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Today‘s Goals
1. Learn about parallel computing 

and how Fortran programs can be 
parallelized.

2. Implicit time stepping for diffusion.



Motivation: 
To model the Earth, 
need a huge number 
of grid points / cells 

/elements!
• e.g., to fill mantle volume:

– (8 km)3 cells -> 1.9 billion 
cells

– (2 km)3 cells -> 123 billion 
cells



Huge problems 
=> huge computer

www.top500.org



Huge problems 
=> huge computer

www.top500.org

Trends
- Up to millions of cores
- Many use GPUs





Progress: iPhone > fastest computer in 
1976 (cost: $8 million)

(photo taken at NCAR museum)







In Switzerland

Each node: 12-core Intel CPU + GPU



Shared memory: several cpus 
(or cores) share the same 
memory. Parallelisation can 
often be done by the compiler 
(sometimes with help, e.g., 
OpenMP instructions in the 
code)

Distributed memory: 
each cpu has its own 
memory. Parallelisation 
usually requires 
message-passing, e.g. 
using MPI (message-
passing interface)



A brief history of supercomputers

1983-5
4 CPUs,
Shared 
memory

1991:  512 CPUs, distributed memory

2010:  224,162 Cores, distributed + shared memory (12 cores per node) 



The current #1: 
Fugaku

(Wikipedia)



Another possibility: build you own 
(“Beowulf” cluster)

Using standard PC cases: or using rack-mounted cases



Programming approaches

• OpenMP:   Shared memory only (same node)
• MPI (Message-Passing-Interface): Any number of 

cores, distributed memory
• Coarray Fortran. Since Fortran 2008, with 2018 

extensions.
• CUDA Fortran. For GPUs.



MPI: Message-Passing Interface
• A standard library for communicating 

between different tasks (cpus)
– Pass messages (e.g., arrays)
– Global operations (e.g., sum, maximum)
– Tasks could be on different cpus/cores of the 

same node, or on different nodes
• Works with Fortran and C
• Works on everything from a laptop to the 

largest supercomputers. 2 versions are:
– https://www.mpich.org
– http://www.open-mpi.org/

https://www.mpich.org/
http://www.open-mpi.org/


How to parallelise a code: 
worked example

Use MPI first, then Fortran 
coarrays



Example: Scalar Poisson eqn.

� 

∇2u = f
Finite-difference approximation:

� 

1
h 2 ui+1 jk + ui−1 jk + uij+1k + uij−1k + uijk+1 + uijk+1 − 6ui, j( ) = fij

Use iterative approach=>start with u=0, sweep through grid updating
u values according to:

� 

˜ u ij
n +1 = ˜ u ij

n + αRij
h2

6

Where Rij is the residue (“error”):

� 

R = ∇2 ˜ u − f



Code



Parallelisation: domain decomposition

CPU 0 CPU 1

CPU 3CPU 2

CPU 5CPU 4

CPU 6 CPU 7

Single CPU 8 CPUs

Each CPU will do the same operations but on different parts of 
the domain



You need to build parallelization into 
the code using MPI

• Any scalar code will run on multiple CPUs, but 
will produce the same result on each CPU.

• Code must first setup local grid in relation to 
global grid, then handle communication

• Only a few MPI calls needed:
– Init. (MPI_init,MPI_com_size,MPI_com_rank)
– Global combinations (MPI_allreduce)
– CPU-CPU communication (MPI_send,MPI_recv…)



Boundaries
• When updating points at 

edge of subdomain, need 
values on neighboring 
subdomains

• Hold copies of these locally 
using “ghost points”

• This minimizes #of 
messages, because they can 
be updated all at once 
instead of individually

=ghost points



Scalar Grid

Red=boundary points (=0)
Yellow=iterated/solved

(1…n-1)



Parallel grids

Red=ext. boundaries
Green=int. boundaries
Yellow=iterated/solved



First things the code has to 
do:

• Call MPI_init(ierr)
• Find #CPUs using MPI_com_size
• Find which CPU it is, using MPI_com_rank 

(returns a number from 0…#CPUs-1)
• Calculate which part of the global grid it is 

dealing with, and which other CPUs are 
handling neighboring subdomains.



Example: “Hello world” program



Example: “Hello world” program

Process numbers start at 0



Moving forward

• Update values in subdomain using 
‘ghost points’ as boundary condition, 
i.e.,
– Timestep (explicit), or
– Iteration (implicit)

• Update ghost points by communicating 
with other CPUs

• Works well for explicit or iterative 
approaches



Boundary communication

Step 1: x-faces

Step 2: y-faces (including 
corner values from step 1)

[Step 3: z-faces (including corner 
values from steps 1 & 2)]

Doing the 3 directions sequentially avoids the need for 
additional messages to do edges & corners (=>in 3D, 6 
messages instead of  26)









Main changes

• Parallelisation hidden in 
set_up_parallelisation and update_sides

• Many new variables to store 
parallelisation information

• Loop limits depend on whether global 
domain boundary or local subdomain





Simplest communication

Not optimal – uses blocking send/receive



Better: using non-blocking (isend/irecv)



Fortran Coarrays

• Fortran 2008; extended in Fortran 2018
• Each process (“image”) has its own 

version of the coarray
• Each image can access the versions on 

other images using []



Fortran Coarrays

Alternative
syntax

Always *. 
Actual limit 
is set at run 
time

Multidimensional 
codimensions

Sets local x(:) equal 
to y(:) on image ni.



Image numbers start at 1

Example: “Hello world” program
Intrinsic functions



Use [:] when declaring

Use [*] when allocating

No [] means local version

Intrinsic global maximum



Coarrays greatly simplify the communication!

sync all waits for communication to finish before continuing. 
Important otherwise the calculation might be using values that have not yet 
arrived



Coarray commands & functions 
(f2008)

• this_image(), num_images()
• sync all, sync images(list), sync memory
• stop all
• co_sum(), co_broadcast(), co_min(), 

co_max(), co_reduce()    (f2018)
• lcobound(), ucobound()
• lock & unlock: lock variable by an image
• Critical & end critical: block of code 

executed by one image at a time



Coarrays: compiler status

• ifort: built in, except on MacOS
• gfortran: single image compilation is 

built in (gfortran –fcoarray=single); for 
parallel execution additional package(s) 
must be installed
– OpenCoarrays provides a convenient 

wrapper around gfortran & MPI (see Hello 
World example)



Performance: theoretical 
analysis



How much time is spent 
communicating?

• Computation time ∝ volume (Nx^3)
• Communication time ∝ surf. area (Nx^2)
• =>Communication/Computation ∝ 1/Nx

• =>Have as many points/cpu as possible!  



Is it better to split 1D, 2D or 3D?
• E.g., 256x256x256 points on 64 CPUs
• 1D split: 256x256x4 points/cpu

– Area=2x(256x256)=131,072
• 2D split: 256x32x32 points/cpu

– Area=4x(256x32)=32,768
• 3D split:64x64x64 points/cpu

– Area=6x(64x64)=24,576
• =>3D best but more messages needed



Model code performance

Computation : t=aN3

Communication : t=nL+bN2 /B
(L=Latency, B=bandwidth)

TOTAL : t= aN3 +nL+bN2 /B

(Time per step or iteration)



Example: Scalar Poisson equation

t= aN3 +nL+bN2/B

� 

∇2u = f

Assume 15 operations/point/iteration & 1 Gflop performance
Þa=15/1e9=1.5e-8

If 3D decomposition, n=6, b=6*4 (single precision)

Gigabit ethernet: L=40e-6 s, B=100 MB/s
Quadrics: L=2e-6 s, B=875 MB/s



Up to 2e5 CPUs (Quadrics communication)



Efficiency



Now multigrid V cycles
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Application to StagYY
Cartesian or spherical



StagYY 
iterations: 

3D Cartesian

Simple-minded multigrid:
Very inefficient coarse levels!
Exact coarse solution can take
long time!

Change in scaling from 
same-node to cross-node
communication



New treatment: 
follow minima
• Keep #points/core > 
minimum (tuned for 
system)
• Different for on-
node and cross-node 
communication



Multigrid – now (& before): yin-yang

1.8 billion



Summary
• For very large-scale problems, need to 

parallelise code using MPI or CoArrays
• For finite-difference codes, the best method is 

to assign different parts of the domain to 
different CPUs (“domain decomposition”)

• The code looks similar to before, but with some 
added routines to take care of communication

• Multigrid scales fine on 1000s CPUs if:
– Treat coarse grids on subsets of CPUs
– Large enough total problem size



For more information

• https://computing.llnl.gov/tutorials/parall
el_comp/

• http://en.wikipedia.org/wiki/Parallel_com
puting

• http://www.mcs.anl.gov/~itf/dbpp/
• http://en.wikipedia.org/wiki/Message_Pa

ssing_Interface

https://computing.llnl.gov/tutorials/parallel_comp/
http://en.wikipedia.org/wiki/Parallel_computing
http://www.mcs.anl.gov/~itf/dbpp/
http://en.wikipedia.org/wiki/Message_Passing_Interface

