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Today’s Goals

1. Linux environments
2. Review key points from reading 

homework
3. Precision
4. Formatted input/output
5. Practice: 2-D advection-diffusion 

equation



Most powerful 500 computers in the world:
What type of operating system?

Answer: Linux (unix)



Use of unix/linux enviroment
• Used on almost all 

‘supercomputers’ (e.g. 
Piz Daint @ CSCS, 
Euler/Leonhard @ETH)

• MacOSX ‘terminal’ or 
‘X11’ applications, 
Windows ‘cygwin’, 
Linux…

• Several online guides:
http://www.cs.brown.edu/courses/bridge/1998/res/UnixGuide.html
http://www.molvis.indiana.edu/app_guide/unix_commands.html
http://vic.gedris.org/Manual-ShellIntro/1.2/ShellIntro.pdf
http://www.ee.surrey.ac.uk/Teaching/Unix/

http://www.cs.brown.edu/courses/bridge/1998/res/UnixGuide.html
http://www.molvis.indiana.edu/app_guide/unix_commands.html
http://vic.gedris.org/Manual-ShellIntro/1.2/ShellIntro.pdf


2. Review important points 
from online reading

• Module things (see examples online)
– use module,only: name1, name2, ...
– mainvariable1 => modvariable
– public and private variables and functions

• Implied do loops: more variations
• Assumed size arrays

– size() function
– not necessary to pass array size as argument into 

subroutines, but lower bound info is lost



3. Fortran Precision
• a “bit” is 1 or 0; 8 bits = 1 byte  (0 to 255)
• 32-bit (4 byte) numbers:

– real: ~6 digits precision, range ~1e-38 to 1e38
– integer: ±2147483647

• 64-bit (8 byte) numbers:
– real: ~13 digits precision, range ~1d-308 to 1d308

• Sometimes 80-bit (“extended” precision) and/or 
128-bit (“quad” precision) are also available

• Fortran default precision is not defined: normally 
32-bit, sometimes (e.g., on Crays) 64-bit.

• Therefore best to specify precision:



Specifying precision
• Method 1: in the code

– see next slide for syntax
• Method 2: when compiling

– use the appropriate flag, e.g.,
– ifort -r8 program.f95   (makes reals 8-byte)
– gfortran -fdefault-real-8 program.f95

• Integers and reals can be different sizes
– -ifort –r8 –i4 program.f95



precision syntax
• F77 and later:

– real a                   ! normally 32-bit, might be 64
– double precision a   ! twice the above
– real*4 a        ! 4 byte (32 bit)
– real*8 a        ! 8 byte (64 bit)

• f95: use new functions
– selected_real_kind(#digits, max exp)
– selected_int_kind(#digits)

• with
– Real(kind=n):: …
– Integer(kind=n):: …



precision syntax: constants
• Constants will normally be 32-bit by 

default; to get more accurate 64-bit 
constants either
– Change the default precision (e.g. ifort –r8)
– Use “D” instead of ”E”, e.g. 1.234D5
– Attach “_8” to the number, e.g. 1.234_8

• Similarly with 128-bit “Quad” precision
– 1.234Q5
– 1.234_16



examples of these



Precisions available in gfortran



Beware
• It is not safe to assume that the kind is 

equal to the number of bytes, 
– e.g. real(4), real(8) – cannot assume that 4 

& 8 are the number of bytes
• Always use selected_real_kind, e.g.

– dp=selected_real_kind(10,300)
– real(dp):: a,b,c



What precision to use?
• If possible, use 32-bit

– code runs faster
– uses half as much memory
– files use half as much disk space

• use 64-bit when >6-digit accuracy is needed 
in calculations, e.g.,
– adding >millions of numbers
– direct solvers (often)

• Try same run with each and see if you get 
the same answer!

• You can mix precision in same code



logical and complex variables

• logical variables typically use 32 bits 
even though 1 would be enough!
– Values .true. or .false.

• complex variables consist of 2 numbers 
(real and imaginary parts) so take twice 
as much space as real variables
– Related intrinsic functions cmplx(r,i), 

aimag(c), real(c), conjg(c)



Specifying output format
• String: a10 means 10 characters
• Integer: i5 => integer 5 digits
• Floating: f10.4 => 10 characters, 4 after decimal 

point
• Exponential (e.g., 0.234e-12): 

– e14.4 means 14 characters, 4 after decimal point
– Avoid the wasted leading 0 either by putting ‘1p’ first 

=> 1pe14.4 or (f90-) using ‘es‘, e.g. es14.4
• ‘g’ gives ‘f’ for small numbers and ‘e’ for large 

numbers
• e.g., (3i5,a10,f10.4,3es14.4))
• This can go directly in a print or write statement, 

or in a format line with a number (see next)





Finite difference approximation:
Forward, Backward, Centered

• Forward

• Backward

• Centered 
(BEST)

′ f (x) =
f (x +δx) − f (x)

δx

′ f (x) =
f (x) − f (x −δx)

δx

′ f (x) =
f (x +δx) − f (x − δx)

2δx



FBC accuracy
• e.g., f(x)=3.6+1.9x-2.7x4

• Compute f’(2.5) with dx=0.1:  (=-166.85)
– Forward f.d. approx.=-177.24  (error 10.39)
– Backward f.d. approx=-157.00 (error -9.85)
– Centered f.d. approx.=167.10 (error 0.25)

• dx too small => numerical precision errors!  
(keep dx/x≥10-3 s.p. 10-6 d.p.)



FBC accuracy (2)

• Finite-difference derivative program on 
next slide demonstrates
– Centered differencing more accurate
– Accuracy improves with decreasing grid 

spacing until truncation error becomes 
problem

– Increase to 64-bit precision to reduce 
truncation error!





Exercises
1. Read ‘formatted input and output’ on 

http://www.cs.mtu.edu/%7eshene/COUR
SES/cs201/NOTES/format.html

2. Program 2-dimensional advection-
diffusion, as detailed on the following 
slides

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/format.html


Today solve advection-
diffusion equation for a fixed 

velocity field v

  

� 

∇ ⋅
 v = 0

  

� 

∂T
∂t

+
 
v ⋅ ∇T = κ∇2T

For incompressible flow



A note on numerical advection

 

∂T
∂t

= −v ⋅∇T‘pure’ advection:

Is very difficult to treat accurately, as will be demonstrated 
in class for 1-dimensional advection with a constant 
velocity. 
• Simple-minded schemes either go unstable or smear out 
temperature anomalies (numerical diffusion). 
• More sophisticated schemes can cause artificial ripples 
(numerical dispersion) and other types of distortion. 
• Many papers have been written on numerical advection!



Next, demonstration of why 
we need upwind advection

• Simple 1D Matlab script shows how 
centered or downwind schemes go 
unstable very quickly!

• Upwind method can be thought of linear 
interpolation to where the material is 
coming from

• Higher-order versions are used for 
research codes



Timestepping notes
• UPWIND finite differences for the advection 

(v.gradT, or v*dT/dx) terms take the forward 
or backward derivative in the direction that 
material is coming from
– If vx>0, vx_dTdx = vx*(T(i)-T(i-1))/dx
– If vx<0, vx_dTdx = vx*(T(i+1)-T(i))/dx

• As with diffusion the advection timestep dt 
is limited by the time it takes for material 
to move 1 grid spacing. You need to 
calculate both the advective and diffusive 
timesteps and take the minimum.
– In 2-D, material should advect no more than 

~0.6 of a grid spacing



2D Velocity can be represented 
by a scalar streamfunction

• automatically satisfies incompressibility
� 

vx = ∂ψ
∂y

� 

vy = −∂ψ
∂x



Advantages of using the 
streamfunction

• Two vector velocity components are 
reduced to one scalar

• Continuity is automatically satisfied
• If also solving the Navier-Stokes 

equation, pressure can be algebraically 
eliminated from the momentum 
equation, reducing the number of 
variables further



Today’s exercise: fixed flow field

vx ,vy( ) = ∂ψ
∂y
,− ∂ψ

∂x
⎛
⎝⎜

⎞
⎠⎟

(i) Calculate velocity at each 
point using centered 
finite differences

(ii) Take timesteps to integrate the advection-diffusion equation
for the specified length of time using UPWIND
finite-differences for dT/dx and dT/dy (and centered for 

del2(T))

� 

∂T
∂t

= −vx
∂T
∂x

− vy
∂T
∂y

+ ∇2T



Finite difference version
Ti, j
(t1+Δt ) = Ti, j

(t1 ) + Δt κ ∇2T( )i, j
(t1 ) − vi∇T( )i, j

(t1 )⎡
⎣

⎤
⎦

∇2T( )i, j
(t1 ) =

Ti−1, j
(t1 ) − 2Ti, j

(t1 ) +Ti+1, j
(t1 )

(Δx)2
+
Ti, j−1
(t1 ) − 2Ti, j

(t1 ) +Ti, j+1
(t1 )

(Δy)2
⎛

⎝⎜
⎞

⎠⎟

vi∇T( )i, j
(t1 ) = vxi, j

∂T
∂x

⎛
⎝⎜

⎞
⎠⎟ i, j

+ vyi, j
∂T
∂y

⎛
⎝⎜

⎞
⎠⎟ i, j

where

Δt = min adiff
min(Δx,Δy)( )2

κ
,aadvmin

Δx
vxmax

, Δy
vymax

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Upwind derivatives

(aadv~0.6)



Grid and boundary conditions

T=1

dT/dx=0

T=0

dT/dx=0

x

y

x=0,y=0
i=1,j=1

x=xmax
i=nx

y=ymax
j=ny



Physical problem
• Temperature boundary conditions

– T=1 at bottom (y=0)
– T=0 at top (y=1)
– dT/dx=0 at sides (i.e., zero flux)

• Stream function: try a simple cellular flow, 
with different values of the constant B

� 

ψ = Bsin πx / xmax( )sin πy / ymax( )

Note that this has a fixed value (0) at the boundaries, 
making them impermeable



Treatment of boundary conditions

dT
dx

= 0

Easiest : Solve advection & diffusion on points 2…nx-1. 
After each step, set T(1,:)=T(2,:) and T(nx)=T(nx-1)

Sides:

Top: Bottom:T = 0 T = 1

Set T(:,1)=1. and T(:,ny)=0.





Program structure
• Write new subroutines to

– calculate vel. (vx,vy) from streamfunction S
– calculate v.grad(T)

• Put the new subroutines with the old del2 
subroutine into a module

• (for bonus credit). Write the various routines 
(del2, velocity calculation, gradT) as array 
functions, as in Class 3 slides 33-38.



Program structure (2)
• Read in parameters using namelist. The 

parameters are as last week with the 
addition of B, the strength of the flow and 
a_adv. 

• Initialise S and calculate V using your 
subroutine or function. 
– Use V to calculate the maximum advection 

timestep.



Standard parameter file

Your code should work with this file, named 
AdvDif_parameters.dat, as the input file.



Obtaining results

• Take timesteps and write and plot the 
results

• After a sufficient integration time the 
system should reach a steady-state, i.e. it 
doesn’t change any more with time

• The initial condition will not matter if you 
run it to steady state

• Email your Fortran files and plots for 3 
different B values: 1,10 and 100



Solutions

• k=1 
• depth=width=1
• steady-state (long 

integration time)
• Stream function left, 

Temperature right B=10

B=100

B=1

B=0.1


