
Diffusion equation again

∂T
∂ t

= ∇2T

Implicit time-stepping



So far we have used explicit time 
stepping

∂T
∂ t

= ∇2Tphysical equation

Tnew −Told
Δt

= ∇2Told

explicit => calculate derivatives at old time

But: the value of del2(T) changes over dt 

Tnew = Told + Δt∇2Told

each Tnew can be calculated from already-known Told



Implicit: calculate derivatives at new time

Tnew −Told
Δt

= ∇2Tnew

Tnew − Δt∇2Tnew = Told

Put knowns on right-hand side, unknowns on LHS

More complicated to find Tnew: del2 term links all Tnew points.
Why use it? Because the timestep is not limited: stable for any dt

Eqn looks like Poisson’s equation: we can modify existing solver



How about accuracy?
• Simple implicit and explicit methods are both 

first order accurate. 
• Several related methods give second-order

accuracy, including predictor-corrector, Runge-
Kutta and semi-implicit.

• Of these, only the semi-implicit method has 
an unlimited time step, so let’s focus on that!

• The semi-implicit method uses the average of 
derivatives at the beginning and end of the 
time step



semi-implicit diffusion
Tnew −Told

Δt
= ∇2Tnew +∇

2Told
2

Now generalised equation to deal with all 3 cases:
explicit (beta=0), implicit (beta=1), semi-implicit (beta=0.5)

Tnew −Told
Δt

= β∇2Tnew + (1− β )∇
2Told

Tnew − βΔt∇
2Tnew = Told + Δt(1− β )∇2Told

Put knowns on right-hand side, unknowns on LHS



Rearrange to look like Poisson

∇2 −1 (βΔt)( )Tnew = − 1
βΔt

Told + Δt(1− β )∇2Told⎡⎣ ⎤⎦

So, modify the Poisson solver to solve ∇2 −C( )T = f

Tnew − βΔt∇
2Tnew = Told + Δt(1− β )∇2Told



Finite-difference ”modified Poisson”

∇2 −C( )T = f

Ti−1, j +Ti+1, j +Ti, j−1 +Ti, j+1 − (4 +Ch
2 )Ti, j

h2
= fi, j

Iterative correction:

Ri, j =
Ti−1, j +Ti+1, j +Ti, j−1 +Ti, j+1 − (4 +Ch

2 )Ti, j
h2

− fi, j

T n+1 = T n + αh2

4 +Ch2( ) R



Final homework
Start with your favourite time-stepping program (either diffusion, advection-
diffusion, infinite-Pr convection or low-Pr convection). (Hint: diffusion is the easiest 
one).
1. Restructure it so that all the main variables are in a derived type and all routines 
are type-bound procedures, following the example of last week’s homework. The 
main routine should then be very simple, such as:



Final homework
2. Modify it to include implicit diffusion.
If beta≥0.5, allow very large diffusion time steps! (e.g. a_diff could be set to >>1)
Test for different values of beta (0, 0.5 and 1.0)

Due date: 14 December

(Hint: during 1. restructuring, it is easiest to leave the multigrid routines unchanged 
– put them in the module but they do not need to be listed in the type. Call 
Vcycle_2DPoisson from the appropriate type-bound procedure).



Implementing implicit diffusion
• Modify your Poisson solver (iterations and multigrid) 

passing the constant ‘C’ in as an extra argument. 
– C=0 should give same result as before. Useful for 

streamfunction calculation.
• Add ‘beta’to the namelist inputs
• Modify diffusion calculation

– if beta>0 call multigrid, otherwise explicit like before 
– use beta when calculating rhs term
– ignore diffusive timestep if beta≥0.5

• Run some tests with beta=0, 0.5 or 1.0 and see if you 
can tell the difference. Choose your test case to be 
one that has a low Ra (or B), and low Pr (if the latest 
code) because diffusion dominates for low Ra/B.



Example: Low Pr convection
(the most complicated) 

 
Tnew − βΔt∇

2Tnew = Told + Δt (1− β )∇2Told − v
!
⋅∇T( )

old( )

 
∇2 −1 (βΔt)( )Tnew = − 1

βΔt
Told + Δt (1− β )∇2Told − v

!
⋅∇T( )

old( )⎡
⎣

⎤
⎦

∇2 −C( )u = f

 
C = 1 (βΔt);  f = − 1

βΔt
Told + Δt (1− β )∇2Told − v

!
⋅∇T( )

old( )⎡
⎣

⎤
⎦

Temperature equation with variable beta:

Rearrange:

Call the new ‘modified Poisson’ solver

With  (u=T)



 
ω new − PrβΔt∇

2ω new =ω old + Δt Pr(1− β )∇2ω old − v
!
⋅∇ω( )

old
− RaPr ∂Told

∂ x
⎛
⎝⎜

⎞
⎠⎟

∇2 −C( )u = f
 
∇2 − 1

PrβΔt
⎛
⎝⎜

⎞
⎠⎟
ω new = − 1

PrβΔt
ω old + Δt Pr(1− β )∇2ω old − v

!
⋅∇ω( )

old
− RaPr ∂Told

∂ x
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Vorticity equation with variable beta:

Rearrange:

Call the new ‘modified Poisson’ solver

With (u=w)

Example: Low Pr convection (2)

 
C = 1

PrβΔt
;   f = − 1

PrβΔt
ω old + Δt Pr(1− β )∇2ω old − v

!
⋅∇ω( )

old
− RaPr ∂Told

∂ x
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥





Note about boundary conditions

• If your existing iteration routines assume 
boundary conditions are 0 all round, they 
need modifying for T field.

• T boundary conditions are 0 at top, dT/dx=0 
at sides, and
– On fine grid: 1 at bottom
– On coarse grids: 0 at bottom

• Either pass a boundary condition switch into 
the iteration routines, or write different 
routines for S and T fields. 



Hand in

• .f90 files
• Results of test case(s) rerun using
– different values of beta and (if beta>0.5) 
– different time steps including 

• Time step > diffusive time step



Projects: Decide soon!

Agree topic with me 
before or during final 
lecture


