
Numerical Modelling in
Fortran: day 2
Paul Tackley, 2020

Goals for today
• Review main points in online materials you

read for homework
– http://www.cs.mtu.edu/%7eshene/COURSES/cs201/NOTES/intro.html

• More details about loops
• Finite difference approximation
• Introduce and practice

– subroutines & functions
– arrays

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/intro.html

Miscellaneous things
• Continuing lines:

– f95 use �&� at the end of the line
– f77: put any character in column 6 on next line

• Formats of constants:
– Use �.� to distinguish real from integer (avoid 2/3=0 !)
– 1.234x10-13 is written as 1.234e-13

• logical variables have 2 values: .true. or .false.
• Variable naming rules:

– start with letter
– mix numbers, letters and _
– no spaces

Character/string definitions

• character :: a (single character)
• character(len=10) :: a (string of length 10)
• character :: a*10, b*5
• character*15:: a,b (fortran77 style)
• character(len=*),parameter :: Name=�Paul�

– automatic length, otherwise strings will be
truncated or padded with spaces to fit declared
length

Initialising variables

• Always initialise variables! Don�t assume
they will automatically be set to 0!

• Either
– when defined, e.g., real:: a=5.
– in the program, e.g., a=5.0
– read from keyboard or file

Arithmetic operators
• e.g., what does a+b*c**3 mean?

– ((a+b)*c)**3? a+(b*c)**3? etc.
– No! correct is: a+(b*(c**3))
– priority is **, (* or /) then (+ or -)

• Also LOGICAL operators, in this priority:
– .not., .and., .or., (.eqv. or .neqv.)

• Be careful mixing variable types (e.g.
integer & real) in the same expression!

Some intrinsic mathematical
functions

• abs (absolute value, real or integer)
• sqrt (square root)
• sin, cos, tan, asin, acos, atan, atan2:

assume angles are in radians
• exp and log : log is natural log, use log10

for base 10.
• also cosh, sinh, tanh
• for full list see a manual

Some conversion functions
• Int(a): round to smaller # (4.7->4; -4.6->-4)
• Nint(a): nearest integer (4.7->5; -4.6->-5)
• Floor(a): (4.7->4; -4.6->-5)
• Ceiling(a): (4.7->5; -4.6->-4)
• Float(i): integer -> real
• Real(c): real part of complex
• mod(a,b) is remainder of a-int(a/b)*b
• max(a,b,c,….), min(a,b,c,…)

read(*,*) and write(*,*)
• read(*,*) and write(*,*) do the same thing as

read* and print* but are more flexible:
– The 1st * can be changed to a file number, to

read or write from/to a file
– The 2nd * can be used to specify the format

(e.g., number of decimal places)
• More about this later in the course!

do
loops:
more
types

functions and subroutines
• Useful for performing tasks that are

performed more than once in a program
and/or

• Modularising (splitting up into logical
chunks) the code to make it more
understandable

• A function returns a value, a subroutine
doesn�t (except through changing its
arguments)

example functions

same thing as subroutines (less elegant)

Internal vs. external functions
• Internal functions (f90-) are contained

within the program, and therefore the
compiler can link them easily

• External functions are defined outside the
main program, so the calling routine must
declare their type (e.g., integer, real).
– In f90 it is also possible to specify the type of

all the arguments, using an explicit interface
block, which has various advantages.

Example internal function

…and as an external function

A
r
r
a
y
s

Notes
• Indices start at 1 and go up to the declared

value, e.g., if declare a(5) then it has
components a(1),a(2)…a(5)

• To get a different lower index, e.g., a(-5:5)
• In subroutines & functions an argument can

be used to dimension arrays
• In allocate statements other variables can be

used
• Use of the (a,$) format in write avoids

carriage return at the end
• Note implicit do loop n(j),j=1,3

Homework
• At the �Fortran 90 Tutorial� at

http://www.cs.mtu.edu/%7eshene/COURS
ES/cs201/NOTES/fortran.html

• Read through the sections
– Selective Execution
– Repetitive Execution
– Functions (not modules - yet)

• Do the exercises on the next slides and
hand in by email (.f90 files)

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html

Exercise 1: statements & loops
• Write statements to

– Declare a string of length 15 characters
– Declare an integer parameter = 5
– Declare a 1-dimensional array with indices running from

-1 to +10
– Declare a 4-dimensional allocatable array
– Convert a real number to the nearest integer
– Calculate the remainder after a is divided by b

• Write loops to
– Add up all even numbers from 12 to124
– Test each element of array a(1:100) starting from 1; if the

element is positive print a message to the screen and
leave the loop

Exercise 2: Mean and standard deviation

• Convert your mean & stddev program from
last week into a function or subroutine
that operates on a 1-D array passed in as
an argument.

• Write a main program that
– asks for the number of values,
– allocates the array,
– reads the values into the array,
– calls the function you wrote and
– prints the result

• A function can�t return both mean & stddev,
so one of them will have to be an argument

Input file, test case

• Download MeanStdInput.dat
• Type “a.out < MeanStdInput.dat”
• Answer should be:
• Mean & stddev: 4.03999996 1.92520082

Exercise 2: Mean and standard deviation

Derivatives using finite-differences

• Graphical interpretation: df/dx(x) is
slope of (tangent to) graph of f(x) vs. x

• Calculus definition:

• Computer version (finite differences):

df
dx

≡ ′ f (x) ≡ lim
dx→ 0

f (x + dx) − f (x)
dx

�

′ f (x) = f (x2) − f (x1)
x2 − x1

• Grid points x0, x1, x2…xN
• Here xi=x0+i*h

• Function values y0, y1, y2…yN
• Stored in array y(i)

• (Fortran, by default, starts
arrays at i=1, but you can
change this to i=0)

Finite Difference grid in 1-D

dy
dx

⎛
⎝⎜

⎞
⎠⎟ i
≈ Δy
Δx

= y(i +1)− y(i)
h

Concept of Discretization
• True solution to equations is continuous in

space and time
• In computer, space and time must be

discretized into distinct units/steps/points
• Equations are satisfied for each

unit/step/point but not necessarily inbetween
• Numerical solution approaches true solution

as number of grid or time points becomes
larger

Analysis

• Subroutine arguments can have

different names from those in calling

routine: what matters is order

• FD approximation becomes more

accurate as grid spacing dx decreases

• You should allocate arrays in the calling

routine, not in the subroutine/function

• Expressions mixing real and integer

(like dx=10.0/(n-1)): integer is

automatically converted to real

Summary: first derivative

• Second derivative

�

dy
dx

≈ Δy
Δx

= yi − yi−1
xi − xi−1

= yi − yi−1
h

∂ 2y
∂x2

⎛
⎝⎜

⎞
⎠⎟ i

=
yi+1 − 2yi + yi−1

h2

Exercise 3: Second derivative

• Write a subroutine that calculates the second

derivative of an input 1D array, using the finite

difference approximation

• The inputs will be the array, number of points and grid

spacing.

• The resulting 1-D array can be an intent(out) argument.

• The 2nd derivative will be calculated at i=2…n-1

• Assume the derivative at the end points (i=1 and n) is 0.

• Test this routine by writing a main program that

calls the subroutine with two idealized functions for

which you know the correct answer, e.g., sin(x),

x**2. Write out the your code’s result, the correct

result, and the error

• Hand in (to ETHFortran@gmail.com) your .f90

code and the results of your two tests

mailto:ETHFortran@gmail.com

