
Numerical Modelling in
Fortran: day 1
Paul Tackley, 2020

Today�s Goals

• Review class structure (see
http://jupiter.ethz.ch/~pjt/FORTRAN/Fortra
nClass.html & https://moodle-
app2.let.ethz.ch/course/view.php?id=1329
3)

• Review background/history of Fortran

• Example programs to introduce the basics

• Edit, compile and test simple programs

http://jupiter.ethz.ch/~pjt/FORTRAN/FortranClass.html
https://moodle-app2.let.ethz.ch/course/view.php?id=13293

Project
(optional, 1 KP)

1. Chosen topic, agreed upon with me
(suggestions given, also ask the advisor of
your MSc or PhD project).

– Due end of Semesterprüfung (19 Feb 2021)
– Start planning soon!

Project: general guidelines

• Choose something either
– related to your research project and/or
– that you are interested in

• Effort: 1 KP => 30 hours. About 4 days�
work.

• I can supply information about needed
equations and numerical methods that we
have not covered

Some ideas for a project

• Involving solving partial differential equations on a

grid (like the convection program)

– Wave propagation

– Porous flow (groundwater or partial melt)

– Variable-viscosity Stokes flow

– Shallow-water equations

– 3-D version of convection code

• Involving other techniques

– Spectral analysis and/or filtering

– Principle component analysis (multivariate data)

– Inversion of data for model parameters

– N-body gravitational interaction (orbits, formation of solar

system, ...)

– Interpolation of irregularly-sampled data onto a regular grid

History of Fortran
FORmulaTRANslation

(see http://en.wikipedia.org/wiki/Fortran)
• Invented by John Backus at IBM in 1953

– �Much of my work has come from being lazy. I didn't like
writing programs, and so, when I was working on the IBM
701, writing programs for computing missile trajectories, I
started work on a programming system to make it easier to
write programs.�

• First compiler 1957
– First widely-used high-level language

• Standardised (by ANSI) in 1966: FORTRAN 66

• New ANSI standard in 1978: FORTRAN 77.
– Became out of date: many features lacking compared to

Pascal, C, Ada etc.

• New standard in 1992: FORTRAN 90.

History (2)
• FORTRAN 90: A big leap forwards!

– free source format, modern control structures,
precision specification, whole array processing
(like MATLAB), dynamic arrays, user defined
types, modules. But backward-compatible with
F77

• FORTRAN 95 (1996): A few small fixes &
improvements.

• FORTRAN 2003: Major additions mainly
related to object-oriented programming

• FORTRAN 2008: Minor improvements
• FORTRAN 2018: Minor upgrades

Summary of Fortran development

From degenerateconic.comFrom nag-j.co.jp

Recommendation

• Use Fortran95 or newer not 77 for new codes

– f2018 is not yet fully implemented by all compilers

• f95 even has some advantages to C++

– easier to understand, learn and write (typically)

– easier to debug (e.g., no worry about pointers)

– codes run faster (usually)

– built-in complex numbers, array operations,

multidimensional arrays, etc.

– built-in parallel computing constructs & versions

– doesn�t have such advanced object oriented

programming but this is addressed with

f2003&2008

Example program 1

Analysis
• program....end program delineates the code
• Specification of variables comes first

– implicit none means that all variables must be
explicitly declared. Optional, but helps to avoid bugs
(problems)

– real is one of 5 variable types (also integer, logical,
character, complex)

• Execution part comes next
– print* and read* are the simplest I/O operations to

stdout and stdin (often the screen and keyboard)

Notes

• Case doesn�t matter: e.g., PROGRAM,
program, PrOgRaM all mean the same,
deg_c and Deg_C refer to the same
variable

• Doesn�t matter what column statements
start (indent for legibility)

• Extra lines, and spaces within lines, can
be added to improve legibility

f77 version

• Not much difference because simple
• statements have to begin in >=7th column
• No �::� in variable declarations

EXERCISE 1
• Write, compile and run a simple program

that writes a message to the screen (e.g.,
�Hello World�)
– edit a file ending in �.f90�, using a text editor

like emacs, vi, etc.
– on linux, macosx or cygwin, compile using
�gfortran program.f90� or �ifort program.f90�.
This will make an executable �a.out� (a.exe
on windows systems)

• To specify a different name use -o, e.g.,
• �gfortran –o myname program.f90�

– Type �a.out� (or a.exe) to execute it
• If the computer doesn�t find it type �./a.out�

Beware of integer constants!

• If you write numbers without a “.” you
may get unexpected results:

• 1/3 = 0
• 1./3.=0.33333
• 1.0/3.0=0.33333

EXERCISE 2

• Write a program that asks the user to
input three real numbers, then
calculates the arithmetic mean,
harmonic mean and geometric mean
and prints them to the screen.

• Example results with numbers 1.2, 2.3
and 3.4: arithmetic=2.3,
harmonic=1.9203, geometric=2.1093

Example Program 2

Notes

• the �parameter� label indicates that these things

have a fixed value that cannot be altered later

• �!� indicates a comment: everything after it is

ignored

• The do...end do loop construct

• The if...else if...else...end if construct

• Comparison operators are <, >, ==, /=, >=, <=

– in f77 these are .lt. .gt. .eq. .ne. .ge. .le.

• Indentation helps see the structure

• So do editors that auto-colour (emacs in this case)

f77 version

• �c� in column 1 indicates a comment line
• �!� comments and do...end do are not strict f77 but

are supported by all modern compilers

Notes
• So far, 2 types of variable:

– Real: floating-point number
– Integer: whole number

• Soon we will come across 2 more types:
– Logical: either .true. or .false.
– Character: one or more characters

• And there is also
– Complex: has real and imaginary parts

Exercise 3
• Write and test a program that

– asks the user for a positive integer number
– checks whether it is positive and prints an

error message if not
– calculates the factorial of the number
– prints the result to the screen

Do while...loop

• N=0
• Do while (n<1)
• read*,n
• if (n<1) print*,�number not positive�
• End do

Homework (due next class)
• Finish the 3 exercises
• Study the section �Introduction and Basic

Fortran� at
http://pages.mtu.edu/%7eshene/COURSES
/cs201/NOTES/fortran.html

• Write a 4th program as specified on the
next page, and hand in all programs by
email. Deadline: day of next class

• Send f90 files to ETHfortran@gmail.com

Homework procedure

• Homeworks are due on the day of the
next lecture

• Feedback/corrections will be given
some time between the due date and
the lecture following that (so that you
can if necessary incorporate it into the
next exercise)

Exercise 4
• Write a program that calculates the mean and

standard deviation of an series of (real) numbers
that the user inputs
– Ask the the user to input how many numbers (this will

be an integer)
• check that the user has input a positive number and if not, either

repeat the input until they do, or stop

– Input each number in turn (these will be real, and could
be +ve or –ve) and add to the sum and (sum of
squared) immediately so you don�t have to store them

– After all numbers are input and summed, calculate the
mean and standard deviation from the sum,
sum_of_squared and number

Input file, test case

• Download MeanStdInput.dat
• Type “a.out < MeanStdInput.dat”

– (a.exe on windows computers)
• Answer should be:
• Mean & stddev: 4.03999996 1.92520082

Exercise 4: Mean and standard deviation

Policy on collaborating
• It is fine to consult with fellow students

about things that are unclear, about
solving problems when you get stuck, etc.

• Everyone must separately write their own
programs.

• No copying of programs from other
students, or two or more students
developing a single code and each
turning it in.

Appendix: Mathematical formulae

�

a arithmetic = 1
N

ai
i=1

N

∑

�

a geometric = a1 × a2 ×…× aN()
1
N

�

a harmonic = N
1
a1

+ 1
a2

+ ...+ 1
aN

⎛

⎝
⎜

⎞

⎠
⎟

�

N!=1× 2 × 3×…× N

�

σ = 1
N

ai
2

i=1

N∑ − 1
N

aii=1

N∑⎛
⎝
⎜

⎞
⎠
⎟
2

Arithmetic, geometric and harmonic means:

In Fortran, ’to the power of� is written **, e.g., a**b

Factorial:

Standard deviation:

In fortran, the square root function is sqrt()

Note: This is the
population standard
deviation; the sample
standard deviation has
a slightly different form

