Numerical Modelling in
FORTRAN oay o

Paul Tackley, 2020

Today’ s Goals

Focus on some features introduced since
Fortran 95, particularly related to derived types
(=>"objects”):

1. Parameterized derived types

2. Type extension & polymorphism

3. Type-bound procedures

4. Data hiding
Exercises to practice & learn these features.

Debugging with Intel fortran

« ifort allows some non-standard language usage
that can cause compilation errors on other
compilers (like gfortran).

* To be warned about these, use e.qg.
— ifort —stand 95 program.f90

— ifort —stand 18 program.f90
— Possible standards: f90, f95, f03, f08, {18

— Probably best to use the latest! (f18)

Parameterized derived types

* Types in which the kind and length can be
specified at run time (when they are dummy
arguments).

« Use the keywords ‘kind” and ‘len’ to indicate
these.

program parameterised_type

use iso fortran envy ! contains various useful things
implicit none ‘g\~

type:: matrix(k,n,m)
integer, kind4¥T k = kind(0.) ! Set default values
integer, len®™ :: n=3, m=3
real(kind=k) :: value(n,m)

end type matrix

type(matrix(real64,10,20)):: mat ! real64 is in iso fortran env
type(matrix(n=5,m=5)):: mat2 ! use default kind

call random number (mat2%value)
call matprint(mat2)

contains
subroutine matprint(mat_ in)

type(matrix(n=*,m=*)) :: mat in ! assumed size (*)
print*,mat in%k

print*,mat in%n 4
: ! 5
print*,mat_in%m 5
print#*,mat_in%value 0.159648478 0.837237418 0.775771737 0.103784740 0.835458457
end subroutine matprint 4.42287922E-02 0.755849242 0.609476864 0.151317716 0.964308679
0.827501655 0.117429316 0.662792087 0.884603441 0.543005526
, 0.449754834 0.181883693 0.141135156 0.672917724 0.683630705
end program parameterised_type 0.779614866 0.157992601 0.562648058 0.491638660 0.251410484

Analysis

« Setting default values is a good idea; then
passing actual values is optional

« Use of assumed size (*) in procedures: the
size will automatically be known

 Use of iso fortran env: contains useful
things such as the kind numbers for real32,
realo4, int32, int64, etc.

Type extension

* Creates a new derived type by
extending an existing one.

* The new type has all components of the
existing type (the parent) plus specified
additional ones.

program TypeExtensionl
implicit none

type person
Similar t() in day 5 character(len=20):: Name
integer :: BirthYear
integer :: nChildren
end type person

¥
EXtendS person Wlth type, extends(person) :: student

character(len=10):: Degree

2 additional things integer :: StartYear
end type student

type(person):: aperson
type(student):: astudent

aperson = person('John',1940,2)

Note new syntax astudent= student('Jill',1998,0, 'MSc',2019)
print*,astudent%Degree MSc
print*,astudent%$Name J1ll

Parent iS inherited print*,astudent¥person%Name Jill

end program TypeExtensionl

Analysis

» Use of type,extends(...)

« Components in the parent can be
accessed directly or via the parent, e.qg.
— astudent%Name or
— astudent%person®%Name

« Extended type can be further extended

Extended types can be
further extended

Different extension of
person

module persontypes
implicit none
type person
character(len=20) :: Name
integer :: BirthYear
integer :: nChildren
end type person

type, extends(person) :: student
character(len=10):: Degree
integer :: StartYear

end type student

type, extends(student) :: PhD student
character(len=50):: ResearchProject
end type PhD student

type, extends(person) :: professor
integer :: PhDYear
character(len=50):: Department
end type professor

end module persontypes

Polymorphic variables

A variable whose type can vary at run time

Must be a pointer, allocatable variable or
dummy argument

Declare using class instead of type

Can be of the declared type or any of its
extensions

Declared type = the type it was declared to be
Dynamic type = the type it presently is

program Polymorphicl
use persontypes
implicit none
type(person) :: pl=person('Adam',1980,1)
type(PhD student) :: p2=PhD student('Eve’',1995,1, 'PhD',2017, 'Mars"')
type(professor) :: p3=professor('Margaret’',1960,3,1990, 'Earth Sciences')

call Print Name(pl)
call Print Name(p2)
call Print Name(p3)

Name = Adah
Name Eve
Name Margaret

contains

subroutine Print Name(p_in)

= class(person),intent(in):: p in ¢ POIymorphiC dummy

print#*, 'Name = ',p in%Name argument Variable

end subroutine Print Name

end program Polymorphicl

Polymorphic variable: limitation

* The polymorphic variable can only
access components of the parent (the
declared type), not the extra
components in the extended types

» Solution: Use a select type construct

program SelectType
use persontypes
implicit none
type(person) :: pl=person('Adam',1980,1)
type(PhD student) :: p2=PhD student('Eve',1995,1, 'PhD',2017, 'Mars')
type(professor) :: p3=professor('Margaret',1960,3,1990, 'Earth Sciences')

call Print Info(pl) Adam was born in 1980
call Print Info(p2) Eve 1is a student working towards a PhD
call Print Info(p3) Margaret is a professor in Earth Sciences

contains

subroutine Print Info(p_in)
class(person),intent(in):: p in
print'(a,$)',trim(p_in%Name)
-p select type (p_in)
—p Cype is (professor)

print*,' is a professor in ',p in%Department
-p Class is (student)

print*,' is a student working towards a ',p_ in%Degree
=P class default

print*,' was born in ',p in%Birthyear

=P end select
end subroutine Print Info

end program SelectType

Useful intrinsic functions

 same type as(a,b): Logical .true. if a &
b have the same dynamic type.
« extends type of(a,b): Logical .true. If

the dynamic type of a is an extension of
the dynamic type of b.

Type-bound procedures

Procedures are “bound” with a derived data type.

|ldea is to create an “object” containing all data and
the procedures to set/perform operations
on/access/finalise that data.

Can only be used with variables of the data type
they are defined in.

Invoked using %, as with variables in the type.
Contained within the type definition.

Example:
point routines
from last time

Access using %

pro&ram test

coords

typ&(point):: pl,p2,p3

.2; plsy=0. ; pl%z=3.
; p2%y=1l.2; p2%z=1.

p3 = pl%pointplus (p2)

p3 = pl%pointminus(p2)

d = pl%absvec()

d = pl%pointseparation(p2)

end program test

module coords
implicit none

‘F)ERESEs, type point ! derived type

real:: x,y,2
contains

means type _, “roereee:

iS passed el’ld.type point
as 1st arg.

pointplus, pointminus
pointseparation, absvec

type(point) function pointplus(this,b) !t for +
class(point),intent(in):: this,b
pointplus%x = this%x + b%x
pointplusgy this%y + b%y
pointplus%z this%z + b%z
end function pointplus

11 1] type(point) function pointminus(this,b) ! for -
Use CIaSS === class(point),intent(in):: this,b
pointminus%x = this%x - b%x
pointminus%y = this%y - b3y
pointminus%z = this%z - b%z
end function pointminus

real function pointseparation(this,b) ! for .distance.
class(point),intent(in):: this,b
1 pointseparation = sqrt(&
(this%x-b%x)**2+(this%y-b%y)**2+(this%z-b%z)**2)

7 end function pointseparation
; print*,p3
i print*,p3 real function absvec(this) ! distance from origin
i print*,d class(point),intent(in):: this
L pEiILGEE d

absvec = sqrt(this%x**2+this%y**2+this%z**2)
end function absvec

end module coords

Analysis

“pass” means that the typed variable is
passed as the 1st argument. (default)

“nopass” is also possible.

Access procedures using %, just like
variables in the type.

Procedure arguments must be declared
class(...) not type(...)

Improvement: rename procedures

type point
real:: x,vy,2
contains

procedure,pass ::
procedure,pass ::
procedure,pass ::
procedure,pass ::

end type point

using =>
plus =>
minus =>

distance =>
magnitude =>

Use more compact
names in the ‘type’

pointplus
pointminus
pointseparation
absvec

p3
p3

l

pl%plus (p2)
pl%minus(p2)
pl%magnitude()
pl%distance(p2)

Improvement: use
generic/overloaded
operators

Use +/- etc. like last week

program test
use coords
type(point
pl%x=1.2;

:: pl,p2,p3
13y=0. ; pl%z=3.1

p2%x=0. ;jJp2%y=1.2; p2%z=1.7

p3 = pl + p2 ; print*,p3
p3 = pl - p2 ; print*,p3
d = pl ; print*,d
d = pl.distance.p2 ; print*,d

end program test

module coords

implicit none

type point
real:: x,y,2

contains
procedure :: pointplus, pointminus, pointseparation
procedure,pass(this) :: absvec

> generic :: operator(+) => pointplus

generic :: operator(-) => pointminus
generic :: operator(.distance.) => pointseparation
generic :: assignment(=) => absvec

end type point

contains

type(point) function pointplus(this,b) ! for +
class(point),intent(in): this,b
pointplus%x = this%x + b%x
pointplus%y = this%y + b3y
pointplus%z = this%z + b%z
end function pointplus

type(point) function pointminus(this,b) ! for -
class(point),intent(in):: this,b
pointminus%x = this%x - b%x
pointminus%y = this%y - bgy
pointminus%z = this%z - b%z
end function pointminus

real function pointseparation(this,b) ! for .distance.
class(point),intent(in):: this,b
pointseparation = sqgrt(&
(this%x-b%x)**2+(this%y-b%y)**2+(this%z-b%z)**2)
end function pointseparation

subroutine absvec(a,this) ! for = (distance
real,intent(out):: a ! from origin)
class(point),intent(in):: this
a = sgrt(this%x**2+this%y**2+this%z**2)
end subroutine absvec

end module coords

Analysis

* First need to list the routines using procedure,
then use generic :: to overload +/-/= or create a
new operator

« Complexity with = (absvec) because the input
must be the 2nd argument but “pass” normally
passes type as the 1st argument

« Additional procedures could be added to handle
different data types and further overload +/-/= etc.

Dealing with
assignment (=)
overload

type point oy
T enis: x,y,2 Specifies argument to pass
contains
procedure :: poinygplus, pointminus, pointseparation
procedure,pass(this) :: absvec

generic :: operator(+) => pointplus

generic :: operator(-) => pointminus

generic :: operator(.distance.) => pointseparation
generic :: assignment(=) => absvec

end type point

2nd argument

|

subroutine absvec(a,this) ! for = (distance
real,intent(out):: a ! from origin)
class(point),intent(in):: this
a = sgrt(this%$x**2+this%y**2+this%z**2)
end subroutine absvec

Type extension with type-bound
procedures

« Extended types can add new bound
procedures or overwrite existing ones.

« Polymorphic variables can only access the
procedures in the parent (superclass) type.

« Therefore, best to include all relevant
procedures in the parent type even if they don't
do anything.

Data hiding

* By default, everything in a module is visible to a
useing routine.

* But many things (e.g. pointplus, absvec) should
not be directly accessed from outside the
module. They should be hidden.

« Use attributes public, private & protected to
accomplish this.

Public, private, protected

Public: fully accessible to a useing routine.
Private: hidden from a useing routine.

Protected: read-only by a useing routine (cannot
be modified).

These can be specified for

— Each variable or procedure

— Lists of variables & procedures
— All variables & procedures

Public, private, protected

module coords
implicit none

—) DPrivate
—)p public :: point

type point

real :: X,y,2
contains J

procedure,private :: pointplus, pointminus, pointseparation
procedure,private,pass(this) :: absvec
generic,public operator(+) => pointplus
generic,public operator(-) => pointminus
generic,public operator(.distance.) => pointseparation
generic,public assignment (=) => absvec

end type point

contains

Typical usage

» Start module with “private” to make
everything private by default.

* Then list things that should be public.

* To be completely clear, include
private/public/protected in all
declarations.

Exercise 1

Improve type point in the provided coords module in the following ways and write a
suitable main program to test everything:

(i) Enhance assignment(=) so that it can return either 32- or 64-bit real numbers.
That is, the statement
d=p1
should work with d being either 32-bit or 64-bit.
In order to do this, 2 versions of subroutine absvec() are needed: one of

(kind=real32) and one of (kind=real64). List them both in the contains area of type
point.

(Note that d=p1.distance.p2 will already work with 32-bit or 64-bit d because the type
of the function arguments does not change.)

Exercise 1 continued

(i) Add two more operators:
.dot. Calculates the dot product of two vectors held in type point
(result: real. Both precisions will work without effort)
.cross. Calculates the cross product of two vectors held in type point
(result: type point)

(iif) Add "*” and “/” operators to allow points to be multiplied or divided by real32 or
real64 scalars. Make sure that ™*” works in either order, i.e.
p2=p1*b and p2=b*p1 should both work (b is real32 or 64, p1&p2 are point)
For divide, only p1/b needs to be implemented.

(iv) Declare a new type that extends type(point) by holding the temperature value at
each point. Add new type bound procedures Tplus and Tminus to add and subtract
the temperatures of two variables of this type, e.g. dT=p1%Tplus(p2) .

Exercise 1 continued

Notes:

Add (i)-(iv) cumulatively to the same module and program and hand in only one
working program that incorporates all improvements.

An extended type as in (iv) is normally defined in a separate module. This is
definitely necessary when overriding procedure(s), although this is not done here.

Make sure all of these work:

r4d = pl

r8 = pl

r4 = pl.dot.p2

p3 = pl.cross.p2
real*4 r4 p3 = pl * r4
real*8 r8 p3 = pl * r8
type(point):: pl,p2,p3 p3 = r4 * pl
type(pointT):: pTl,pT2 p3 = r8 * pl

p3 = pl / r4d

p3 = pl / r8

r4 = pTl%Tplus(pT2)

r4 = pTl%$Tminus(pT2)

12-2. Create a derived data type called “polar” to hold a complex number expressed in polar
(z, 0) format as shown in Figure 12-8. The derived data type will contain two compo-
nents, a magnitude z and an angle 0, with the angle expressed in degrees. Write two
functions that convert an ordinary complex number into a polar number, and that convert
a polar number into an ordinary complex number.

Imaginary axis

Exercise 2 A
(from Chapman, P
Fortran for T Ve
Scientists and / :
Engineers) Real axis
FIGURE 12-8

Representing a complex number in polar coordinates.

12-3.

12-4.

12-5.

If two complex numbers are expressed in polar form, the two numbers may be multiplied
by multiplying their magnitudes and adding their angles. That is, if P, = 7,460, and
P, = 7,£0,, then P, - P, = 7,2,£60, + 6,. Write a function that multiplies two variables
of type “polar” together using this expression and returns a result in polar form. Note
that the resulting angle @ should be in the range —180° < 6 < 180°.

If two complex numbers are expressed in polar form, the two numbers may be divided
by dividing their magnitudes and subtracting their angles. That is, if P, = z,£60, and

P, z : : . :
P, = 7,£0,, then P—] = —1491 — 6,. Write a function that divides two variables of type
2 22

“polar” together using this expression and returns a result in polar form. Note that the
resulting angle @ should be in the range —180° < 8 < 180°.

Create a version of the polar data type with the functions defined in Exercises 12-2
through 12-4 as bound procedures. Write a test driver program to illustrate the operation
of the data type.

Hand in by 7 December

« Source files that compile and run (module + main
program to test it)
* Make sure it compiles with

— “gfortran —fcheck=all —finit-real=snan —ffpe-
trap=invalid,zero,overflow —O0"

