
Numerical Modelling in
Fortran: day 6
Paul Tackley, 2020

Today‘s Goals
1. Learn about binary input/output
2. Practice, practice! Combine advection-

diffusion and Poisson solvers to make a
convection simulation program

Projects: start thinking about

Agree topic with me
before final lecture

Reminder: Debugging your code:
Useful compiler options

• Examples with many checks switched on:
Øgfortran –fbacktrace –fcheck=all –finit-real=snan -ffpe-

trap=invalid,zero,overflow –O0 program.f90
Ø ifort –traceback –check uninit,bounds –init=snan,arrays –

fpe0 –O0 program.f90

ØNote: The program will run slowly with these options
switched on. Use only when developing/debugging
your program. Then compile using –O2 or –Ofast.

ØNote: instead of typing all this every time use e.g.
alias gf=“gfortran –fbacktrace … –O0 ”

Binary versus text (ascii) input/output
aka “unformatted” and “formatted”

• Binary I/O is
– faster (data goes directly between memory and file, no

conversion to/from text)
– more compact (e.g., takes ~12 characters to write a 4-

byte number with full precision)
– more accurate (full accuracy retained, nothing lost in

conversion)
• but...

– more difficult to read files into other applications
– different byte orders for different CPUs (most- or least-

significant byte first)

Opening an unformatted (binary) file

• Same as text file except use form=‘unformatted’, e.g.,
• open(1,file=‘myfile’,form=‘unformatted’)
• Optional keywords:

– access=‘direct’ or ‘sequential’or ‘stream’ ! see next slide
– recl=N ! record length:see next slide
– status=‘old’ or ’new’ or ‘replace’ or ’scratch’ or ‘unknown’
– position=‘asis’ or ’rewind’ or ’append’
– action=‘read’ or ‘write’ or ‘readwrite’
– err=label ! if error, goes to label
– iostat=ios ! ios=0 if successful

3 types of unformatted file
• access=‘sequential’ (default)

– data is written or read sequentially as ‘records’: no
jumping back and forth except with rewind() and
backspace()

• access=‘direct’
– data is written in fixed-length records with length

defined by recl=N
– any record can be directly read or rewritten in any order

• access=‘stream’ (recommended, f95-)
– As sequential but without records. Similar to C. Can

jump to any position using pos=N
• Units are normally bytes. Pos=1 is the beginning of the file.

– Can also be used with formatted (text) files.

write and read to binary file
• Basically the same as for formatted files

except you don’t specify a format, e.g.,
– write (1) a,b,i
– read (1,err=10,end=20,iostat=ios) a,b,i
– read (1,rec=recordnumber) stuff ! for direct

access files
– read (1,pos=2020) stuff ! for stream files

• err, end, and iostat are useful for handling
errors (otherwise the code will stop with
an error message)

Inquire(): useful for obtaining
information about a file

• inquire(file=‘Myfile.txt’,exist=i) ! Does it exist? (i=true/false)
• inquire(directory=‘results’,exist=i) ! Same for directory
• inquire(unit=3,pos=ipos) ! ipos=position of next read/write
• Many more options: iostat, opened, number, named,

access, sequential, direct, form, formatted, unformatted,
recl, nextrec, blank, position, action, read, write, readwrite,
delim, pad

Binary files & Matlab

• Write from Fortran:

• Read into Matlab:

Pay attention to precision! (32/64 bits)

Command-line arguments

e.g. to pass the name of the parameter file
to your program:

myprogram parB1.txt
myprogram parB10.txt
myprogram parB100.txt

Use the built-in (since f2003) routines
command_argument_count,
get_command_argument & get_command

Command-line arguments
• To read an optional parameter file name:

get_command_argument(num,value,length,status)
num = which one (integer)
value = requested argument (string) (optional)
length = length of argument (integer) (optional)
status = 0 success, -1 value too short, 1 not possible

Now back to iterative solvers
and advection-diffusion…

Goal for today’s exercise: Calculate
velocity field from temperature field

=>convection

Non-dimensional equations
for convection

�

∇⋅

v = 0

Only one parameter: the Rayleigh number

Ra = ρgαΔTD3

ηκ

 −∇P +∇2v = −Ra.Tŷ

Conservation of mass & energy (as in advection-diffusion exercise)

Conservation of momentum for a highly-viscous fluid
(Stokes equation)

(r=density, g=gravity, a=thermal expansivity,
DT=temperature drop, D=depth, h=viscosity,
k=thermal diffusivity)

∂T
∂t

= ∇2T − !v ⋅∇T

Solving the Stokes equation

For highly viscous flow (e.g., Earth’s mantle) with constant
viscosity (P=pressure, Ra=Rayleigh number):

 −∇P +∇2v = −Ra.Tŷ

∇2ψ =ω

∇4ψ = Ra ∂T
∂ x

Substituting the streamfunction for velocity, we get:

∇2ω = Ra ∂T
∂ x

writing as 2 Poisson equations:

the streamfunction-vorticity formulation

vx ,vy() = ∂ψ
∂y
,− ∂ψ

∂x
⎛
⎝⎜

⎞
⎠⎟

(y points up)

Example of convection (in 3-D)

Mathematical aside
 −∇P +∇2v = −Ra.Tŷ

This is the z-component of the curl of the momentum equation:

∇× F =
∂Fz
∂y

−
∂Fy
∂z

⎛
⎝⎜

⎞
⎠⎟
x̂ + ∂Fx

∂z
−
∂Fz
∂x

⎛
⎝⎜

⎞
⎠⎟ ŷ +

∂Fy
∂x

− ∂Fx
∂y

⎛
⎝⎜

⎞
⎠⎟
ẑ

Take

− ∂P
∂y

+∇2vy = −Ra.T− ∂P
∂x

+∇2vx = 0

Is a vector equation with x and y parts:

(1) (2)

∂(1)
∂y

− ∂(2)
∂x

⇒ ∇2 ∂vx
∂y

−
∂vy
∂x

⎛
⎝⎜

⎞
⎠⎟
= Ra ∂T

∂x

Use streamfunction: ∇2 ∂2ψ
∂y2

+ ∂2ψ
∂x2

⎛
⎝⎜

⎞
⎠⎟
= ∇2∇2ψ = Ra ∂T

∂x

Combine advection-diffusion and Poisson
solver routines

• Initialise
– T=random or cosine(x)
– S=W=0 (only to begin with; not during time stepping)
– grid spacing h=1/(ny-1) and diffusive timestep

• Timestep until desired time is reached
– calculate right-hand side=Ra*dT/dx
– Poisson solve to get W from rhs
– Poisson solve to get S from W
– calculate V from S
– calculate advective timestep and min(adv,diff)
– take advection and diffusion time step
– t=t+dt: have we finished? If not, loop again.

Use multigrid
solver

Use
existing
adv-diff
routines

Program definition
• Input parameters: (red=new things)

– nx,ny : number of grid points (y=vertical, grid spacing dx=dy=h)
– Ra: Rayleigh number (typical range 1e3-1e7)
– total_time: large enough to ‘settle down’ (steady-state not expected)
– err: maximum error in Poisson solves, i.e. (residue_rms/rhs_rms<err)
– a_adv, a_dif: the usual time-stepping parameters
– Tinit: initial T, “random” or “cosine” T(x)=0.5*(1+cos(3*pi*x/W)), W=width

• Boundary conditions
– T: as in advdif, T=1 at bottom, 0 at top, dT/dx=0 at sides
– S and W: 0 at all boundaries

• Example structure
– Module with Poisson solver routines
– Module with delsq, v_gradT, S_to_V routines
– Main program

Exercise
• Get everything together and run two test

cases using the given parameter files.
Read the parameter file name as a
command-line argument! (slides 11-12)

• Email f90 files and a plot of each case.
• Due in 2 weeks: 16.11.2020

Test case 1 Test case 2

Test 1 (width=4, cosine start)
should look very similar to:

3 cells, upwelling-downwelling-upwelling-downwelling

Test 2 (width=16, random start)
should look qualitatively similar to:

It won’t look exactly the same due to the random initial
temperature field, but there should be a similar spacing
of upwellings & downwellings. It is interesting to see how
many convection ‘cells’ you obtain. Here there are 11.

For bonus points (0.25 each):

• Save the T field at different times during
the run and make an animation

• Use a derived variable type to hold all
fields and grid information and simplify
subroutine arguments, as in Class 5
slides 9-10

