx
∂ω
∂ x

+ vy
∂ω
∂ y

⎛
⎝⎜

⎞
⎠⎟
= ∇2ω − Ra ∂T

∂ x

∇2ψ =ω z

=> the streamfunction-vorticity
formulation

�

∇2ψ = −ω

1
Pr

∂ω
∂ t

+ vx
∂ω
∂ x

+ vy
∂ω
∂ y

⎛
⎝⎜

⎞
⎠⎟
= ∇2ω − Ra ∂T

∂ x

vx ,vy() = ∂ψ
∂ y
,− ∂ψ

∂ x
⎛
⎝⎜

⎞
⎠⎟

�

∂T
∂t

+
 v ⋅ ∇T = ∇2T + Q

Note: Effect of high Pr

1
Pr

∂ω
∂ t

+ vx
∂ω
∂ x

+ vy
∂ω
∂ y

⎛
⎝⎜

⎞
⎠⎟
= ∇2ω − Ra ∂T

∂ x

If Pr->infinity, left-hand-side=>0 so equation becomes Poisson
like before:

∇2ω = Ra ∂T
∂ x

Taking a timestep
∇2ψ =ω

vx ,vy() = ∂ψ
∂ y
,− ∂ψ

∂ x
⎛
⎝⎜

⎞
⎠⎟

(ii) Calculate v from ψ

(iii) Time-step ω and T using explicit finite differences:

∂ω
∂ t

= −vx
∂ω
∂ x

− vy
∂ω
∂ y

+ Pr∇2ω − RaPr ∂T
∂ x

∂T
∂ t

= −vx
∂T
∂ x

− vy
∂T
∂ y

+∇2T

(i) Calculate ψ from ω using:

Tnew −Told
Δt

= −vx
∂Told
∂ x

− vy
∂Told
∂ y

+∇2Told

Tnew = Told + Δt ∇2Told − vx
∂Told
∂ x

− vy
∂Told
∂ y

⎛
⎝⎜

⎞
⎠⎟

ω new −ω old

Δt
= −vx

∂ω old

∂ x
− vy

∂ω old

∂ y
+ Pr∇2ω old − RaPr

∂Told
∂ x

ω new =ω old + Δt Pr∇2ω old − vx
∂ω old

∂ x
− vy

∂ω old

∂ y
− RaPr ∂Told

∂ x
⎛
⎝⎜

⎞
⎠⎟

T time step is the same as before

w must now be time stepped in a similar way

Stability condition

Diffusion:

Advection:

Combined:

dtdiff = adiff
h2

max(Pr,1)

dtadv = aadvmin
h

maxval(abs(vx))
, h
maxval(abs(vy))

⎛
⎝⎜

⎞
⎠⎟

dt =min(dtdiff ,dtadv)

Modification of previous
convection program

• Replace Poisson calculation of w with time-
step, done at the same time as T time-step

• Get a compiling code!
• Make sure it is stable and convergent for

values of Pr between 0.001 and 10
• Hand in your code, and your solutions to the

test cases in the following slides
• Due date: 30 November (2 weeks)

Test cases
• All have nx=257, ny=65, Ra=1e6,

total_time=0.1, Tinit=‘cosine’, initial W=0,
unless otherwise stated

• In addition to the fields, plot and hand in a
graph of maximum velocity vs. time for
each case.

Standard parameter file
On web site, lowPrandt_parameters.txt

Empty parameter file
For testing that you can set default values for
Input parameters.
On web site, lowPrandt_parameters_EMPTY.txt

Check for uninitialized variables

• Code should assume sensible values of
input parameters, because they are
optional in namelist blocks
– Test using empty namelist block

• All arrays should be initialized (typically
to 0)

• Test using recommended debugging
options

Pr=10

Pr=1

Pr=0.1

Pr=0.01

Pr=0.001

Hand in
• Source files
• Images and graphs for the 5 test cases
• Make sure it compiles with

– “gfortran –fcheck=all –finit-real=snan –ffpe-
trap=invalid,zero,overflow –O0”

• Make sure it runs with both the
downloaded full parameter file and the
empty parameter file as command-line
arguments (as with previous program)

