Numerical Modelling in

FORTRAN day 11

Paul Tackley, 2020

Today’ s Goals

1. Fortran and numerical methods: Review
and discussion. New features of Fortran
2003, 2008 & 2018.

2. Projects: Define goals, identify information
needed from me. Due date: 19 February

2021

Feeback on homework

« Use atan2(o,a) instead of atan(o/a)
to get correct angle and avoid divide-
by-0. -
— Each tan value maps to 2 possible ij

angles in the range -180° to 180° ;.
— (-1,-1) has different angle to (1,1) -

» Use built-in complex type

— Access components using real() and
aimag() or

— (since f2008) c%re & c%Iim

ttttt

Useful libraries and other software

For standard operations such as matrix solution
of systems of linear equations, taking fast-
Fourier transforms, etc., it is convenient to
download suitable routines from some free

library, rather than writing your own from
scratch.

There are also more specialised free programs
available for some applications

A list is at: http://www.lahey.com/other.htm
Much is available at: http://www.netlib.org/

http://www.lahey.com/other.htm
http://www.netlib.org/

Free Software

http://www.lahey.com/other.htm

BLAS, linear algebra subroutines

DISLIN, plotting library compatible with LF95 for Windows or Linux

DOS utility to unpack the shell archives available at Netlib, e.g., the BLAS routines above.
EISPACK

EIf90 example code

f90ppr, a Fortran 90 preprocessor

f90tops, a Fortran 90 to PostScript converter

FOOSPLIT, a Fortran 90 version of fsplit

FLIB, a collection of Fortran routines with emphasis on non-numeric computations
FLOPPY, a Fortran 77 coding convention checker and code tidier

FLOW, produces reports based on the output of FLOPPY

FTNCHEK, detects unused, undeclared, and uninitialized variables

Fortran Library, a directory of user-submitted information of interest to scientific and technical
programmers

FXDR, subroutines to do unformatted I/O across platforms
Harwell-Boeing_collection(sparse matrices)

LAPACK

LINPACK

Molecular dynamics Fortran 77 benchmark

MINPACK

MUDPACK

Multiple Precision Arithmetic Package

NASA, Open source Fortran code from NASA

PSPLOT, a Fortran-callable, Postscript plotting library

ODEPACK

SLATEC

Sparse Matrix Fortran 90 Library for LF90 by E. A. Meese

SPECFUN

STARPAC

StopWatch, a Fortran 90 module for timing Fortran programs

TOMS

UNFSEQ.F90 - Program to convert unformatted sequential files from LF95 format to Lahey's LF90 and
EM/32 format.

http://www.lahey.com/other.htm

Some well-known libraries

lapack95: common linear algebra problems: equations, least
squares, eigenvalues etc.

— http://www.netlib.org/lapack95/

— also a parallel version scalapack http://www.netlib.org/scalapack/

MPI: for running programs on multiple CPUs. 2 common
versions are

— MPICH: http://www.mpich.org/

— Open MPI: http://www.open-mpi.org/

PETSc: Portable, Extensible Toolkit for Scientific Computation:
http://www.mcs.anl.gov/petsc/

http://www.netlib.org/lapack95/
http://www.netlib.org/scalapack/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Fortran Review

* History
— 60 years since first compiler
— versions 66, 77, 90, 95, 2003, 2008, 2018

* Variables
— types: real, integer, logical, character, complex
— Implicit types and implicit none
— Initialisation
— parameters
— derived types
— precision (32 vs 64 bit etc.)

Fortran Review (2)

* Arrays
— fixed vs. automatic vs. allocatable vs. assumed shape
— index ranges
— data, reshape
— built-in array algebra
* |nput/Ouput
— open, print, read, write, close
— formats
— jostat, rewind, status
— namelist
— binary vs. ascii, direct vs. sequential

Fortran Review (3)

* Flow control structures

— do loops (simple, counting, while, concurrent),
exit, cycle

— if...elseif...endif blocks
— select case...

— forall

— where

Fortran Review (4)

* Functions and subroutines (procedures)

— Intrinsic functions: mathematical, conversion, ...

— internal (contains), external (& interface blocks), in
modules

— array functions

— recursive functions and result statement
— named arguments

— optional arguments

— generic procedures

— overloading

— user-defined operators

— save

Fortran Review (5)
Modules

— use
— public and private variables and procedures
—_— =>

Pointers

— to variables, arrays, array sections, areas of memory, in
defined types

Optimization

— maximize use of cache and pipelining

— loops most important

— 90/10 rule (focus on bottlenecks)

— avoid branches, maximize data locality, unroll, tiling,...

Libraries, makefiles

For a more detailed review &
discussion, see:

e https://www.tacc.utexas.edu/documents/136
01/162125/fortran_class.pdf

https://www.tacc.utexas.edu/documents/13601/162125/fortran_class.pdf

New features of Fortran 2003

* For a detailed description see: https://wg5-
fortran.org/N1601-N1650/N1648.pdf

* For a summary:
http://www.fortran.bcs.org/2007/jubilee/newfeat
ures.pdf

* Enhancements to derived types
— Parameterized derived types
— Improved control of accessibility
— Improved structure constructors

— Finalizers

https://wg5-fortran.org/N1601-N1650/N1648.pdf
http://www.fortran.bcs.org/2007/jubilee/newfeatures.pdf

Much of f2003’s new functionality is
related to Object-Oriented Programming

* From Wikipedia:

* “Object-oriented programming (OOP) is a programming
paradigm based on the concept of "objects"”, which can
contain data, in the form of fields (often known
as attributes or properties), and code, in the form of procedures
(often known as methods). A feature of objects is an object's
procedures that can access and often modify the data fields of
the object with which they are associated (objects have a notion
of "this" or "self"). In OOP, computer programs are designed by
making them out of objects that interact with one another.”

https://en wikipedia.org/wiki/Object-oriented programming
http ://users . monash.edu/~cema/courses/CSE5910/lectureFiles/lecture l b .htm

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/This_(computer_programming)
https://en.wikipedia.org/wiki/Object-oriented_programming
http://users.monash.edu/~cema/courses/CSE5910/lectureFiles/lecture1b.htm

OOP in Fortran 2003-

* Derived types are enhanced to include
procedures (i.e. functions or subroutines)

— Encapsulation — combining together all the data &
procedures into one object (with extensive use of
‘private’ variables & procedures)

* Derived types can be extended to make new
derived types (inheritance, hierarchy)

— Class — a group of derived types that are related to
each other

— Polymorphism: variables and procedures can be any
type within the same class, dynamic at run time

Useful introductions are at:

* http://fortranwiki.org/fortran/show/Object-
oriented+programming

* http://annefou.github.io/Fortran/classes/class
es.html

* https://gist.github.com/n-s-
k/522f2669979ed6d0582b8e80cf6c95fd

http://fortranwiki.org/fortran/show/Object-oriented+programming
http://annefou.github.io/Fortran/classes/classes.html
https://gist.github.com/n-s-k/522f2669979ed6d0582b8e80cf6c95fd

New features of Fortran 2003 (2)

* Object-oriented programming support
— Type extension and inheritance
— Polymorphism
— Dynamic type allocation

— Type-bound procedures

* Data manipulation enhancements
— Allocatable components
— Deferred type parameters
— VOLATILE attribute

— Explicit type specification in array constructors & allocate
statements

— Extended initialization expressions

— Enhanced intrinsic procedures

New features of Fortran 2003 (3)

* Input/output enhancements
— Asynchronous transfer
— Stream access
— User specified transfer ops for derived types
— User specified control of rounding
— Named constants for preconnected units
— FLUSH
— Regularization of keywords

— Access to error MESSages

* Procedure pointers

New features of Fortran 2003 (4)

Support for the exceptions of the IEEE Floating
Point Standard

Interoperability with the C programming language

Support for international characters (ISO 10646 4-
byte characters...)

Enhanced integration with host operating system

— Access to command line arguments,environment
variables, processor error messages

Plus numerous minor enhancements

Fortran 2008

 Minor update of Fortran 2003
e Brief summary (Wikipedia)

Submodules — additional structuring facilities for modules; supersedes
ISO/IEC TR 19767:2005

Coarray Fortran — a parallel execution model

The DO CONCURRENT construct — for loop iterations with no
interdependencies

The CONTIGUOUS attribute — to specify storage layout restrictions

The BLOCK construct — can contain declarations of objects with construct
scope

Recursive allocatable components — as an alternative to recursive pointers in
derived types

* For more details see

— http://fortranwiki.org/fortran/show/Fortran+2008
— https://wg5-fortran.org/N1801-N1850/N1828.pdf

http://fortranwiki.org/fortran/show/Fortran+2008
https://wg5-fortran.org/N1801-N1850/N1828.pdf

Fortran 2018

* A moderate update of Fortran 2008, with
— Further interoperability of Fortran with C
— Additional parallel features
— Conformance to the latest floating-point standard

— Various small features that address deficiencies
and discrepancies

* For more information:
— http://fortranwiki.org/fortran/show/Fortran+2018

http://fortranwiki.org/fortran/show/Fortran+2018

get _environment_variable()

program testenv
implicit none
character(len=255) :: answer

call get environment variable("HOME", answer)
print*, "HOME=",trim(answer)

call get environment variable("SHELL",answer)
print*, "SHELL=",trim(answer)

call get environment variable("TERM",answer)
print*, "TERM=",trim(answer)

end program testenv

HOME=/Users/pjt
SHELL=/bin/bash
TERM=xterm-256color

get _environment_variable()

get_environment_variable (name,value length,status,trim_name)

* name = name of environment variable (provided by user)

* value = the result (string)

* length (optional): the number of characters

 status (optional): O=success, -1=value too short, 1=not exist, 2=not
supported, >2=another error

* trim_name (optional): .true.= ignore trailing blanks when matching
environment variable

Interoperability with C (f2003)

New intrinsic module iso c binding
Declare variables with (kind=c_float) etc.

Need interface blocks for C procedures
labelled bind(C)

Derived types can be passed, if they are
declared using type, bind(C)::

Fortran procedures can be called from C if
they are declared using bind(C)

program c_fortran

use, intrinsic:: 1iso0 C binding
implicit none

Simple
exa m p | e * integer (kind=c_ int) ic
. real (kind=c_ float) r(0:99),a,b,c
Ca I I I ng C fro m interface ! interface for the C function /

subroutine do something in c(a,b,c) bind(C)
FO rt ra n use, intrinsic :: iso c binding g
real (kind=c float) :: a,b,c

end subroutine do_something in c
end interface

print'(a,$)', 'Input two numbers:'
read*,a,b

call do something in c¢ (a,b,c)

print*, 'Hello from Fortran: a + b = ',c

end program c_fortran
#include <stdio.h>

void do_something_in_c (float %a, float xb, float xc)

{
*C = *a + %*b;
printf(" Hello from C: a + b = %f\n", *c);

The C routine

¥ Input two numbers:1 2
Hello from C: a + b

= 00000
Hello from Fortran: a

3.0
+ b = 3.00000000

Table B-1:
Selected data types declared in module iso_c_binding

Fortran type Fortran kind C type
INTEGER C_INT int
C_SHORT short int
C_LONG long inrt
C_LONG_LONG long long int
C_SIGNED_CHAR signed char
unsigned char
C_SIZE_T size_t
C_INT8_T int8_t
C_INTI6_T int16_t
C_INT32_T int32_t
C_INT64_T int64_t
REAL C_FLOAT float
C_DOUBLE double
C_LONG_DOUBLE long double
COMPLEX C_FLOAT_COMPLEX float _Complex
C_DOUBLE_COMPLEX double _Complex
C_LONG_DOUBLE_COMPLEX long double _Complex
LOGICAL C_BOOL _Bool
CHARACTER C_CHAR char

From Chapman, Fortran for Scientists and Engineers

Table B-2:

Constants and procedures declared in module iso_c_binding

Name

Description

Named constants

C_NULL_CHAR Null character (\0")
C_ALERT Alert (\a')
C_BACKSPACE Backspace ("\b")
C_FORMFEED Form feed (\f")
C_NEW_LINE New Line ("\n")

C_CARRIAGE_RETURN

Carriage return ('\r')

C_HORIZONTAL_TAB

Horizontal tab ("\t")

C_VERTICAL_TAB

Vertical tab ("\v')

Procedures
C_ASSOCIATED Function to test if a C pointer is associated.
C_F_POINTER Function to convert a C pointer to a Fortran pointer.

C_F_PROCPOINTER

Function to convert a C function pointer to a Fortran
procedure pointer.

C_FUNLOC Returns the address in memory of a C function.
C_LoC Returns the address in memory of a C data item.
C_SIZEQOF Returns the size of a C data item in bytes.

Types to interoperate with C pointers

C_PTR Derived type representing any C pointer type.
C_FUNPTR Derived type representing any C function pointer type.
C_NULL_PTR The value of a null C pointer.

C_NULL_FUNPTR

The value of a null C function pointer.

From Chapman, Fortran for Scientists and Engineers

Floating-point exception handling
(f2003)

Facilitates handling of floating-point exceptions in the
IEEE standard. The 5 types are of exception:

— Overflow, underflow, divide_by_zero, invalid, inexact
Related to these are variable status:
— Denormal, NaN (signalling or quiet), Inf, -Inf, -0

Intrinsic module ieee_exceptions:

— A set of procedures for setting & testing the flags & inquiring
about the features.

Intrinsic module ieee arithmetic:

— Provides IEEE arithmetic facilities.

Intrinsic module ieee features:

— Contains named constants corresponding to the features.

Useful functions
ieee is nan() & ieee is finite()
program ieee

use, intrinsic:: ieee arithmetic ¢
implicit none
real a,zero,one

zero=0.

one =1.

a = zero/zero Ag/

if (ieee_is nan(a)) print*,'a is NaN'
a = one/zero pd

if (.not.ieee is finite(a)) print*,'a is infinite'

end program ieee

a 1s NaN
a 1s infinite

The oldest high-level programming language

Just like half of the world’s spoken tongues, most of the 2,300-plus computer

Code-raker Grady Booch, 's chief is working with the Computer Key
o e I are either or extinct. As powerhouses C/C++, History Musuem in Silicon Valley to record and, in some cases, maintain languages by writin 1954 Year Introduced
Visual Basnc, Cobol, Java and other modern source codes i our sy new so our ever-changing hardware can grok the code. Why bother? “They tell (AT BEEED
hundreds of older Ianguages are runmng out of life. us about the state of software practice, the minds of their inventors, and the technical, social, Protected: taught at universities; compllers
An ad hoc of lexicographers, if you will-aim to and economic forces that shaped history at the time,” Booch explains. “They’ll provide the T
save, or at least document the lingo of classic software. They’re combing the globe’s raw material for software archaeologists, historians, and developers to learn what worked, Endangered: usage dropping off
9 million developers in search of coders still fluent in these nearly forgotten lingua what was brilliant, and what was an utter failure.” Here’s a peek at the strongest branches Extinct: no known active users or up-to-date
frangas. Among the most endangered are Ada, APL, B (the predecessor of C), Lsp, of programming’s lamlly tree. For a nearly i check out the L List compilers
Oberon, Smalltalk, and Simula. at HTTP://www.i) i-freiburg.de/. _list.html. - Michael Mendeno Lineage continues
1954 1955 1956 1957 1958 1950 1960 1961 1962 1963 (1964 1965 1966 1967 1968 1969 1970 1971 1972 (1973 (1974 (1975 1976 1977 (1978 (1979 (1980 1981 [1982 (1983 1984 (1985 (1986 [1987 |1988 (1989 [1990 1991 (1992 [1993 1994 |1995 (1996 |1997 (1998 1999 [2000 |2001
 Fortran Fortran 90 ISO/IEC
Created for the IBM 7090/94
the mostwidey Flow-Magic Cobol Cobol 61 ANSI Cobol 74 ANSI Cobol 85 00 Cobol
used languages i
inscionce and TN T i :“’.Pr""* '“"vh"ﬂﬂs;;;i',gl?“ BAen lfshoctthats 'Scheme 64 " Scheme IEEE | Scheme RSRS
3 apert t tory programmin
st ke g Ty GeorgeRadin' atompt “ge:"h'e‘”"“",”" ough bt mnris. Haskell Haskell 1.1
etaprocessing [NSIEH ooy eore s ot graphics and simple syntax.
features of Fortran,
Cobol, and Algol 60. Object Logo Common Lisp
// Object System.
y v N | >
Possibly the first Invented by John McCarthy at MIT, m
e e T S0
gg."' lots of nested parantheses. ‘Algorithmic Language, designed as released to the public.
ll popular with Al researchers.

3 portable anguagefof scentifc
computations, Algol 68 compexity
bR nghﬂuny

thesis. Programming Language/Microcomputers

A simple object-
oriented language.

\

doomed, depending on whom you ask.

‘The first language to show off the 101
objectorientod fode. Beepad by
Concepts Grous, Xorox PAR i Koy,

Smalltalk-80

Rex 1.00 Rex 2.00

N\ /7 0\

Inallycalled Ol Stillone of e astestgrouing.
languages around, despite the standards fued

Sun and Microsoft. at like G+, Java allows for
it once, run anywhere” porabily across the Net

\ An object-oriented language.

and Ole-Johan Dahl Popular for Al programs. academic language.

The hoped-for Esperanto of Restructured Extended Executor Asipe angua '"'{';“""' \
e compuing vl Sosined Betine s, g, \ W
basnd committee as a universal Popular in Europe during the T T gy — -
language, Ilwasoneoltheﬂm Ts, Simula introduced the - e T A : | Eiffel 3 . 3 W mwmmwmnm
ore borabie Sl cated ek anamiad athor Progranmingen }ﬁg;’;g’g“,':",;,,',,:f:,f“,'ﬂhe, New AWK, patern e Anotjct {he liresotNet platform
International Algebraic Language. proceduralprograming, e oatmnt Called Cluster, its thon oaing tham by hand. scanning and pro- .

T T nguage processing. an object-oriented cessing language. |

ahl. Python :

created to teach rigid
engineering skills.

Survival of the Fittest
One of the most wit x deployec
Ilnguages today. Wu. lows lY"'d"

d

Reasons a language endures, with examples of some classic tongues

) N Cand s descendans.
Appeals to a wide audience C (bolstered by the popularity of Unix)

A popular language amon
Wabsie bulders, it nludes
features missing from Per

Possibly the most
commen language ToolCommand Language, icle”
today. Adds object- The duct tape of progt

ity
(a scﬂpllwanquage for patching
fog

orlented features to C.
i ether different languages).

C-, ascripting
language.

Python 1.6

Miosots version
of JavaScript.
Can't mn sham

anythin

[]
DLt

L

TolTkE 1 o

Gets a job done Cobol (designed for business-report writing)

Delivers new functionality Java (runs on any hardware platform)
Ateachin

Fills a niche Mathematica (speeds up complex computations)

\

| /
.
Vd

g\

Updates C#+ forthe
Net with a Java-like:
virtual machine, so

.

The US Department of Defense’s effort to craft d object
language for its work. o s Covelace arguably the world's irst

ers who li

ADA 95

code can run on any
kind of computer.

Found in il ofWeb bpages Originally dubbed LiveScript it
Tthas,

Modula 2 1SO

icensed the name
p .) Used primarily Bt Fasca Designed by computer programmar, and created by Jean lchbiah'steam of Honeywell. _ Y
Offers a modicum of elegance Icon (has friendly, line-oriented syntax) for non-numeric "mm%nm“mmlm
. programming o inpal
Has a powerful user base or backer C# (developed by Microsoft for .Net) of Algol 6t Pl m’;ﬂ;. Ohjf;ﬁ"’" e Object Pascal OBt Anomevmaﬂo;nyoglmngwmmm’
for simplicty. e L
Has a charismatic leader Perl (programmer-author Larry Wall)

Stingprocessing anguagefortext
and formula manlpulation, common

Programmer's easy sreet

The swiss Amy Knfo ofprogramiming (a k Pastica Extraction and
Report L s fo patchingfogetherdifferent languages.
Spawned quastHerary cukiure that wites Perl haik

in text processers. Inventc

with this descendant of
David Farber, Ralph Griswold, and

Snobol, there's no need to

‘The kitchen sink of command-line.

Lo g

Objective Caml , O Cami 2

J
APL 96

I T P e ;Shell aserptnganguago and command- - Standard ML 2 .
King fthe onedners, s efered IariEolots kyat o Cabes DU (i Beauty nd grace. Besigned by Raiph shll ntarpetr.Wirfoh by progammers [l [l e gased
w0 ash ':ro IrlammI:nlng Languaq P 32k Uniscommand e o s .5 Igu shell (a k a Bourne Again Shell),
'.‘"‘l..ﬂ.mcn. sior Snobol Snobold SHL
writing ms as short Icon Page-description language for printers and
Tormuias. D |gnu1 Kenneth Word-based Iangua e Meta raphics sistems; 75 percent of all commercial
Iverson at Harvard. first used to guide t Language o Taanialere) ‘produced on PostScript printers.
National Radio Astronomy
Observatory flescope at PostScript PostScript Level 2
Although mocked by “real” programmers for Ktk Arizohes Categorical Abstract Machine Language
its limited abilities, Basic has outlived many
more advanced languages, as wellas the APL
RadioShack TRS-80 computers that made Microsoft Basic
ita household word, Stands for Bigenner's The Rodney Dangarteld of programing
All-Purpose Symbolic Istruction Code. ES isual Basic Ianguages. Popuar for buiing Web
sites with Microsoft Visual Studio tools.
Sources: Paul Boutin; Brent Hailpern, associate director of computer science at IBM puting ;

Todd Proebsting, senior researcher at Microsoft; Gio Wiederhold, computer scientist, Stanford Unlversllv

Numerical methods review

* Approximations
— Concept of discretization
— Finite difference approximation
— Treatment of boundary conditions
* Equations
— diffusion equation
— Poisson’ s equation
— advection-diffusion equation
— Stokes equation and Navier-Stokes equation
— streamfunction and streamfunction-vorticity formulation
— Pr, Ra, Ek
— initial value vs. boundary value problems

Numerical methods Review (2)
* Timestepping

— stability (timestep, advection scheme)
— explicit vs. implicit, semi-implicit
— upwind advection

* Solvers
— direct
— iterative (relaxation), multigrid method
— Jacobi vs. Gauss-Seidel vs. red-black

e Parallelisation
— Domain decomposition

— Message-passing and MPI

Discussion

* We have focussed on one application
(constant viscosity convection)

e Can apply same techniques to other
applications / physical problems

Example: Darcy Equation
(groundwater or partial melt flow)

U = —%(VP— gp?)

u=volume/area/time="Darcy velocity” (really a flux)

-

V-u=0

k=permeability (related to porosity and interconnectivity)
1 =viscosity of fluidp =density of fluid, P=pressure in fluid

Simplify and rearrange

Take divergence: V-ﬁz—V(EWP]JrV(Egpﬂ:O
velocity is eliminated n n

2nd order equation for v(ﬁ vpjz gi[p_k]
pressure n o\ n

Combine kand gy into 7. lVP :gﬁ P
hydraulic resistance R R

A Poisson-like equation for pressure => easy to solve using
existing methods

Example 2: Full elastic wave
equation

Most convenient to solve as coupled first-order PDEs

v
F=ma for a continuum: P—:V'g

ot

Hooke’ s law for an |sotrop|c G 2,5 gkk + 2,[18
material o &u
E.= L+

Where ’ 8?6 o , u=displacement of point
from equilibrium position

U =shear modulus. A,u are known as Lamé
constants
Sometimes written o ngk5 + z‘u(gl] — _gkk)

Using K=bulk modulus

Resulting equations to solve
using finite differences

Variables: 3 velocity components and 6 stress components
On staggered grid (same as viscous flow modelling)

0 1[0))) Y

2y ==|Lo +Z0, ,+Z P, SRS W, Y Sd Sy | i

" p(ax"xﬁay"xﬁaz"“] o Tue T AT (8y 8z]
o 1(d) », (. v,
Salarraeae) 4 w*“%a;”b; 3
0 1{ 9 0 0 J dv,
&’tvzzp(é))cazx_i_a)/azy—i_&zGZZ] o O, = y}

Mathematical classification of 2nd-order
PDEs: Elliptical, hyperbolic, parabolic

Elliptical V2¢ =f e.g., Poisson
0 .
Parabolic %9 oc qub e.g., diffusion
ot
2
Hyperbolic V2¢oc 12 J 2¢ e.g., wave eqn.
V< ot

We’ ve done them all!

0°P

Waves: = VV2p
ot
Fluids:
- . . . 8v
1 &+\7.V\7 =-VP+V-|n »; +LQ><V+RaTg
Pr\ ot 8xj Bx Ek
£+§-VT:V-(I<VT) V-v=0
ot
o U [d | pk
ercolation: V. =VP :gg — note the many
d d similar terms!
.. n,j# . r ¥
N_body d)zCl- :Zil. El,l -G 2 m] (-x -x)

[1

X—X

FORTRAN

