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Today‘s Goals
1. Learn more about procedures 

including pure procedures, 
elemental procedures, generic 
procedures and operators 
(examples of overloading)

2. Write low-Prandtl number 
convection program.



Projects: start thinking about

Agree topic with me 
before final lecture



More about procedures
(=functions/subroutines)

• Passing procedure names as dummy 
arguments

• Pure functions & subroutines
• Elemental procedures
• Impure elemental procedures
• Generic procedures and overloading



Passing
function

names as 
function 

arguments

• Also possible 
with 
subroutines 
(declare as 
external)



Pure functions

• Functions that have no side effects:
– Do not modify any arguments: all 

arguments must be intent(in)
– Do not modify module variables
– No saved variables, external file I/O or stop

• Helpful for parallelisation of loops: 
function can be executed 
simultaneously with different loop 
indices



Pure subroutines
• As with pure functions, but are allowed 

to modify arguments declared as 
intent(out) or intent(inout)



Elemental functions
• Are written for scalar arguments but 

may also be applied to array arguments
• Intrinsic functions are elemental

functions, e.g. 

...



Elemental functions
• Declare using the ”elemental” label



Elemental functions
• Must normally be pure functions
• All dummy arguments must be scalars
• No pointers (either for arguments or the

result)
• Dummy arguments must not be used in 

type declaration statements
• Elemental subroutines are also

possible, with the same rules



Impure elemental procedures
• These can modify their calling arguments
• Must be declared with the impure keyword
• Arguments modified must be declared

intent(inout). 
• When called with an array, execution is

element-by-element in index order, with
the first index changing most rapidly.





Generic procedures
(i.e., using a generic name to access different procedures)

• e.g., the intrinsic (built-in) sqrt function. 
There are several versions: sqrt(real), 
dsqrt(double precision), csqrt(complex). 
Use the generic name and the correct one 
will automatically be used. 

• You can define the same thing. Define 
similar sets of procedures then define a 
generic interface to them (see example 
next slide).

• Easiest way: in a module



generic
interface
apbxc

to functions
rapbxc and
iapbxc

A program 
using this
generic
function



Overloading
• Overloading means that one operator or 

procedure name is used to refer to several 
procedures: which one is used depends on 
the variable types. 

• Examples
– apbxc is overloaded with rapbxc and iapbxc
– *,+,-,/ are overloaded with integer,real,complex 

versions in different precisions
• You can overload existing operators, or 

define new overloaded operators or 
procedures



Overloading existing + and –
Useful for 
derived types



Defining 
new 

operator 
.distance.



Overloading “=“.
Useful for 
conversion 
between different
types: in this case
point to real.

Must use 
subroutine with
1st argument 
intent(out) and
2nd argument
intent(in).



Combine operators into 1 module

• Generic procedures
• New operators
• Overloaded operators (e.g., +, -, =)



The
interfaces



The 
procedures



The test
program



Programming: 
Finite Prandtl number convection 

(i.e., almost any fluid)

Ludwig Prandtl (1875-1953)



Values of the Prandt number Pr

• Liquid metals: 0.004-0.03
• Air: 0.7
• Water: 1.7-12
• Rock: ~1024 !!!   (effectively infinite)

Pr = ν
κ

Viscous diffusivity

Thermal diffusivity



Finite-Prandtl number convection

• Existing code assumes infinite Prandtl 
number
– also known as Stokes flow
– appropriate for highly-viscous fluids like 

rock, honey etc.
• Fluids like water, air, liquid metal have a 

lower Prandtl number so equations 
must be modified



Applications for finite Pr

• Outer core (geodynamo)
• Atmosphere
• Ocean
• Anything that’s not solid like the mantle



Equations
• Conservation of mass (=‘continuity’)
• Conservation of momentum (‘Navier-

Stokes’ equation: F=ma for a fluid)
• Conservation of energy

Claude Navier
(1785-1836)

Sir George Stokes
(1819-1903)



Finite Pr Equations
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Valid for constant viscosity only

ρ=density, ν=kinematic viscosity, g=gravity, 
α=thermal expansivity

Coriolis force

“ma”

Navier-Stokes equation: F=ma for a fluid

continuity and energy equations same as before



Non-dimensionalise the equations

• Reduces the number of parameters
• Makes it easier to identify the dynamical 

regime
• Facilitates comparison of systems with 

different scales but similar dynamics (e.g., 
analogue laboratory experiments 
compared to core or mantle)



Non-dimensionalise to thermal 
diffusion scales

• Lengthscale D (depth of domain)
• Temperature scale (T drop over domain)
• Time to 
• Velocity to 
• Stress to 
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Nondimensional equations
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Prandtl number Ekman number Rayleigh number



As before, use streamfunction

vx =
∂ψ
∂ y vy = − ∂ψ

∂ x

Also simplify by assuming 1/Ek=0



Eliminating pressure
• Take curl of 2D momentum equation: curl 

of grad=0, so pressure disappears
• Replace velocity by vorticity: 
• in 2D only one component of vorticity is 

needed (the one perpendicular to the 2D 
plane),  
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=> the streamfunction-vorticity 
formulation
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Note: Effect of high Pr
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If Pr->infinity, left-hand-side=>0 so equation becomes Poisson
like before:

∇2ω = Ra ∂T
∂ x



Taking a timestep
∇2ψ =ω
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(ii) Calculate v from ψ

(iii) Time-step ω and T using explicit finite differences:
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(i) Calculate ψ from ω using: 
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T time step is the same as before

w must now be time stepped in a similar way





Stability condition

Diffusion: 

Advection: 

Combined: 

dtdiff = adiff
h2

max(Pr,1)

dtadv = aadvmin
h

maxval(abs(vx))
, h
maxval(abs(vy))

⎛
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dt =min(dtdiff ,dtadv )



Modification of previous 
convection program

• Replace Poisson calculation of w with time-
step, done at the same time as T time-step

• Get a compiling code!
• Make sure it is stable and convergent for 

values of Pr between 0.001 and 10
• Hand in your code, and your solutions to the 

test cases in the following slides
• Due date: 30 November (2 weeks)



Test cases
• All have nx=257, ny=65, Ra=1e6, 

total_time=0.1, Tinit=‘cosine’, initial W=0, 
unless otherwise stated

• In addition to the fields, plot and hand in a 
graph of maximum velocity vs. time for 
each case. 



Standard parameter file
On web site, lowPrandt_parameters.txt



Empty parameter file
For testing that you can set default values for 
Input parameters.
On web site, lowPrandt_parameters_EMPTY.txt



Check for uninitialized variables

• Code should assume sensible values of 
input parameters, because they are 
optional in namelist blocks
– Test using empty namelist block

• All arrays should be initialized (typically 
to 0)

• Test using recommended debugging 
options



Pr=10



Pr=1



Pr=0.1



Pr=0.01



Pr=0.001



Hand in
• Source files
• Images and graphs for the 5 test cases
• Make sure it compiles with

– “gfortran –fcheck=all –finit-real=snan –ffpe-
trap=invalid,zero,overflow –O0”

• Make sure it runs with both the 
downloaded full parameter file and the  
empty parameter file as command-line 
arguments (as with previous program)


