
Numerical Modelling in
Fortran: day 7
Paul Tackley, 2020

Today’s Goals

1. Makefiles
2. Intrinsic functions
3. Pointers
4. Optimisation: Making your code run as fast

as possible

Projects: start thinking about

Agree topic with me
before final lecture

Makefiles
• If your programs are split over several files,

it may be easiest to write instructions for
compiling them in a makefile (this applies
mainly to unix-like systems)

• This also makes sure that the various
options you use remain the same

• The makefile defines dependencies, so it
only recompiles source files that have
changed since the last compilation

• See manual pages for full information

Example makefile

FFLAGS lists flags to
be used when
compiling fortran

: gives dependencies

USAGE: Just type in “make” or “make myproject”

Intrinsic functions
• There are many more intrinsic functions

than we have used!
• It is good to browse a list so that you

know what is available, for example at
• http://www.nsc.liu.se/~boein/f77to90/a5.ht

ml
• This doesn’t list cpu_time(), which is

useful for checking how long parts of the
code take

http://www.nsc.liu.se/~boein/f77to90/a5.html

Pointers
• Point to either

– (i) data stored by a variable declared as a target, or
– (ii) an area of allocated memory
– (iii) a function

• (i) is mainly useful for creating interesting data
structures (like linked lists); for us (ii)-(iii) will be
the most useful.

• “=>” is used to point a pointer at something
• See examples next slide
• Functions can also return pointers (“pointer

functions”)

Pointers to scalar variables

Association status
• 3 values:

– Undefined : status after meing declared
– Associated : pointing to something
– Unassociated: not pointing

• Avoid “undefined” status! Initialise
pointers to null():
– Real, pointer :: p1 => null()
– Null() can be used anywhere instead of

nullify(p1)

Pointing pointers to pointers
• p2=>p1 sets p2 to point to the same

thing as p1, but if p1 is re-pointed, p2 is
not:

Pointers to array or array section

Pointers in derived types
similar to allocatable array (no ’target’ needed, fortran

creates the target array)

Swapping arrays with pointers
Avoids array copying

Pointer to
function

Output:

Pointer to function: analysis

procedure (functionname),pointer:: p
• Sets up a pointer to a function with the

arguments (number and types) of
functionname, but can be used to point
to any function with the same
arguments

Linked list

Chapman, Fortran for Scientists & Engineers (2017)

Linked list

Chapman, Fortran for Scientists
& Engineers (2017)

Linked list

e.g.

Speed and optimization
• Running large simulations can take a long time =>

speed is important. Optimization=making it run
as fast as possible

• First consideration: use the most efficient
algorithm, e.g., multigrid

• Then: get code working using code that is easy-
to-read and debug

• Finally: Find out which part(s) of the code are
taking the most time, and rewrite those to
optimize speed

• Code written for maximum speed may not be the
most legible or compact!

Manual versus automatic
optimisation

• Many steps can be done automatically by
the compiler. Use appropriate compiler
options (see documentation), e.g.,
§ -O2, -O3 -Ofast: selects a bunch of optimisations
§ -unroll: unroll loops
§ etc. (see compiler documentation)

• Some need to be done manually. In general,
try to write code in such a way that the
compiler can optimise it!

Example of compiler
optimisation

• Solution AdvDif code, test case, 32-bit,
gfortran, iMac. (use “time a.out”)

Options Time (s)
Recommended debugging 27.05

none 15.27

-O1 3.371

-O2 3.368

-O3 2.754

-O3 –ffast-math –ftree-vectorize 2.688

-Ofast 2.652

Example of compiler
optimisation

• Solution convection code (this week),
test case, 32-bit, gfortran, macbook pro

Options Time (s)
None 31.57

-O1 24.741

-O2 23.578

-O3 23.625

-O2 –ffast-math 20.958

-O2 –ffast-math –ftree-vectorize 20.552

Manual optimization step 1:
Identify bottlenecks

• The 90/10 law: 90% of the time is spent in 10%
of the code. Find this 10% and work on that!

• e.g., Use a profiler. Or put cpu_time() statements
in to time different subroutines or loops

• Usually, most of the time is spent in loops. In our
multigrid code it is probably the loops that update
the field and calculate the residue. Optimization
of loops is the most important consideration.

To understand optimization it
is important to understand how

the CPU works

• Two aspects are particularly important:
– Cache
– Pipelining

Cache memory
• Fast, small memory close to a CPU that

stores copies of data in the main
memory

Substantially reduces latency of memory accesses.
Designing code such that data fits in cache can greatly
improve speed. Good design includes memory locality,
and not-too-large size of arrays.

Athlon64 multiple caches

Tips to improve cache usage

• Memory locality: data within each block
should be close together (small stride).
Appropriate data structures and ordering
of nested loops. (see later)

• Arrays shouldn’t be too large. e.g., for a
matrix*matrix multiply, split each matrix
into blocks and treat blocks separately

CPU architecture and pipelining
(images from http://en.wikipedia.org/wiki/Central_processing_unit)

Executing an instruction takes several
steps. In the simplest case these are
done sequentially, e.g.,

15 cycles to perform 3 instructions!

Pipelining
If each step can be done independently, then up to 1
instruction/cycle can be sustained => 5* faster

Basic 5-stage pipline. Like an assembly line.
Several cycles are needed to start and end the pipeline.

Like a car assembly line

1913: sped up assembly of
Model T Ford from 12 hours
to <3 hours!

Superscalar pipeline
More than 1 instruction per cycle (2 in the example below)

Pipelining in practice

• Done by the compiler, but must write
code to maximize success

• Branches (e.g., “if”) cause the pipeline
to flush and have to restart

• Avoid branching inside loops!
• Helps if data is in cache

Summary

• Goal is to maximize use of cache and
pipelining.

• Design code to reuse data in cache as
much as possible, and to stream data
efficiently through the CPU (pipeline /
vectorisation)

More information
• Wikipedia pages

– http://en.wikipedia.org/wiki/Loop_optimization
– http://en.wikipedia.org/wiki/Optimization_(computer_sci

ence)
– http://en.wikipedia.org/wiki/Memory_locality
– http://en.wikipedia.org/wiki/Software_pipelining

• http://www.ibiblio.org/pub/languages/fortran/ch1-
9.html

• http://www.azillionmonkeys.com/qed/optimize.htm
l

• ETH course “How to write fast numerical code”
(Frühjahrssemester)

http://en.wikipedia.org/wiki/Loop_optimization
http://en.wikipedia.org/wiki/Optimization_(computer_science
http://en.wikipedia.org/wiki/Memory_locality
http://en.wikipedia.org/wiki/Software_pipelining
http://www.ibiblio.org/pub/languages/fortran/ch1-9.html
http://www.azillionmonkeys.com/qed/optimize.html

Time taken for various
operations

• Slowest: sin, cos, **, etc.
• sqrt
• /
• *
• fastest: + -
• Simplify equations in loops to minimize number

of operators, particularly slow ones!

Loop optimization (1)
• Remove conditional statements from

loops!

SLOW FAST

Loop optimization (2)
• Data locality: fastest if processing nearby

(e.g., consecutive) locations in memory
• Fortran arrays: first index accesses

consecutive locations (opposite in C)
• Order loops such that first index loop is

innermost, 2nd index loop is next, etc.

SLOW FAST

Loop optimization (3)
• Unrolling: eliminate loop overhead by writing

loops as lots of separate operations
• Partial unrolling: reduces number of cycles,

reducing loop overhead

Original Unrolled by factor 4

This can be done automatically by the compiler

Loop optimization (4)
• fusing + unrolling: see below

Original loop

Partial unrolling

+fusion (reduces
number of writes
by factor 2)

Loop optimization (5): other
things

• simplify calculated indices
• use registers for temporary results
• Put invariant expressions (things that

don’t change each iteration) outside the
loop

• Loop blocking/tiling: splitting a big loop or
nested loops into smaller ones in order to
fit into cache.

Other Optimizations
• Use binary I/O not ascii
• Avoid splitting code into excessive procedures.

– Overhead associated with calling
functions/subroutines

– Reduces ability of compiler to do global
optimizations

• Use procedure inlining (done by compiler):
compiler inserts a copy of the
function/subroutine each time it is called

• Use simple data structures in major loops to aid
compiler optimizations (derived types may slow
things down)

