
Numerical Modelling in
Fortran: day 10

Paul Tackley, 2020

Today‘s Goals
1. Learn about parallel computing

and how Fortran programs can be
parallelized.

2. Implicit time stepping for diffusion.

Motivation:
To model the Earth,
need a huge number
of grid points / cells

/elements!
• e.g., to fill mantle volume:

– (8 km)3 cells -> 1.9 billion
cells

– (2 km)3 cells -> 123 billion
cells

Huge problems
=> huge computer

www.top500.org

Huge problems
=> huge computer

www.top500.org

Trends
- Up to millions of cores
- Many use GPUs

Progress: iPhone > fastest computer in
1976 (cost: $8 million)

(photo taken at NCAR museum)

In Switzerland

Each node: 12-core Intel CPU + GPU

Shared memory: several cpus
(or cores) share the same
memory. Parallelisation can
often be done by the compiler
(sometimes with help, e.g.,
OpenMP instructions in the
code)

Distributed memory:
each cpu has its own
memory. Parallelisation
usually requires
message-passing, e.g.
using MPI (message-
passing interface)

A brief history of supercomputers

1983-5
4 CPUs,
Shared
memory

1991: 512 CPUs, distributed memory

2010: 224,162 Cores, distributed + shared memory (12 cores per node)

The current #1:
Fugaku

(Wikipedia)

Another possibility: build you own
(“Beowulf” cluster)

Using standard PC cases: or using rack-mounted cases

Programming approaches

• OpenMP: Shared memory only (same node)
• MPI (Message-Passing-Interface): Any number of

cores, distributed memory
• Coarray Fortran. Since Fortran 2008, with 2018

extensions.
• CUDA Fortran. For GPUs.

MPI: Message-Passing Interface
• A standard library for communicating

between different tasks (cpus)
– Pass messages (e.g., arrays)
– Global operations (e.g., sum, maximum)
– Tasks could be on different cpus/cores of the

same node, or on different nodes
• Works with Fortran and C
• Works on everything from a laptop to the

largest supercomputers. 2 versions are:
– https://www.mpich.org
– http://www.open-mpi.org/

https://www.mpich.org/
http://www.open-mpi.org/

How to parallelise a code:
worked example

Use MPI first, then Fortran
coarrays

Example: Scalar Poisson eqn.

�

∇2u = f
Finite-difference approximation:

�

1
h 2 ui+1 jk + ui−1 jk + uij+1k + uij−1k + uijk+1 + uijk+1 − 6ui, j() = fij

Use iterative approach=>start with u=0, sweep through grid updating
u values according to:

�

˜ u ij
n +1 = ˜ u ij

n + αRij
h2

6

Where Rij is the residue (“error”):

�

R = ∇2 ˜ u − f

Code

Parallelisation: domain decomposition

CPU 0 CPU 1

CPU 3CPU 2

CPU 5CPU 4

CPU 6 CPU 7

Single CPU 8 CPUs

Each CPU will do the same operations but on different parts of
the domain

You need to build parallelization into
the code using MPI

• Any scalar code will run on multiple CPUs, but
will produce the same result on each CPU.

• Code must first setup local grid in relation to
global grid, then handle communication

• Only a few MPI calls needed:
– Init. (MPI_init,MPI_com_size,MPI_com_rank)
– Global combinations (MPI_allreduce)
– CPU-CPU communication (MPI_send,MPI_recv…)

Boundaries
• When updating points at

edge of subdomain, need
values on neighboring
subdomains

• Hold copies of these locally
using “ghost points”

• This minimizes #of
messages, because they can
be updated all at once
instead of individually

=ghost points

Scalar Grid

Red=boundary points (=0)
Yellow=iterated/solved

(1…n-1)

Parallel grids

Red=ext. boundaries
Green=int. boundaries
Yellow=iterated/solved

First things the code has to
do:

• Call MPI_init(ierr)
• Find #CPUs using MPI_com_size
• Find which CPU it is, using MPI_com_rank

(returns a number from 0…#CPUs-1)
• Calculate which part of the global grid it is

dealing with, and which other CPUs are
handling neighboring subdomains.

Example: “Hello world” program

Example: “Hello world” program

Process numbers start at 0

Moving forward

• Update values in subdomain using
‘ghost points’ as boundary condition,
i.e.,
– Timestep (explicit), or
– Iteration (implicit)

• Update ghost points by communicating
with other CPUs

• Works well for explicit or iterative
approaches

Boundary communication

Step 1: x-faces

Step 2: y-faces (including
corner values from step 1)

[Step 3: z-faces (including corner
values from steps 1 & 2)]

Doing the 3 directions sequentially avoids the need for
additional messages to do edges & corners (=>in 3D, 6
messages instead of 26)

Main changes

• Parallelisation hidden in
set_up_parallelisation and update_sides

• Many new variables to store
parallelisation information

• Loop limits depend on whether global
domain boundary or local subdomain

Simplest communication

Not optimal – uses blocking send/receive

Better: using non-blocking (isend/irecv)

Fortran Coarrays

• Fortran 2008; extended in Fortran 2018
• Each process (“image”) has its own

version of the coarray
• Each image can access the versions on

other images using []

Fortran Coarrays

Alternative
syntax

Always *.
Actual limit
is set at run
time

Multidimensional
codimensions

Sets local x(:) equal
to y(:) on image ni.

Image numbers start at 1

Example: “Hello world” program
Intrinsic functions

Use [:] when declaring

Use [*] when allocating

No [] means local version

Intrinsic global maximum

Coarrays greatly simplify the communication!

sync all waits for communication to finish before continuing.
Important otherwise the calculation might be using values that have not yet
arrived

Coarray commands & functions
(f2008)

• this_image(), num_images()
• sync all, sync images(list), sync memory
• stop all
• co_sum(), co_broadcast(), co_min(),

co_max(), co_reduce() (f2018)
• lcobound(), ucobound()
• lock & unlock: lock variable by an image
• Critical & end critical: block of code

executed by one image at a time

Coarrays: compiler status

• ifort: built in, except on MacOS
• gfortran: single image compilation is

built in (gfortran –fcoarray=single); for
parallel execution additional package(s)
must be installed
– OpenCoarrays provides a convenient

wrapper around gfortran & MPI (see Hello
World example)

Performance: theoretical
analysis

How much time is spent
communicating?

• Computation time ∝ volume (Nx^3)
• Communication time ∝ surf. area (Nx^2)
• =>Communication/Computation ∝ 1/Nx

• =>Have as many points/cpu as possible!

Is it better to split 1D, 2D or 3D?
• E.g., 256x256x256 points on 64 CPUs
• 1D split: 256x256x4 points/cpu

– Area=2x(256x256)=131,072
• 2D split: 256x32x32 points/cpu

– Area=4x(256x32)=32,768
• 3D split:64x64x64 points/cpu

– Area=6x(64x64)=24,576
• =>3D best but more messages needed

Model code performance

Computation : t=aN3

Communication : t=nL+bN2 /B
(L=Latency, B=bandwidth)

TOTAL : t= aN3 +nL+bN2 /B

(Time per step or iteration)

Example: Scalar Poisson equation

t= aN3 +nL+bN2/B

�

∇2u = f

Assume 15 operations/point/iteration & 1 Gflop performance
Þa=15/1e9=1.5e-8

If 3D decomposition, n=6, b=6*4 (single precision)

Gigabit ethernet: L=40e-6 s, B=100 MB/s
Quadrics: L=2e-6 s, B=875 MB/s

Up to 2e5 CPUs (Quadrics communication)

Efficiency

Now multigrid V cycles

4x4x4

8x8x8

16x16x16

32x32x32

Exact solution

co
rr

ec
tio

ns

R
es

id
ue

s (
=e

rr
or

)

Smooth

Smooth

Smooth

Application to StagYY
Cartesian or spherical

StagYY
iterations:

3D Cartesian

Simple-minded multigrid:
Very inefficient coarse levels!
Exact coarse solution can take
long time!

Change in scaling from
same-node to cross-node
communication

New treatment:
follow minima
• Keep #points/core >
minimum (tuned for
system)
• Different for on-
node and cross-node
communication

Multigrid – now (& before): yin-yang

1.8 billion

Summary
• For very large-scale problems, need to

parallelise code using MPI or CoArrays
• For finite-difference codes, the best method is

to assign different parts of the domain to
different CPUs (“domain decomposition”)

• The code looks similar to before, but with some
added routines to take care of communication

• Multigrid scales fine on 1000s CPUs if:
– Treat coarse grids on subsets of CPUs
– Large enough total problem size

For more information

• https://computing.llnl.gov/tutorials/parall
el_comp/

• http://en.wikipedia.org/wiki/Parallel_com
puting

• http://www.mcs.anl.gov/~itf/dbpp/
• http://en.wikipedia.org/wiki/Message_Pa

ssing_Interface

https://computing.llnl.gov/tutorials/parallel_comp/
http://en.wikipedia.org/wiki/Parallel_computing
http://www.mcs.anl.gov/~itf/dbpp/
http://en.wikipedia.org/wiki/Message_Passing_Interface

