
Numerical Modelling in
Fortran: day 11

Paul Tackley, 2020

Today’s Goals
1. Fortran and numerical methods: Review

and discussion. New features of Fortran
2003, 2008 & 2018.

2. Projects: Define goals, identify information
needed from me. Due date: 19 February
2021

Feeback on homework
• Use atan2(o,a) instead of atan(o/a)

to get correct angle and avoid divide-
by-0.
– Each tan value maps to 2 possible

angles in the range -180º to 180º
– (-1,-1) has different angle to (1,1)

• Use built-in complex type
– Access components using real() and

aimag() or
– (since f2008) c%re & c%im

Useful libraries and other software

• For standard operations such as matrix solution
of systems of linear equations, taking fast-
Fourier transforms, etc., it is convenient to
download suitable routines from some free
library, rather than writing your own from
scratch.

• There are also more specialised free programs
available for some applications

• A list is at: http://www.lahey.com/other.htm
• Much is available at: http://www.netlib.org/

http://www.lahey.com/other.htm
http://www.netlib.org/

http://www.lahey.com/other.htm

http://www.lahey.com/other.htm

Some well-known libraries
• lapack95: common linear algebra problems: equations, least

squares, eigenvalues etc.
– http://www.netlib.org/lapack95/
– also a parallel version scalapack http://www.netlib.org/scalapack/

• MPI: for running programs on multiple CPUs. 2 common
versions are
– MPICH: http://www.mpich.org/
– Open MPI: http://www.open-mpi.org/

• PETSc: Portable, Extensible Toolkit for Scientific Computation:
http://www.mcs.anl.gov/petsc/

http://www.netlib.org/lapack95/
http://www.netlib.org/scalapack/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Fortran Review
• History

– 60 years since first compiler
– versions 66, 77, 90, 95, 2003, 2008, 2018

• Variables
– types: real, integer, logical, character, complex
– Implicit types and implicit none
– Initialisation
– parameters
– derived types
– precision (32 vs 64 bit etc.)

Fortran Review (2)
• Arrays

– fixed vs. automatic vs. allocatable vs. assumed shape
– index ranges
– data, reshape
– built-in array algebra

• Input/Ouput
– open, print, read, write, close
– formats
– iostat, rewind, status
– namelist
– binary vs. ascii, direct vs. sequential

Fortran Review (3)
• Flow control structures

– do loops (simple, counting, while, concurrent),
exit, cycle

– if…elseif…endif blocks
– select case…
– forall
– where

Fortran Review (4)
• Functions and subroutines (procedures)

– Intrinsic functions: mathematical, conversion, …
– internal (contains), external (& interface blocks), in

modules
– array functions
– recursive functions and result statement
– named arguments
– optional arguments
– generic procedures
– overloading
– user-defined operators
– save

Fortran Review (5)
• Modules

– use
– public and private variables and procedures
– =>

• Pointers
– to variables, arrays, array sections, areas of memory, in

defined types
• Optimization

– maximize use of cache and pipelining
– loops most important
– 90/10 rule (focus on bottlenecks)
– avoid branches, maximize data locality, unroll, tiling,…

• Libraries, makefiles

For a more detailed review &
discussion, see:

• https://www.tacc.utexas.edu/documents/136
01/162125/fortran_class.pdf

https://www.tacc.utexas.edu/documents/13601/162125/fortran_class.pdf

New features of Fortran 2003
• For a detailed description see: https://wg5-

fortran.org/N1601-N1650/N1648.pdf
• For a summary:

http://www.fortran.bcs.org/2007/jubilee/newfeat
ures.pdf

• Enhancements to derived types
– Parameterized derived types
– Improved control of accessibility
– Improved structure constructors
– Finalizers

https://wg5-fortran.org/N1601-N1650/N1648.pdf
http://www.fortran.bcs.org/2007/jubilee/newfeatures.pdf

Much of f2003’s new functionality is
related to Object-Oriented Programming

• From Wikipedia:
• “Object-oriented programming (OOP) is a programming

paradigm based on the concept of "objects", which can
contain data, in the form of fields (often known
as attributes or properties), and code, in the form of procedures
(often known as methods). A feature of objects is an object's
procedures that can access and often modify the data fields of
the object with which they are associated (objects have a notion
of "this" or "self"). In OOP, computer programs are designed by
making them out of objects that interact with one another.”

https://en.wikipedia.org/wiki/Object-oriented_programming
http://users.monash.edu/~cema/courses/CSE5910/lectureFiles/lecture1b.htm

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/This_(computer_programming)
https://en.wikipedia.org/wiki/Object-oriented_programming
http://users.monash.edu/~cema/courses/CSE5910/lectureFiles/lecture1b.htm

OOP in Fortran 2003-
• Derived types are enhanced to include

procedures (i.e. functions or subroutines)
– Encapsulation – combining together all the data &

procedures into one object (with extensive use of
‘private’ variables & procedures)

• Derived types can be extended to make new
derived types (inheritance, hierarchy)
– Class – a group of derived types that are related to

each other
– Polymorphism: variables and procedures can be any

type within the same class, dynamic at run time

Useful introductions are at:

• http://fortranwiki.org/fortran/show/Object-
oriented+programming

• http://annefou.github.io/Fortran/classes/class
es.html

• https://gist.github.com/n-s-
k/522f2669979ed6d0582b8e80cf6c95fd

http://fortranwiki.org/fortran/show/Object-oriented+programming
http://annefou.github.io/Fortran/classes/classes.html
https://gist.github.com/n-s-k/522f2669979ed6d0582b8e80cf6c95fd

New features of Fortran 2003 (2)
• Object-oriented programming support

– Type extension and inheritance
– Polymorphism
– Dynamic type allocation
– Type-bound procedures

• Data manipulation enhancements
– Allocatable components
– Deferred type parameters
– VOLATILE attribute
– Explicit type specification in array constructors & allocate

statements
– Extended initialization expressions
– Enhanced intrinsic procedures

New features of Fortran 2003 (3)
• Input/output enhancements

– Asynchronous transfer
– Stream access
– User specified transfer ops for derived types
– User specified control of rounding
– Named constants for preconnected units
– FLUSH
– Regularization of keywords
– Access to error messages

• Procedure pointers

New features of Fortran 2003 (4)
• Support for the exceptions of the IEEE Floating

Point Standard
• Interoperability with the C programming language
• Support for international characters (ISO 10646 4-

byte characters...)
• Enhanced integration with host operating system

– Access to command line arguments,environment
variables, processor error messages

• Plus numerous minor enhancements

Fortran 2008
• Minor update of Fortran 2003
• Brief summary (Wikipedia)

– Submodules – additional structuring facilities for modules; supersedes
ISO/IEC TR 19767:2005

– Coarray Fortran – a parallel execution model
– The DO CONCURRENT construct – for loop iterations with no

interdependencies
– The CONTIGUOUS attribute – to specify storage layout restrictions
– The BLOCK construct – can contain declarations of objects with construct

scope
– Recursive allocatable components – as an alternative to recursive pointers in

derived types

• For more details see
– http://fortranwiki.org/fortran/show/Fortran+2008
– https://wg5-fortran.org/N1801-N1850/N1828.pdf

http://fortranwiki.org/fortran/show/Fortran+2008
https://wg5-fortran.org/N1801-N1850/N1828.pdf

Fortran 2018

• A moderate update of Fortran 2008, with
– Further interoperability of Fortran with C
– Additional parallel features
– Conformance to the latest floating-point standard
– Various small features that address deficiencies

and discrepancies

• For more information:
– http://fortranwiki.org/fortran/show/Fortran+2018

http://fortranwiki.org/fortran/show/Fortran+2018

get_environment_variable()

get_environment_variable()

get_environment_variable (name,value,length,status,trim_name)

• name = name of environment variable (provided by user)
• value = the result (string)
• length (optional): the number of characters
• status (optional): 0=success, -1=value too short, 1=not exist, 2=not

supported, >2=another error
• trim_name (optional): .true.= ignore trailing blanks when matching

environment variable

Interoperability with C (f2003)

• New intrinsic module iso_c_binding
• Declare variables with (kind=c_float) etc.
• Need interface blocks for C procedures

labelled bind(C)
• Derived types can be passed, if they are

declared using type, bind(C)::
• Fortran procedures can be called from C if

they are declared using bind(C)

Simple
example:

calling C from
Fortran

The C routine

From Chapman, Fortran for Scientists and Engineers

From Chapman, Fortran for Scientists and Engineers

Floating-point exception handling
(f2003)

• Facilitates handling of floating-point exceptions in the
IEEE standard. The 5 types are of exception:
– Overflow, underflow, divide_by_zero, invalid, inexact

• Related to these are variable status:
– Denormal, NaN (signalling or quiet), Inf, -Inf, -0

• Intrinsic module ieee_exceptions:
– A set of procedures for setting & testing the flags & inquiring

about the features.

• Intrinsic module ieee_arithmetic:
– Provides IEEE arithmetic facilities.

• Intrinsic module ieee_features:
– Contains named constants corresponding to the features.

Useful functions
ieee_is_nan() & ieee_is_finite()

The oldest high-level programming language

Numerical methods review
• Approximations

– Concept of discretization
– Finite difference approximation
– Treatment of boundary conditions

• Equations
– diffusion equation
– Poisson’s equation
– advection-diffusion equation
– Stokes equation and Navier-Stokes equation
– streamfunction and streamfunction-vorticity formulation
– Pr, Ra, Ek
– initial value vs. boundary value problems

Numerical methods Review (2)
• Timestepping

– stability (timestep, advection scheme)
– explicit vs. implicit, semi-implicit
– upwind advection

• Solvers
– direct
– iterative (relaxation), multigrid method
– Jacobi vs. Gauss-Seidel vs. red-black

• Parallelisation
– Domain decomposition
– Message-passing and MPI

Discussion

• We have focussed on one application
(constant viscosity convection)

• Can apply same techniques to other
applications / physical problems

Example: Darcy Equation
(groundwater or partial melt flow)

�


∇ ⋅

u = 0

�


u = − k

η


∇ P− gρ

 ˆ y ()
u=volume/area/time=“Darcy velocity” (really a flux)

k=permeability (related to porosity and interconnectivity)
=viscosity of fluid, =density of fluid, P=pressure in fluidη ρ

Simplify and rearrange

�


∇ ⋅  u = −


∇ ⋅ k

η

∇ P

⎛

⎝
⎜

⎞

⎠
⎟ +

∇ ⋅ k

η
gρ ˆ y

⎛

⎝
⎜

⎞

⎠
⎟ = 0

�


∇ ⋅ k

η

∇ P

⎛

⎝
⎜

⎞

⎠
⎟ = g

∂
∂y

ρk
η

⎛

⎝
⎜

⎞

⎠
⎟

�


∇ ⋅ 1

R

∇ P

⎛
⎝
⎜

⎞
⎠
⎟ = g

∂
∂y

ρ
R

⎛
⎝
⎜

⎞
⎠
⎟

Take divergence:
velocity is eliminated

2nd order equation for
pressure

Combine k and into
hydraulic resistance R

A Poisson-like equation for pressure => easy to solve using
existing methods

η

Example 2: Full elastic wave
equation

�

ρ ∂
 v
∂t

= ∇⋅σ

�

σ ij = λδijεkk + 2µεij

F=ma for a continuum:

Most convenient to solve as coupled first-order PDEs

Hooke’s law for an isotropic
material

Where u=displacement of point
from equilibrium position

=shear modulus. are known as Lamé
constants

�

εij = 1
2

∂ui
∂x j

+
∂u j
∂xi

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

�

σ ij = Kεkkδij + 2µ(εij − 13εkkδij)Sometimes written
Using K=bulk modulus

µ λ,µ

Resulting equations to solve
using finite differences

�

∂
∂t
vx = 1

ρ
∂
∂x

σ xx + ∂
∂y

σ xy + ∂
∂z

σ xz
⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
vy = 1

ρ
∂
∂x

σ xy + ∂
∂y

σ yy + ∂
∂z

σ zy
⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
vz = 1

ρ
∂
∂x

σ zx + ∂
∂y

σ zy + ∂
∂z

σ zz
⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
σ xx = (λ + 2µ)∂vx

∂x
+ λ

∂vy
∂y

+ ∂vz
∂z

⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
σ yy = (λ + 2µ)

∂vy
∂y

+ λ ∂vx
∂x

+ ∂vz
∂z

⎛
⎝
⎜

⎞
⎠
⎟

�

∂
∂t
σ zz = (λ + 2µ)∂vz

∂z
+ λ ∂vx

∂x
+
∂vy
∂y

⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
σ xy = µ ∂vx

∂y
+
∂vy
∂x

⎛

⎝
⎜

⎞

⎠
⎟

�

∂
∂t
σ xz = µ ∂vx

∂z
+ ∂vz
∂x

⎛
⎝
⎜

⎞
⎠
⎟

�

∂
∂t
σ yz = µ

∂vy
∂z

+ ∂vz
∂y

⎛

⎝
⎜

⎞

⎠
⎟

Variables: 3 velocity components and 6 stress components
On staggered grid (same as viscous flow modelling)

Mathematical classification of 2nd-order
PDEs: Elliptical, hyperbolic, parabolic

�

∇2φ = fElliptical

Parabolic

Hyperbolic

�

∇2φ ∝ 1
V 2

∂2φ
∂t2�

∂φ
∂t

∝∇2φ

e.g., Poisson

e.g., diffusion

e.g., wave eqn.

We’ve done them all!

�

∇ ⋅
 v = 0

�

∂T
∂t

+  v ⋅ ∇T = ∇⋅ k∇T()

�


∇ ⋅ k

η

∇ P

⎛

⎝
⎜

⎞

⎠
⎟ = g

∂
∂y

ρk
η

⎛

⎝
⎜

⎞

⎠
⎟

�

 a i = G
m j
 x j −
 x i
2

j=1

n, j≠i

∑ .
( x j −

 x i)
 x j −
 x i

�

d2  x i
dt2

=  a i

�

∂2P
∂t2

= v2∇2P

�

1
Pr

∂ v
∂t

+  v ⋅

∇  v

⎛
⎝
⎜

⎞
⎠
⎟ = −

∇ P +


∇ ⋅ η ∂vi

∂x j
+
∂v j

∂xi

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ +

1
Ek


Ω ×  v + Ra.T ˆ g

Waves:

Fluids:

Percolation:

N-body:

note the many
similar terms!

