
Numerical Modelling in
Fortran: day 9
Paul Tackley, 2020

Today’s Goals
Focus on some features introduced since
Fortran 95, particularly related to derived types
(=>”objects”):

1. Parameterized derived types
2. Type extension & polymorphism
3. Type-bound procedures
4. Data hiding

Exercises to practice & learn these features.

Debugging with Intel fortran
• ifort allows some non-standard language usage

that can cause compilation errors on other
compilers (like gfortran).

• To be warned about these, use e.g.
– ifort –stand f95 program.f90
– ifort –stand f18 program.f90
– Possible standards: f90, f95, f03, f08, f18
– Probably best to use the latest! (f18)

Parameterized derived types
• Types in which the kind and length can be

specified at run time (when they are dummy
arguments).

• Use the keywords ‘kind’ and ‘len’ to indicate
these.

Analysis
• Setting default values is a good idea; then

passing actual values is optional
• Use of assumed size (*) in procedures: the

size will automatically be known
• Use of iso_fortran_env: contains useful

things such as the kind numbers for real32,
real64, int32, int64, etc.

Type extension
• Creates a new derived type by

extending an existing one.
• The new type has all components of the

existing type (the parent) plus specified
additional ones.

Similar to in day 5

Extends person with
2 additional things

Note new syntax

Parent is inherited

Analysis
• Use of type,extends(...)
• Components in the parent can be

accessed directly or via the parent, e.g.
– astudent%Name or
– astudent%person%Name

• Extended type can be further extended

Extended types can be
further extended

Different extension of
person

Polymorphic variables
• A variable whose type can vary at run time
• Must be a pointer, allocatable variable or

dummy argument
• Declare using class instead of type
• Can be of the declared type or any of its

extensions
• Declared type = the type it was declared to be
• Dynamic type = the type it presently is

Polymorphic dummy
argument variable

Polymorphic variable: limitation
• The polymorphic variable can only

access components of the parent (the
declared type), not the extra
components in the extended types

• Solution: Use a select type construct

Useful intrinsic functions
• same_type_as(a,b): Logical .true. if a &

b have the same dynamic type.
• extends_type_of(a,b): Logical .true. If

the dynamic type of a is an extension of
the dynamic type of b.

Type-bound procedures
• Procedures are “bound” with a derived data type.
• Idea is to create an “object” containing all data and

the procedures to set/perform operations
on/access/finalise that data.

• Can only be used with variables of the data type
they are defined in.

• Invoked using %, as with variables in the type.
• Contained within the type definition.

Example:
point routines
from last time

‘pass’
means type
is passed
as 1st arg.

Access using %
Use “class”

Analysis
• “pass” means that the typed variable is

passed as the 1st argument. (default)
• “nopass” is also possible.
• Access procedures using %, just like

variables in the type.
• Procedure arguments must be declared

class(...) not type(...)

Improvement: rename procedures

Use more compact
names in the ‘type’
using =>

Improvement: use
generic/overloaded

operators

Use +/- etc. like last week

Analysis
• First need to list the routines using procedure,

then use generic :: to overload +/-/= or create a
new operator

• Complexity with = (absvec) because the input
must be the 2nd argument but “pass” normally
passes type as the 1st argument

• Additional procedures could be added to handle
different data types and further overload +/-/= etc.

Dealing with
assignment (=)

overload

2nd argument

Specifies argument to pass

Type extension with type-bound
procedures

• Extended types can add new bound
procedures or overwrite existing ones.

• Polymorphic variables can only access the
procedures in the parent (superclass) type.

• Therefore, best to include all relevant
procedures in the parent type even if they don’t
do anything.

Data hiding
• By default, everything in a module is visible to a

useing routine.
• But many things (e.g. pointplus, absvec) should

not be directly accessed from outside the
module. They should be hidden.

• Use attributes public, private & protected to
accomplish this.

Public, private, protected
• Public: fully accessible to a useing routine.
• Private: hidden from a useing routine.
• Protected: read-only by a useing routine (cannot

be modified).
• These can be specified for

– Each variable or procedure
– Lists of variables & procedures
– All variables & procedures

Public, private, protected

Typical usage
• Start module with “private” to make

everything private by default.
• Then list things that should be public.
• To be completely clear, include

private/public/protected in all
declarations.

Exercise 1
Improve type point in the provided coords module in the following ways and write a
suitable main program to test everything:

(i) Enhance assignment(=) so that it can return either 32- or 64-bit real numbers.
That is, the statement

d=p1
should work with d being either 32-bit or 64-bit.
In order to do this, 2 versions of subroutine absvec() are needed: one of
(kind=real32) and one of (kind=real64). List them both in the contains area of type
point.
(Note that d=p1.distance.p2 will already work with 32-bit or 64-bit d because the type
of the function arguments does not change.)

Exercise 1 continued
(ii) Add two more operators:

.dot. Calculates the dot product of two vectors held in type point
(result: real. Both precisions will work without effort)

.cross. Calculates the cross product of two vectors held in type point
(result: type point)

(iii) Add ”*” and “/” operators to allow points to be multiplied or divided by real32 or
real64 scalars. Make sure that ”*” works in either order, i.e.

p2=p1*b and p2=b*p1 should both work (b is real32 or 64, p1&p2 are point)
For divide, only p1/b needs to be implemented.

(iv) Declare a new type that extends type(point) by holding the temperature value at
each point. Add new type bound procedures Tplus and Tminus to add and subtract
the temperatures of two variables of this type, e.g. dT=p1%Tplus(p2) .

Exercise 1 continued
Notes:
Add (i)-(iv) cumulatively to the same module and program and hand in only one
working program that incorporates all improvements.
An extended type as in (iv) is normally defined in a separate module. This is
definitely necessary when overriding procedure(s), although this is not done here.
Make sure all of these work:

Exercise 2
(from Chapman,

Fortran for
Scientists and

Engineers)

Hand in by 7 December
• Source files that compile and run (module + main

program to test it)
• Make sure it compiles with

– “gfortran –fcheck=all –finit-real=snan –ffpe-
trap=invalid,zero,overflow –O0”

