
Numerical Modelling in
Fortran: day 5
Paul Tackley, 2020

Today’s Goals

1. A few useful things
2. Learn derived variable types
3. Learn several other new things: save,

forall, do concurrent, where, character
manipulation, keyword arguments and
optional arguments.

4. Practice, practice!

Today‘s Practice
1. Learn about iterative solvers for

boundary value problems,
including the multigrid method

2. Practice, practice! This time
programming an iterative solver
for Poisson’s equation.

• Useful for e.g., gravitational
potential, electromagnetism,
convection (streamfunction-vorticity
formulation)

Feedback on homeworks

• Random_number() can fill whole arrays
with different random numbers, e.g.
allocate(a(50,50))
call random_number(a)

• Loops are not necessary!
do i=1,50; do j=1,50

call random_number(a(i,j))
end do; end do

Array manipulation in f90-
• Like MATLAB, you can operate on whole

arrays with one statement, e.g.
T = T + dt*d2T

is the same as:
do j=1,ny; do i=1,nx

T(i,j)=T(i,j)+dt*d2T(i,j)
end do; end do

To avoid the boundary points:
T(2:nx-1,2:ny-1) = T (2:nx-1,2:ny-1) + &

dt*d2T (2:nx-1,2:ny-1)

Array manipulation in f90-
• Built-in array functions:
• sum(array): the sum of all elements of array

(=> a scalar)
• product(array): the product of all elements of

array (=>a scalar)
• matmul(matrix1,matrix2): matrix

multiplication of the two matrices (=> a
matrix)

• dot_product(vec1,vec2): the dot product of
two vectors (=> a scalar)

Derived data types

• You can define new data types that
consist of combinations of existing data
types.

• They can also contain procedures (i.e.
subroutines/functions) that operate on
the new data type.

new type containing
several already-
defined types

array of new type

Access parts using %

A type to contain several different variables at each grid point

putting type definition
in a module allows it
to be used in several
routines

internal subroutine
inherits variables from
containing routine

Types and namelist input

• You can put defined types in a namelist
– type(mytype):: a
– namelist /stuff/ a allowed

• but not individual parts of it
– namelist /stuff/ a%b not allowed

• If you want to input only some parts,
declare normal variables to input them
into, then copy to the derived type.

save
• Typically, local variables in functions or

subroutines are deleted on exit.
• If you save them, they will be permanent, and

keep their value for subsequent times the
procedure is called.

• Examples
– real,save:: a,b ! in variable declaration statement
– save ! saves all variables in procedure
– save x,y,z ! saves named variables

• The default behaviour depends on compiler! It can
also be specified, e.g.,
– ifort -save (default save) or ifort -auto (default delete)
– gfortran -fno-automatic (default save)

Do concurrent (f2008): alternative to
do loops

• e.g.,
do concurrent (i=1:nx,j=1:ny)

T(i,j)=sin(C*(i-1))
end do

• Order of indices must not matter => suitable for
parallel computation

• Optional mask, e.g.,
do concurrent(i=1:nx,j=1:ny,C(i,j)==0.)

• Advantages (i) can replace nested loops with a
single loop (ii) parallelisation

forall (f95): similar but now officially
obsolescent

• forall() has basically the same syntax as do
concurrent(), with the addition of a single-
line version, e.g.,

forall (i=1:nx,j=1:ny) T(i,j)=sin(C*(i-1))
but some limitations that make it more

difficult to parallelise
=> use do concurrent for new programs.

Example solution: day 2

Try to keep
things short
and simple
(less room
for bugs)

where
• Operates on all elements of an array

• Program output:

Top numbers: any above 0.5 have been
rounded to 1.0
Bottom numbers: negative ones rounded
to 0.0, positive ones square rooted.

where

Character string manipulation
• // concatonates strings
• access substrings using string(3:5)
• len(string): gives length of string
• index(string,sub) - location of a substring

in another string
• char(n) converts integer into character
• ichar(ch) converts character into integer
• trim(string) returns string without trailing

spaces
• write to a string using write()

Character string examples

• Program output:

Character string examples

Named (keyword) arguments
and optional arguments

• Normally subroutine/function arguments are
identified by the order in which they are listed

• Instead, they can be labelled,
– e.g., call delsquared(field=a,h=gridspacing,...)

• Some arguments can also be optional
– declare as such
– Use ‘present’ to determine if they are present
– In this case, keywords may be helpful to clarify

things.

Hint: arrays in subprograms
• Arrays that are declared using subroutine

arguments have a limited size, e.g.

• Better to use allocatable arrays

Subroutine do_something (n,m)
Integer,intent(in):: n,m
Real:: local_array(n,m)

Subroutine do_something (n,m)
Integer,intent(in):: n,m
Real,allocatable:: local_array(:,:)
allocate(local_array(n,m))

Review last week: Advection-
diffusion for fixed flow field

vx ,vy() = ∂ψ
∂y
,− ∂ψ

∂x
⎛
⎝⎜

⎞
⎠⎟

(i) Calculate velocity at each
point using centered
derivatives

(ii) Take timesteps to integrate the advection-diffusion equation
for the specified length of time using UPWIND
finite-differences for dT/dx and dT/dy

�

∂T
∂t

= −vx
∂T
∂x

− vy
∂T
∂y

+ ∇2T

B=10

B=100

B=1

B=0.1

This is what it
should look

like

The next step: Calculate velocity field from
temperature field (=>convection)

e.g., for highly viscous flow (e.g., Earth’s mantle) with
constant viscosity (P=pressure, Ra=Rayleigh number):

�

−∇P + ∇2 v = −Ra.Tˆ y

�

∇2ψ = −ω
�

∇4ψ = −Ra∂T
∂x

Substituting the streamfunction for velocity, we get:

�

∇2ω = Ra∂T
∂x

writing as 2 Poisson equations:

the streamfunction-vorticity formulation

we need a Poisson solver
• An example of a boundary value problem

(uniquely determined by interior equations
and values at boundaries), as compared to

• initial value problems (depend on initial
conditions as well as boundary conditions,
like the diffusion equation)

Siméon Denis Poisson (1781-1840)

Initial value vs boundary value problems
...often, the problem is both

• (a) initial
value
problem

• (b) Boundary
value
problem

Example: 1D Poisson

�

∇2u = f

�

∂2u
∂x2

= f

1
h2

ui−1 − 2ui + ui+1() = fi

Poisson: In 1-D:

Finite-difference form:

u0 − 2u1 + u2 = h
2 f1

u1 − 2u2 + u3 = h
2 f2

u2 − 2u3 + u4 = h
2 f3

u0 = 0

u4 = 0

Example with 5 grid points:

Problem:
simultaneous
solution needed

fixedSolve for

Ways to solve Poisson’s equation
• Problem: A large number of finite-difference equations

must be solved simultaneously
• Method 1. Direct

– Put finite-difference equations into a matrix and call a subroutine to
find the solution

– Pro: get the answer in one step
– Cons: for large problems

• matrix very large (nx*ny)^2
• solution very slow: time~(nx*ny)^3

• Method 2. Iterative
– Start with initial guess and keep improving it until it is “good enough”
– Pros: for large problems

• Minimal memory needed.
• Fast if use multigrid method: time~(nx*ny)

– Cons: Slow if don’t use multigrid method

Direct (matrix) method
• Example with 3 equations:

• Can be written as:

• Our 5 equations:

• There are standard libraries to solve such systems of equations, for
example UMFPACK, as used by MATLAB (u=M\f)

Ways to solve Poisson’s equation
• Problem: A large number of finite-difference equations

must be solved simultaneously
• Method 1. Direct

– Put finite-difference equations into a matrix and call a subroutine to
find the solution

– Pro: get the answer in one step
– Cons: for large problems

• matrix very large (nx*ny)^2
• solution very slow: time~(nx*ny)^3

• Method 2. Iterative
– Start with initial guess and keep improving it until it is “good enough”
– Pros: for large problems

• Minimal memory needed.
• Fast if use multigrid method: time~(nx*ny)

– Cons: Slow if don’t use multigrid method

Iterative (Relaxation) Methods

• An alternative to using a direct matrix solver
for sets of coupled PDEs

• Start with ‘guess’, then iteratively improve it
• Approximate solution ‘relaxes’ to the

correct numerical solution
• Stop iterating when the error (‘residue’) is

small enough

Why?
• Storage:

– Matrix method has large storage requirements:
(#points)^2. For large problems, e.g., 1e6 grid
points, this is impossible!

– Iterative method just uses #points
• Time:

– Matrix method takes a long time for large
#points: scaling as N^3 operations

– The iterative multigrid method has
#operations scaling as N

Example: 1D Poisson

�

∇2u = f

�

∂2u
∂x2

= f

1
h2

ui−1 − 2ui + ui+1() = fi

Ri =

1
h2
ui−1 − 2 ui + ui+1()− fi

�

˜ u i

Poisson: In 1-D:

Finite-difference form:

Assume we have an approximate solution

The error or residue:

Now calculate correction to to reduce residue

�

˜ u i

Correcting

�

˜ u i
n +1 = ˜ u i

n + α 1
2 h2Ri

�

˜ u i

From the residue equation note that:

�

∂Ri
∂ ˜ u i

= −2
h2

So adding a correction to should zero R

�

+ 1
2 h

2Ri

�

˜ u i

i.e.,

Unfortunately it doesn’t zero R because the surrounding points
also change, but it does reduce R

a is a ‘relaxation parameter’ of around 1:
a > 1 => ‘overrelaxation’
a < 1 => ‘underrelaxation’

2 types of iterations: Jacobi &
Gauss-Seidel

• Gauss-Seidel: update point at same time as residue
calculation
– do (all points)
– residue=...
– u(i,j) = u(i,j) + f(residue)
– end do

• Jacobi: calculate all residues first then update all points
– do (all points)
– residue(i,j)=...
– end do
– do (all points)
– u(i,j) = u(i,j) + f(residue(i,j))
– end do

Use Gauss-Seidel or Jacobi ?
• Gauss-Seidel converges faster and does not

require storage of all points’ residue
• alpha>1 (over-relaxation) can be used for

GS, but <1 required for J to be stable.
• For our multigrid program, optimal alpha is

about 1 for GS, 0.7 for Jacobi
• Conclusion: use Gauss-Seidel iterations

Demonstration of 1-D
relaxation using Matlab:

Things to note
• The residue becomes smooth as well as smaller

(=>short-wavelength solution converges fastest)
• #iterations increases with #grid points. How

small must R be for the solution to be ‘good
enough’ (visually)?

• Effect of :
– smaller => slower convergence, smooth residue
– larger => faster convergence
– too large => unstable

α

• Higher N => slower convergence

Now 2D Poisson’s eqn.

�

∇2u = f
Finite-difference approximation:

�

1
h 2 ui, j+1 + ui, j−1 + ui+1, j + ui−1, j − 4ui, j() = fij

Use iterative approach=>start with u=0, sweep through grid updating
u values according to:

�

˜ u ij
n +1 = ˜ u ij

n + αRij
h2

4

Where Rij is the residue (“error”):

�

R = ∇2 ˜ u − f

Residue after repeated iterations
Start
rms residue=0.5

5 iterations
Rms residue=0.06

20 iterations
Rms residue=0.025

Residue gets smoother => iterations are like a diffusion process

Iterations smooth the residue
=>solve R on a coarser grid

=>faster convergence
Start
rms residue=0.5

5 iterations
Rms residue=0.06

20 iterations
Rms residue=0.025

2-grid Cycle
• Several iterations on the fine grid
• Approximate (“restrict”) R on coarse grid
• Find coarse-grid solution to R (=correction to

u)
• Interpolate (“prolongate”) correction=>fine

grid and add to u
• Repeat until low enough R is obtained

Coarsening: vertex-centered vs.
cell-centered

We will use the
grid on the left.
Number of points
has to be a
power-of-two
plus 1, e.g.,
5,9,17,33,65,129,
257,513,1025,
2049, 4097, ...

Multigrid cycle
• Start as 2-grid cycle, but keep going to coarser and

coarser grids, on each one calculating the correction
to the residue on the previous level

• Exact solution on coarsest grid (~ few points in each
direction)

• Go from coarsest to finest level, at each step
interpolating the correction from the next coarsest
level and taking a few iterations to smooth this
correction

• All lengthscales are relaxed @ the same rate!

V-cycles and W-cycles

• Convergence rate independent of grid size
• =>#operations scales as #grid points

Programming multigrid V-cycles
• You are given a function that does the

steps in the V-cycle
• The function is recursive, i.e., it calls itself.

It calls itself to find the correction at the
next coarser level.

• It calls various functions that you need to
write: doing an iteration, calculating the
residue, restrict or prolongate a field

• Add these functions and make it into a
module

• Boundary conditions: zero

The use of result in functions

• Avoids use of the function name in the
code. Instead, another variable name is
used to set the result

• Required by some compilers for
recursive functions

• Example see this code

Exercise
• Make a Poisson solver module by adding

necessary functions to the provided V-cycle
function

• Write a main program that tests this, taking
multiple iterations until the residue is less than
about 1e-5 of the right-hand side f
– NOTE: may need 64-bit precision to obtain this

accuracy
• The program should have the option of calling

the iteration function directly, or the V-cycle
function, so that you can compare their
performance

Functions to add
• function iteration_2DPoisson(u,f,h,alpha)

– does one iteration on u field as detailed earlier
– is a function that returns the rms. residue

• subroutine residue_2DPoisson(u,f,h,res)
– calculates the residue in array res

• subroutine restrict(fine,coarse)
– Copies every other point in fine into coarse

• subroutine prolongate(coarse,fine)
– Copies coarse into every other point in fine
– Does linear interpolation to fill the other points

Convergence criterion

�

∇2u = f

Iterate until

�

R = ∇2 ˜ u − f

Rrms
frms

< err

frms =
Aij()2∑

nxny

Equation to solve:

Residue:

Where err is e.g. 10-5

Rms=root-mean-square:

Test program details
• Using namelist input, read in (see example par file)

– nx,ny
– Init (=‘random’ or ‘spike’)
– Multigrid. (=.true. or .false.; switches on multigrid)
– alpha

• Initialise:
– h=1/(ny-1)
– source field f to random, spike, etc.
– u(:,:)=0

• Repeatedly call either iteration_2DPoisson or
Vcycle_2DPoisson until “converged” (according to rms.
residue compared to rms. source field f)

• Write f and u to files for visualisation!

Provided par file relaxIN.txt

Your program should run with this par file!

Tests
• Record number of iterations (V-cycles

when using multigrid) needed for different
grid sizes for each scheme, from 17x17 to
at least 257x257

• What is the effect of alpha on iterations?
(for multigrid it is hard-wired)

• For multigrid, what is the maximum
number of grid points that fit in your
computer, and how long does it take to
solve the equations?

Example solutions
• For a delta function (spike) in the center of

the grid, i.e.,
– f(nx/2+1,ny/2+1)=1/dy**2, otherwise 0
– (1/dy**2 is so that the integral of this=1)

17x17 grid

129x65 grid

Hand in by email
• Your complete program (.f90 files)
• Results of your tests

– #iterations or #V-cycles vs. grid size
– effect of alpha
– maximum #points

• Plots of your 2 solutions for a delta-
function source

