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Today’s Goals

1. A few useful things
2. Learn derived variable types
3. Learn several other new things: save, 

forall, do concurrent, where, character 
manipulation, keyword arguments and 
optional arguments.

4. Practice, practice! 



Today‘s Practice
1. Learn about iterative solvers for 

boundary value problems, 
including the multigrid method

2. Practice, practice! This time 
programming an iterative solver 
for Poisson’s equation.

• Useful for e.g., gravitational 
potential, electromagnetism, 
convection (streamfunction-vorticity 
formulation)



Feedback on homeworks

• Random_number() can fill whole arrays 
with different random numbers, e.g.
allocate(a(50,50))
call random_number(a)

• Loops are not necessary!
do i=1,50; do j=1,50

call random_number(a(i,j))
end do; end do



Array manipulation in f90-
• Like MATLAB, you can operate on whole 

arrays with one statement, e.g.
T = T + dt*d2T  

is the same as:
do j=1,ny; do i=1,nx

T(i,j)=T(i,j)+dt*d2T(i,j)
end do; end do

To avoid the boundary points:
T(2:nx-1,2:ny-1) = T (2:nx-1,2:ny-1) + &

dt*d2T (2:nx-1,2:ny-1)



Array manipulation in f90-
• Built-in array functions: 
• sum(array): the sum of all elements of array 

(=> a scalar)
• product(array): the product of all elements of 

array (=>a scalar)
• matmul(matrix1,matrix2): matrix 

multiplication of the two matrices (=> a 
matrix)

• dot_product(vec1,vec2): the dot product of 
two vectors (=> a scalar)



Derived data types

• You can define new data types that 
consist of combinations of existing data 
types.

• They can also contain procedures (i.e. 
subroutines/functions) that operate on 
the new data type.



new type containing
several already-
defined types

array of new type

Access parts using %



A type to contain several different variables at each grid point



putting type definition
in a module allows it 
to be used in several
routines

internal subroutine 
inherits variables from 
containing routine



Types and namelist input

• You can put defined types in a namelist
– type(mytype):: a
– namelist /stuff/ a allowed

• but not individual parts of it
– namelist /stuff/ a%b not allowed

• If you want to input only some parts, 
declare normal variables to input them 
into, then copy to the derived type.



save
• Typically, local variables in functions or 

subroutines are deleted on exit.
• If you save them, they will be permanent, and 

keep their value for subsequent times the 
procedure is called.

• Examples
– real,save:: a,b  ! in variable declaration statement
– save ! saves all variables in procedure
– save x,y,z ! saves named variables

• The default behaviour depends on compiler! It can 
also be specified, e.g.,
– ifort -save (default save)  or ifort -auto (default delete)
– gfortran -fno-automatic (default save)



Do concurrent (f2008): alternative to 
do loops

• e.g., 
do concurrent (i=1:nx,j=1:ny) 

T(i,j)=sin(C*(i-1))
end do

• Order of indices must not matter => suitable for 
parallel computation

• Optional mask, e.g., 
do concurrent(i=1:nx,j=1:ny,C(i,j)==0.)

• Advantages (i) can replace nested loops with a 
single loop (ii) parallelisation



forall (f95): similar but now officially 
obsolescent

• forall() has basically the same syntax as do 
concurrent(), with the addition of a single-
line version, e.g., 

forall (i=1:nx,j=1:ny) T(i,j)=sin(C*(i-1))
but some limitations that make it more 

difficult to parallelise
=> use do concurrent for new programs.



Example solution: day 2

Try to keep 
things short 
and simple 
(less room 
for bugs)



where
• Operates on all elements of an array



• Program output:

Top numbers: any above 0.5 have been 
rounded to 1.0
Bottom numbers: negative ones rounded 
to 0.0, positive ones square rooted.

where



Character string manipulation
• // concatonates strings
• access substrings using string(3:5)
• len(string): gives length of string
• index(string,sub ) - location of a substring 

in another string
• char(n) converts integer into character
• ichar(ch) converts character into integer
• trim(string) returns string without trailing 

spaces
• write to a string using write()



Character string examples



• Program output:

Character string examples



Named (keyword) arguments 
and optional arguments

• Normally subroutine/function arguments are 
identified by the order in which they are listed

• Instead, they can be labelled, 
– e.g., call delsquared(field=a,h=gridspacing,...)

• Some arguments can also be optional 
– declare as such
– Use ‘present’ to determine if they are present 
– In this case, keywords may be helpful to clarify 

things.





Hint: arrays in subprograms
• Arrays that are declared using subroutine 

arguments have a limited size, e.g.

• Better to use allocatable arrays

Subroutine do_something (n,m)
Integer,intent(in):: n,m
Real:: local_array(n,m)   

Subroutine do_something (n,m)
Integer,intent(in):: n,m
Real,allocatable:: local_array(:,:)
allocate(local_array(n,m))   



Review last week: Advection-
diffusion for fixed flow field

vx ,vy( ) = ∂ψ
∂y
,− ∂ψ

∂x
⎛
⎝⎜

⎞
⎠⎟

(i) Calculate velocity at each 
point using centered 
derivatives

(ii) Take timesteps to integrate the advection-diffusion equation
for the specified length of time using UPWIND 
finite-differences for dT/dx and dT/dy

� 

∂T
∂t

= −vx
∂T
∂x

− vy
∂T
∂y

+ ∇2T



B=10

B=100

B=1

B=0.1

This is what it 
should look 

like



The next step: Calculate velocity field from 
temperature field (=>convection)

e.g., for highly viscous flow (e.g., Earth’s mantle) with 
constant viscosity  (P=pressure, Ra=Rayleigh number):

  

� 

−∇P + ∇2 v = −Ra.Tˆ y 

� 

∇2ψ = −ω
� 

∇4ψ = −Ra∂T
∂x

Substituting the streamfunction for velocity, we get:

� 

∇2ω = Ra∂T
∂x

writing as 2 Poisson equations:

the streamfunction-vorticity formulation



we need a Poisson solver
• An example of a boundary value problem

(uniquely determined by interior equations 
and values at boundaries), as compared to

• initial value problems (depend on initial 
conditions as well as boundary conditions, 
like the diffusion equation)

Siméon Denis Poisson (1781-1840)



Initial value vs boundary value problems
...often, the problem is both

• (a) initial 
value 
problem

• (b) Boundary 
value 
problem 



Example: 1D Poisson

� 

∇2u = f

� 

∂2u
∂x2

= f

1
h2

ui−1 − 2ui + ui+1( ) = fi

Poisson: In 1-D:

Finite-difference form:

u0 − 2u1 + u2 = h
2 f1

u1 − 2u2 + u3 = h
2 f2

u2 − 2u3 + u4 = h
2 f3

u0 = 0

u4 = 0

Example with 5 grid points:

Problem: 
simultaneous 
solution needed

fixedSolve for



Ways to solve Poisson’s equation
• Problem: A large number of finite-difference equations 

must be solved simultaneously
• Method 1. Direct

– Put finite-difference equations into a matrix and call a subroutine to 
find the solution

– Pro: get the answer in one step
– Cons: for large problems 

• matrix very large (nx*ny)^2
• solution very slow: time~(nx*ny)^3

• Method 2. Iterative
– Start with initial guess and keep improving it until it is “good enough”
– Pros: for large problems

• Minimal memory needed. 
• Fast if use multigrid method: time~(nx*ny)

– Cons: Slow if don’t use multigrid method



Direct (matrix) method
• Example with 3 equations: 

• Can be written as: 

• Our 5 equations:

• There are standard libraries to solve such systems of equations, for 
example UMFPACK, as used by MATLAB  (u=M\f)



Ways to solve Poisson’s equation
• Problem: A large number of finite-difference equations 

must be solved simultaneously
• Method 1. Direct

– Put finite-difference equations into a matrix and call a subroutine to 
find the solution

– Pro: get the answer in one step
– Cons: for large problems 

• matrix very large (nx*ny)^2
• solution very slow: time~(nx*ny)^3

• Method 2. Iterative
– Start with initial guess and keep improving it until it is “good enough”
– Pros: for large problems

• Minimal memory needed. 
• Fast if use multigrid method: time~(nx*ny)

– Cons: Slow if don’t use multigrid method



Iterative (Relaxation) Methods

• An alternative to using a direct matrix solver 
for sets of coupled PDEs

• Start with ‘guess’, then iteratively improve it
• Approximate solution ‘relaxes’ to the 

correct numerical solution
• Stop iterating when the error (‘residue’) is 

small enough



Why?
• Storage:

– Matrix method has large storage requirements: 
(#points)^2. For large problems, e.g., 1e6 grid 
points, this is impossible!

– Iterative method just uses #points
• Time:

– Matrix method takes a long time for large 
#points: scaling as N^3 operations

– The iterative multigrid method has 
#operations scaling as N



Example: 1D Poisson

� 

∇2u = f

� 

∂2u
∂x2

= f

1
h2

ui−1 − 2ui + ui+1( ) = fi

 
Ri =

1
h2
ui−1 − 2 ui + ui+1( )− fi

� 

˜ u i

Poisson: In 1-D:

Finite-difference form:

Assume we have an approximate solution

The error or residue:

Now calculate correction to       to reduce residue

� 

˜ u i



Correcting 

� 

˜ u i
n +1 = ˜ u i

n + α 1
2 h2Ri

� 

˜ u i

From the residue equation note that:

� 

∂Ri
∂ ˜ u i

= −2
h2

So adding a correction               to        should zero R

� 

+ 1
2 h

2Ri

� 

˜ u i

i.e., 

Unfortunately it doesn’t zero R because the surrounding points
also change, but it does reduce R

a is a ‘relaxation parameter’ of around 1:
a > 1  => ‘overrelaxation’
a < 1  => ‘underrelaxation’



2 types of iterations: Jacobi & 
Gauss-Seidel

• Gauss-Seidel: update point at same time as residue 
calculation
– do (all points) 
– residue=...
– u(i,j) = u(i,j) + f(residue)
– end do

• Jacobi: calculate all residues first then update all points
– do (all points)
– residue(i,j)=...
– end do
– do (all points)
– u(i,j) = u(i,j) + f(residue(i,j))
– end do



Use Gauss-Seidel or Jacobi ? 
• Gauss-Seidel converges faster and does not 

require storage of all points’ residue
• alpha>1 (over-relaxation) can be used for 

GS, but <1 required for J to be stable.
• For our multigrid program, optimal alpha is 

about 1 for GS, 0.7 for Jacobi
• Conclusion: use Gauss-Seidel iterations



Demonstration of 1-D 
relaxation using Matlab: 

Things to note
• The residue becomes smooth as well as smaller 

(=>short-wavelength solution converges fastest)
• #iterations increases with #grid points. How 

small must R be for the solution to be ‘good 
enough’ (visually)?

• Effect of     : 
– smaller => slower convergence, smooth residue
– larger => faster convergence
– too large => unstable

α



• Higher N => slower convergence



Now 2D Poisson’s eqn.

� 

∇2u = f
Finite-difference approximation:

� 

1
h 2 ui, j+1 + ui, j−1 + ui+1, j + ui−1, j − 4ui, j( ) = fij

Use iterative approach=>start with u=0, sweep through grid updating
u values according to:

� 

˜ u ij
n +1 = ˜ u ij

n + αRij
h2

4

Where Rij is the residue (“error”):

� 

R = ∇2 ˜ u − f



Residue after repeated iterations
Start
rms residue=0.5

5 iterations
Rms residue=0.06

20 iterations
Rms residue=0.025

Residue gets smoother => iterations are like a diffusion process



Iterations smooth the residue
=>solve R on a coarser grid

=>faster convergence
Start
rms residue=0.5

5 iterations
Rms residue=0.06

20 iterations
Rms residue=0.025



2-grid Cycle
• Several iterations on the fine grid
• Approximate (“restrict”) R on coarse grid
• Find coarse-grid solution to R (=correction to 

u)
• Interpolate (“prolongate”) correction=>fine 

grid and add to u
• Repeat until low enough R is obtained



Coarsening: vertex-centered vs. 
cell-centered

We will use the 
grid on the left.
Number of points
has to be a 
power-of-two
plus 1, e.g.,
5,9,17,33,65,129,
257,513,1025,
2049, 4097, ...



Multigrid cycle
• Start as 2-grid cycle, but keep going to coarser and 

coarser grids, on each one calculating the correction 
to the residue on the previous level

• Exact solution on coarsest grid (~ few points in each 
direction)

• Go from coarsest to finest level, at each step 
interpolating the correction from the next coarsest 
level and taking a few iterations to smooth this 
correction

• All lengthscales are relaxed @ the same rate!



V-cycles and W-cycles



• Convergence rate independent of grid size
• =>#operations scales as #grid points



Programming multigrid V-cycles
• You are given a function that does the 

steps in the V-cycle
• The function is recursive, i.e., it calls itself. 

It calls itself to find the correction at the 
next coarser level.

• It calls various functions that you need to 
write: doing an iteration, calculating the 
residue, restrict or prolongate a field

• Add these functions and make it into a 
module

• Boundary conditions: zero







The use of result in functions

• Avoids use of the function name in the 
code. Instead, another variable name is 
used to set the result

• Required by some compilers for 
recursive functions

• Example see this code





Exercise
• Make a Poisson solver module by adding 

necessary functions to the provided V-cycle 
function

• Write a main program that tests this, taking 
multiple iterations until the residue is less than 
about 1e-5 of the right-hand side f
– NOTE: may need 64-bit precision to obtain this 

accuracy
• The program should have the option of calling 

the iteration function directly, or the V-cycle 
function, so that you can compare their 
performance



Functions to add
• function iteration_2DPoisson(u,f,h,alpha)

– does one iteration on u field as detailed earlier
– is a function that returns the rms. residue

• subroutine residue_2DPoisson(u,f,h,res)
– calculates the residue in array res

• subroutine restrict(fine,coarse)
– Copies every other point in fine into coarse

• subroutine prolongate(coarse,fine)
– Copies coarse into every other point in fine
– Does linear interpolation to fill the other points



Convergence criterion

� 

∇2u = f

Iterate until

� 

R = ∇2 ˜ u − f

Rrms
frms

< err

frms =
Aij( )2∑

nxny

Equation to solve:

Residue:

Where err is e.g. 10-5

Rms=root-mean-square: 



Test program details
• Using namelist input, read in  (see example par file)

– nx,ny
– Init (=‘random’ or ‘spike’)
– Multigrid. (=.true. or .false.; switches on multigrid)
– alpha

• Initialise:
– h=1/(ny-1)
– source field f to random, spike, etc.
– u(:,:)=0

• Repeatedly call either iteration_2DPoisson or 
Vcycle_2DPoisson until “converged” (according to rms. 
residue compared to rms. source field f)

• Write f and u to files for visualisation!



Provided par file relaxIN.txt

Your program should run with this par file!



Tests
• Record number of iterations (V-cycles 

when using multigrid) needed for different 
grid sizes for each scheme, from 17x17 to 
at least 257x257

• What is the effect of alpha on iterations? 
(for multigrid it is hard-wired)

• For multigrid, what is the maximum 
number of grid points that fit in your 
computer, and how long does it take to 
solve the equations?



Example solutions
• For a delta function (spike) in the center of 

the grid, i.e.,
– f(nx/2+1,ny/2+1)=1/dy**2, otherwise 0
– (1/dy**2 is so that the integral of this=1)

17x17 grid

129x65 grid



Hand in by email
• Your complete program (.f90 files)
• Results of your tests 

– #iterations or #V-cycles vs. grid size
– effect of alpha
– maximum #points

• Plots of your 2 solutions for a delta-
function source


