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Abstract Reconstructing convective flow in the Earth’s mantle is a crucial issue for a diversity of disci-
plines, from seismology to sedimentology. The common and fundamental limitation of these reconstruc-
tions based on geodynamic modeling is the unknown initial conditions. Because of the chaotic nature of
convection in the Earth’s mantle, errors in initial conditions grow exponentially with time and limit forecast-
ing and hindcasting abilities. In this work, we estimate for the first time the limit of predictability of Earth’s
mantle convection. Following the twin experiment method, we compute the Lyapunov time (i.e., e-folding
time) for state of the art 3-D spherical convection models, varying rheology, and Rayleigh number. Our
most Earth-like and optimistic solution gives a Lyapunov time of 136 6 13 Myr. Rough estimates of the
uncertainties in best guessed initial conditions are around 5%, leading to a limit of predictability for mantle
convection of 95 Myr. Our results suggest that error growth could produce unrealistic convective structures
over time scales shorter than that of Pangea dispersal.

1. Introduction

Reconstructing the history of convection in the Earth’s mantle is a fundamental issue for a diversity of disci-
plines. The evolving density structure within the planet controls, for instance, the evolution of sea level, ver-
tical motion of continents, or Earth’s moment of inertia. In the past 15 years, the primary strategy for
establishing the history of mantle flow has been to force convection and temperature redistribution by
imposing surface velocities derived from plate tectonic reconstructions [e.g., Bunge et al., 1998]. Time-
dependent surface kinematics drives the large-scale transport of thermal and chemical heterogeneities. This
approach was successful in predicting, to first order, seismic velocity variations [Bunge et al., 1998], deep
mantle chemical heterogeneities [McNamara and Zhong, 2005], and dynamic topography [Flament et al.,
2013]. Despite difficulties in reconstructing plate kinematics before 200 Ma [Seton et al., 2012], Zhang et al.
[2010] attempted to push mantle convection reconstructions back to 450 Ma.

The common and crucial limitation of these models is the unknown initial conditions. In the absence of con-
straints, the initial condition for the thermal field is commonly approximated by a statistically steady state
solution, obtained by imposing the most ancient known surface velocity field at all times [see Bunge et al.,
1998]. To overcome this problem, backward advection of a seismically derived temperature and density
field has been used, but was limited to several tens of million years, over which thermal diffusion is consid-
ered negligible [Steinberger and O’Connell, 1997; Conrad and Gurnis, 2003; Moucha and Forte, 2011]. To take
into account the effects of thermal diffusion, variational data assimilation methods have been pioneered to
compute the initial condition up to 100 Myr ago [Bunge et al., 2003; Ismail-Zadeh et al., 2004; Liu et al., 2008].
These methods employ a present-day thermal field derived from seismic tomography for the assimilated
data, and reconstructed surface velocities to drive the convective flow.

Convection in the Earth’s mantle is chaotic [Stewart and Turcotte, 1989; Travis and Olson, 1994]. As a
consequence, two initially very close convective states diverge quickly from each other in time to ulti-
mately produce two uncorrelated thermal structures [Lorenz, 1963]. This is known as the Butterfly
effect: a small wobbling of the Iceland plume could set off subduction in the Pacific. Hence, there is an
intrinsic limit of predictability for any chaotic system, which any mantle convection reconstruction
strategy faces. Backward advection is limited not only by thermal diffusion, but also by the chaotic
nature of the flow. So is data assimilation, and even more reconstructions, starting from less con-
strained solutions.
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The predictability limit of mantle convection has never been quantified. In this paper, we follow the twin
experiment approach initially developed by Lorenz [1965] and used in climate sciences [Goswami and Shu-
kla, 1991], geomagnetism [Hulot et al., 2010], and solar dynamics [Sanchez et al., 2014], to evaluate the range
of predictability of 3-D spherical convection models with diverse rheologies.

2. Limit of Predictability

The time dependence of convection at high Rayleigh number is strong enough to develop a chaotic regime. The
presence of lateral viscosity variations in the Earth’s mantle results in a significant toroidal component of the sur-
face velocity field [Hager and O’Connell, 1979; Ricard and Wuming, 1991] that further enhances the chaotic nature
of the system [Ferrachat and Ricard, 1998]. Deterministic chaos of mantle convection implies that two slightly dif-
ferent initial states, evolving according to the same physical laws and same material properties, will result in two
significantly different states after some time. Predictions based on mantle convection calculations are therefore
intrinsically limited to certain duration. The limit of predictability depends on the uncertainties in initial conditions,
the growth rate of the errors in the convection calculations, and the tolerance error of the predicted state.

Lorenz [1963] described experimentally the growth rate of errors in atmospheric models. Later, using the
theory of dynamical systems, physicists proved that the differential equations governing the error growth
in convective atmospheric systems can be linearized under certain conditions [e.g., Arnold, 1998; Boffetta,
2002]. Hence, the evolution with time t of a temperature perturbation E(t), initially equal to E(0) and suffi-
ciently small, can be approximated by:

EðtÞ5Eð0Þekt 11Oðe2ðk2k2ÞtÞ
h i

: (1)

Here k and k2 are the two largest characteristic Lyapunov exponents of the system [Ziehmann et al., 2000]. For
chaotic convection, k is positive, i.e., the error grows exponentially as exp(kt). We can thus define a character-
istic time of the system, the Lyapunov time: s 5 1/k. The limit of predictability tpred is linearly proportional to s
and depends on the initial and tolerance errors on the prediction, E(0) and D, respectively [e.g., Kalnay, 2003]:

tpred 5s ln
D

Eð0Þ : (2)

In order to evaluate tpred for mantle convection, we first need to evaluate the Lyapunov time. The classic
methodology to do so is the twin experiment method, developed by Lorenz [1965] for dynamic meteorol-
ogy and repeatedly used in various fields of geophysics, from climate sciences [Goswami and Shukla, 1991]
to geomagnetism [Hulot et al., 2010] and solar dynamics [Sanchez et al., 2014]. A twin experiment is defined
as the comparison of two initially very close dynamical trajectories. The time scale of divergence of these
two trajectories provides the Lyapunov time by integration of equation (1).

First, we use a convection model to generate a statistically steady state solution for the temperature field. This
state is used as the initial condition for one of the twins, referred hereafter as the reference twin. We create
the initial condition of the other twin by adding a perturbation to the initial condition of the reference twin.
Here we introduce random perturbations of temperature uniformally distributed in space, which produce a
white noise, i.e., errors at all scales from the smallest to the largest. The Lyapunov exponent is intrinsic and
expected not to depend on the length scale of the error, as verified by Hulot et al. [2010] for the Earth’s core.

The magnitude of the local perturbations is required to be small for equation (1) to be valid. We set the
magnitude to 0.01–1% of the average temperature depending on our calculation, making sure negative
temperatures are filtered. The corresponding volume averaged differences of the temperature fields of the
two twins are 0.002–0.2% (see Table 1). We monitor the value of this difference through time:

EðtÞ5
ð

VX

jTpðx; tÞ2Tðx; tÞj
Tðx; tÞ

dVðxÞ
VX

; (3)

where T(x,t) and Tp(x,t) represent the temperature at position x of the reference twin and the perturbed
twin, respectively. VX is the volume of the model in which the temperature is not imposed by boundary
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conditions. We then use a least squares method to fit the evolution of E(t) using equation (1). The end of
the exponential growth can be difficult to estimate precisely. Hence, we fit the Lyapunov time for all time
windows in the exponential growth phase having a number of points >10 and a low misfit, and we choose
the mode of the fitted Lyapunov times (>1000) to define the Lyapunov time of the twin experiment.

For each set of convection parameters, we proceed to multiple evaluation of the Lyapunov time by comput-
ing a family of twins differing in the magnitude of the initial perturbation. In general, we compute three
twin experiments for a given set of convection parameters. We define the Lyapunov time for this set of con-
vection parameters as the average of the Lyapunov times of this family of twin experiments. The computa-
tional cost of 3-D spherical convection models was a limiting factor for the number of numerical solutions
we computed. Varying the initial conditions for the reference twin, the type of perturbation, and computing
more twin experiments would improve the accuracy of our estimates.

Once the Lyapunov time is estimated for a variety of dynamic models, we evaluate tpred for mantle convec-
tion by estimating uncertainties in the initial conditions and the tolerance error relevant to the Earth.

3. Convection Model

We compute time-dependent solutions for incompressible mantle convection in 3-D spherical geometry
using the code StagYY [Tackley, 2008]. The resolutions used here are 45 km close to the surface for cases
with Rayleigh numbers lower than or equal to 106, and 23 km for higher Rayleigh numbers. Here the Ray-
leigh number Ra is given by:

Ra 5
qgaDTL3

jg0
; (4)

where q, g, a, DT, L, j, and g0 are density, gravitational acceleration, thermal expansivity, temperature scale,
mantle thickness, thermal diffusivity, and reference viscosity obtained at nondimensional temperature
T 5 1, respectively. Because computational power is limited, we have restricted our study to purely inter-
nally heated convection, neglecting the effects of hot plumes. The nondimensional internal heating rate H
is chosen for each calculation to obtain a nondimensional temperature drop of 1 across the mantle (see

Table 1. Convection Parameters and Lyapunov Times of the Twin Experiments Computed for This Study

Name Rheological Model Raa Hb E(0)c (%) sd (Myr)

ISO1 Isoviscous 3 3 105 13.42 0.2 77.8
ISO2 Isoviscous 106 20.05 0.2 55.3
ISO3 Isoviscous 5 3 106 34.28 0.2 39.5
ISO4 Isoviscous 107 44.17 0.002 34.8
ISO5 Isoviscous 107 44.17 0.02 35.6
ISO6 Isoviscous 107 44.17 0.2 35.0
LV1 Layered viscosity 107 44.17 0.02 59.8/116
LV2 Layered viscosity 107 44.17 0.2 54.8/121
PL1 Plate-like behavior 105 9.52 0.02 466
PL2 Plate-like behavior 105 9.52 0.2 395
PL3 Plate-like behavior 3 3 105 13.42 0.002 200
PL4 Plate-like behavior 3 3 105 13.42 0.02 190
PL5 Plate-like behavior 3 3 105 13.42 0.2 239
PL6 Plate-like behavior 106 20.05 0.002 265
PL7 Plate-like behavior 106 20.05 0.02 247
PL8 Plate-like behavior 106 20.05 0.2 196
PLLV1 Plate-like behavior and layered viscosity 106 20.05 0.002 124
PLLV2 Plate-like behavior and layered viscosity 106 20.05 0.02 113
PLLV3 Plate-like behavior and layered viscosity 106 20.05 0.2 119
PLC1 Plate-like behavior and continents 106 20.05 0.002 131
PLC2 Plate-like behavior and continents 106 20.05 0.02 149
PLC3 Plate-like behavior and continents 106 20.05 0.2 128

aRayleigh number.
bNondimensional internal heating rate.
cInitial error between the temperature field of reference and perturbed twins.
dResulting Lyapunov time. The two Lyapunov times for LV1 and LV2 correspond to the short Lyapunov time and the long Lyapunov time (see text).
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Table 1). We have further focused the exploration of the parameter space on rheological aspects, since
choosing a rheology for mantle rocks has a decisive impact on the time-dependent structure of convective
flow and the strength of the toroidal component of the surface velocity field. In this study, we present 32
different 3-D spherical calculations we computed, resulting in 22 twin experiments (see Table 1).

The models with uniform viscosity (named ISO for isoviscous) display short-lived cold plumes operating at
small scales (Figure 1a). We compute models with viscosity increasing in the lower mantle (named LV for
layered viscosity), as required by geophysical constraints [Ricard et al., 1993; Mitrovica and Forte, 2004].
Because the radial viscosity structure remains difficult to resolve finely, we implement a gradual viscosity
increase by a factor of 40 between 800 and 1000 km depth. In these calculations, strongly time-dependent,
drip-like small-scale instabilities persist in the upper mantle, but the more sluggish lower mantle introduces
a long-wavelength flow component [Tackley, 1996; Bunge et al., 1997], that ultimately dominates the power
spectrum of the temperature field (see Figure 1b).

Lateral viscosity variations are required to explain surface features on Earth like the toroidal component of
the surface velocity field [Kaula, 1980; Ricard and Wuming, 1991]. Hence, we investigated models with pseu-
doplasticity, in which the viscosity is temperature and stress dependent (named PL for plate-like behavior).
When the stress exceeds the yield stress, the viscosity is decreased to reduce the stress back to the yield
stress. We used the same formulation as in Van Heck and Tackley [2008], and indeed observed that convec-
tion with plate-like behavior leads to stable large-scale flow (Figure 1c) with a toroidal component of the
surface velocity amounting to 23% in this case. Length scales of the flow are here even larger than those
produced by layered viscosity alone, as described by Zhong et al. [2000].

We also computed solutions with both pseudoplasticity and a viscosity dependence with depth (named
PLLV for plate-like behavior and layered viscosity), the viscosity for a given temperature increasing by a fac-
tor of 30 between 800 and 1000 km depth. The overall structure of the flow is similar to cases with plate-
like behavior, but the downwellings are slowed down and buckle in the more sluggish deeper mantle. The
toroidal component of the surface velocity is close to 38%.

We finally computed solutions with pseudoplasticity and continental rafts (named PLC for plate-like behav-
ior and continents), following Rolf and Tackley [2011] but with Earth-like shapes and starting from a configu-
ration similar to Pangea, 200 Myr ago. The combination of plate-like behavior and continental rafts
produces mantle convection that matches, to first order, basic tectonic features observed on Earth [Coltice
et al., 2012, 2013]. Large-scale convection is also developed in these simulations (Figure 1d) with a toroidal
component of 41% of the surface velocity field.

To compare our calculations both to the Earth and to each other, time is scaled by the transit time tt5L=
vsurf where vsurf is the time and space averaged surface velocity. Assuming a surface velocity of 3.4 cm yr21

and a mantle thickness of 2900 km, the transit time is 85 Myr for the Earth’s mantle. Thus, time is dimen-
sionalized as t5tModel 3tEarth

t =tModel
t .

4. Sensitivity of the Lyapunov Time

The initial error grows in three main phases: (1) a short diffusion phase where error decreases, (2) an expo-
nential growth phase, and (3) a saturation phase (Figure 2). During the first phase, the smallest scale pertur-
bations are smeared out by thermal diffusion before advection becomes significant. The duration of this
phase does not depend on the amplitude of the initial perturbation.

The growth phase consists of the transport and dissemination of the error described by equation (1), caus-
ing significant and global modifications in the flow structure. The duration of this phase, much longer than
the diffusion phase, depends on the amplitude of the initial error: the smaller E(0), the longer the exponen-
tial growth. However, the Lyapunov time does not depend on E(0) (as long as it is small, see Figure 2) as pre-
dicted by equation (1).

The saturation phase starts when the error does not grow anymore. From then on, the perturbed solution
evolves with no apparent correlation to the reference solution and initial twins cannot be recognized. The
value of the saturation does not depend on E(0) and reaches �10% in our models. Scaled to the Earth’s
mantle, this value represents an average local temperature difference of �150 K between perturbed and
reference solutions.
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Figure 1. Snapshots of the (left) interior temperature field, (right) viscosity, and surface velocity, and spherical harmonic maps of the initial state of convection calculations for five differ-
ent rheologies. White arrows represent surface velocities. Each of the spherical harmonic map is normalized to the maximum amplitude. The values increase exponentially from dark
blue to dark red and there are 20 contour intervals. (a) Isoviscous mantle, Ra 5 107. (b) Mantle with a viscosity increase by a factor of 40 between 800 and 1000 km depth, Ra 5 107. (c)
Mantle with temperature-dependent viscosity and pseudoplastic yielding, Ra 5 106. (d) Same as Figure 1c with a viscosity increase by a factor of 30 between 800 and 1000 km depth,
Ra 5 106. (e) Same as Figure 4c with continents. All calculations are internally heated only.
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We obtain the Lyapunov time through fitting the slope of the exponential growth stage. The larger the ini-
tial error, the faster the saturation is reached, and the less precise the determination of the Lyapunov time.
Averaging individual Lyapunov times obtained for the initial errors E(0)5 0.2%, 0.02%, and 0.002%, the Lya-
punov time is 35 6 0.5 and 236 6 36 Myr for ISO and PL models, respectively (Table 1).

Figure 3 shows the influence of the Ra on the Lyapunov time for isoviscous convection and for convection
with plate-like behavior. We performed twin experiments for Ra 5 105, 3 3 105, 106, 5 3 106, and 107 for a
diversity of initial perturbations (Table 1). As seen in Figure 3 where experiments conducted with
E(0) 5 0.2% are presented, the rate of exponential growth increases with Ra and tends to saturate at high
Ra. In isoviscous models, s drops from 78 Myr at Ra 5 3 3 105 (ISO1) to 35 Myr at Ra 5 107 (ISO4,5,6), while
in models with plate-like behavior, s drops from �400 Myr at Ra 5 105 (PL1,2) to �220 Myr at Ra� 3 3 105

(PL3,4,5,6,7,8).

The decrease of the Lyapunov time to a minimum value corresponds to the evolution toward fully devel-
oped chaotic regime. For Ra higher than 5 3 106 in ISO cases, the mantle flow structure shows transient for-
mation and development of new boundary layer instabilities. This regime of thermal turbulence [Travis and

Figure 2. Error growth for three twin experiments started from the same reference temperature field, for two different rheologies: (left) isoviscous ISO4,5,6 and (right) pseudoplastic
yielding PL6,7,8. E(0), the initial error on the temperature of the twin experiment was alternatively set to 0.2% (bold line), 0.02%(dashed line), and 0.002%(dotted line). The error on the
dimensionless temperature is plotted versus time. Note that the time scales on the x axis is different. The resulting Lyapunov times s are obtained fitting the slope of the phase of expo-
nential growth.

Figure 3. Error growth for twin experiments varying only in the Rayleigh number. Each plot displays the results for a given viscosity law: (left) isoviscous (ISO1,2,3,6) with Ra ranging
from 3 3 105 to 107 and (right) pseudoplastic yielding (PL2,5,8) with Ra ranging from 105 to 106. E(0) 5 0.2% for all experiments.
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Olson, 1994], also called ‘‘plume-dominated’’ regime [Weeraratne and Manga, 1998], is strongly time
dependent and rapidly fluctuating, which ensures deterministic chaos. In this convection regime, the nondi-
mensional Lyapunov time depends only on the inverse of convective velocities (v a Ra2/3) and reaches its
minimum value. Hence, choosing to scale with the transit time implies that the dimensional Lyapunov time
is not dependent on Ra in the fully chaotic regime. The scaling of mixing times for mantle convection is sim-
ilar [Coltice and Schmalzl, 2006].

Hence, we measured s when Ra is large enough to ensure a fully chaotic regime, for each rheology consid-
ered here. The corresponding Ra is below Earth’s values, so we were able to reach an Earth-like chaotic
regime despite our calculation limitations. The transition into fully developed chaos occurs at a lower Ra for
PL than for ISO models (Figure 3). The existence of a significant toroidal component of the surface velocity
field in models with plate-like behavior is probably fundamental in this phenomenon. We obtained
s 5 210 6 26 Myr and s 5 236 6 36 Myr for PL calculations at Ra 5 3 3 105 and Ra 5 106, respectively.
Because the convective structures (temperature anomalies with respect to the adiabatic state) are thinner
and thermal mixing is more efficient at higher Ra, the saturation error slightly decreases with convective
vigor (Figure 3).

The Lyapunov time strongly depends on mantle rheology (Figure 4). Each twin experiment is carried out at
Ra high enough to ensure that s has reached its minimum value (Ra 5 107 for ISO and LV models, Ra 5 106

for PL, PLLV, and PLC models). In the four cases presented in Figure 4, E(0) is 0.2%, but the corresponding
Lyapunov times were also reproduced by twin experiments with initial perturbations of 0.02% and 0.002%
(Table 1). ISO has the shortest s (35 6 0.5 Myr) whereas the PL displays the longest s (236 6 36 Myr).

The LV case introduces an additional degree of complexity in estimating s as there are two Lyapunov times
involved, namely 57 6 4 and 118 6 4 Myr (Figure 4). The shorter dominates at infinitesimal errors, and the
longer dominates at larger errors. This phenomenon is typical for a chaotic system involving two time
scales: the shorter s is associated with small-scale dynamics and saturates quickly, then the longer s, associ-
ated with the large-scale flow, takes over [Boffetta et al., 1998]. In the LV cases, small-scale and strongly
time-dependent instabilities in the upper mantle (Figure 1) enforce quick error growth. Such structures do
not develop in the more sluggish lower mantle. The shorter s is close to that of the ISO case as expected,
and the longer s corresponds to the large-scale component, somewhat similar to the PL case, which is large
scale as well.

When plate-like behavior and layered viscosity are combined, the error grows with the same type of evolu-
tion as in the PL cases. In contrast to the LV cases, there are no small-scale instabilities in the upper mantle

Figure 4. Error growth for different rheologies: isoviscous ISO6 (blue), layered viscosity with an increase by a factor of 40 between 800 and 1000 km depth LV2 (green), pseudoplastic
yielding only PL8 (red), pseudoplastic yielding combined to a viscosity increase by a factor of 30 between 800 and 1000 km depth PLLV3 (purple), and pseudoplastic yielding with conti-
nents PLC3 (orange). E(0) is 0.2% for all experiments. The Rayleigh number is chosen so as to ensure fully chaotic behavior: Ra 5 107 for ISO and LV, Ra 5 106 for PL, PLLV, and PLC.
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and only one Lyapunov time is required: s 5 119 6 6 Myr, which is even shorter than that of PL. The fact
that this Lyapunov time is almost the same as the longer s of LV is probably coincidental, since the structure
and time-dependence of these two flows are extremely different. When continents are added to the PL
model, s is 136 6 13 Myr. The Lyapunov times for PLLV and PLC are both shorter than that of PL probably
because they both have a significantly higher toroidal component of the surface velocity field than PL (38%
and 41% versus 23%, respectively), which enhances chaoticity.

5. Limit of Predictability for the Earth’s Mantle

In addition to the Lyapunov time, computing the limit of predictability requires knowledge of the initial
error E(0) and of the tolerance error D for the prediction (equation (2)). D is taken here to be the saturation
of the error observed in our twin experiments. It weakly depends on rheology, slightly decreases with Ra
and remains close to 10%.

The most Earth-like model would integrate pseudoplasticity, layered viscosity, continents and heating from
the core, as well as additional compexities of mantle convection (e.g., grain-size rheology, compressibility,
phase changes, chemical heterogeneity). But this is a first attempt to estimate the predictability limit of con-
vection in the Earth’s mantle and computing such model remains beyond the scope of this study. We there-
fore try to estimate a Lyapunov time for the Earth’s mantle using the calculations presented here.

We have shown that the PLC and PLLV models have similar Lyapunov times, both displaying long-
wavelength flow and a high toroidal component of their respective surface velocity fields. We assume here
that introducing continents in the PLLV model would not produce a longer Lyapunov time. We also do not
expect a moderate amount of basal heating added to the PLC or PLLV models to alter the Lyapunov time.
Indeed, the study of chaotic mixing shows that convection heated from the base displays Lagrangian Lya-
punov exponents similar to those with internal heating only, as long as the fully chaotic regime is reached
[Coltice and Schmalzl, 2006]. Hence, we assume here that our best and most optimistic Lyapunov time for
Earth’s mantle convection is that of PLC: 136 6 13 Myr.

Given this value, a precision of 10216 on the initial temperature field would be necessary to predict 4 Gyr of
Earth’s evolution, which makes this exercise impossible. We focus here on predictions published in the last
15 years that span over 30–75 Myr for backward advection [Steinberger and O’Connell, 1997; Conrad and
Gurnis, 2003; Moucha and Forte, 2011], 75–100 Myr for data assimilation [Bunge et al., 2003; Ismail-Zadeh
et al., 2004; Liu et al., 2008], and 250–450 Myr for forward convection calculations [McNamara and Zhong,
2005; Zhang and Zhong, 2011; Yoshida and Santosh, 2011]. To remain below the tolerance error throughout
the whole integration time, the error on the initial conditions has to be <8% for 30 Myr, <5% for 100 Myr,
and <0.4% for 450 Myr.

The best guesses for initial conditions used for forecasts and hindcasts, up to this day, are 3-D temperature
fields derived from tomographic models. The errors on such temperature fields come both from uncertain-
ties in the tomographic models and from the conversion of seismic velocities into temperature. Becker and
Boschi [2002] compared three tomographic models for P waves and seven models for S waves, showing cor-
relations of 0.5–0.9 between different models depending on depth. Local differences between models of S
velocity anomalies are consistently over 0.5%, which can be considered here as a strict minimum. For a
known mineralogical model, such deviation corresponds to an uncertainty of 100 K on the local tempera-
ture above 400 km, and 250 K in the shallow lower mantle [Cammarano et al., 2003]. Additional uncertain-
ties have to be taken into account when converting the seismic velocities into temperature: composition is
not well known and phase diagrams are not determined with absolute precision [Mattern et al., 2005; Stix-
rude and Lithgow-Bertelloni, 2007]. Such considerations suggest that the errors in a starting temperature
field derived from tomographic models are already as large as the tolerance error of the convection model.
However, tomographic models also agree on coherent structures at the larger scales, consistent with sink-
ing slabs [Becker and Boschi, 2002] for instance. Hence, we propose that the average local uncertainty on
the temperature could be lower and around 5%. A careful analysis of the uncertainties is required to reach
a more accurate estimate.

Using E(0) 5 5% leads to a limit of predictability tpred 5 95 Myr. As a consequence, error growth operates on
the time scale shorter than that of Pangea dispersal. Proposing a scenario for a future supercontinent
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therefore seems out of reach yet. We also show here that backward reconstruction of a thermal field is lim-
ited not only by thermal diffusion [Conrad and Gurnis, 2003; Ismail-Zadeh et al., 2004; Moucha and Forte,
2011]. It is evenly limited by backward advection of initial uncertainties that grow exponentially to reach
the saturation error within a time scale comparable to that of these calculations. However, with this study
we cannot predict how different wavelengths are affected.

For models with imposed surface velocities (Bunge et al. [1998], Zhang et al. [2010], among others), it is pos-
sible that driving the flow could help to impede the divergence from the solution relevant to the Earth,
despite the significant time-dependence and toroidal component of imposed surface velocities. De facto,
some of these models were successful for predictions of seismic velocity variations [Bunge et al., 1998],
deep mantle chemical heterogeneities [McNamara and Zhong, 2005] and dynamic topography [Flament
et al., 2013]. Despite these important successes, uncertainties in the surface velocities for deep time recon-
structions introduce new sources of error in the system, which will ultimately grow as well. Data assimilation
strategies that use a tomographic thermal field as input for defining present-day structure [Liu et al., 2008;
Davies et al., 2012] should also be limited in time by the growth of uncertainties in a chaotically convecting
mantle.

6. Conclusions

Predictions of the past or future convective structure of the Earth’s mantle are intrinsically limited in time
because of the chaotic nature of mantle convection. We have used the twin experiment method to evaluate
the Lyapunov time, which corresponds to the characteristic time of exponential growth of the error. This
time is proportional to the inverse of the velocity when the convective regime is fully chaotic. It depends on
the rheology and is maximum with plate-like behavior, because of the existence of long-living stable struc-
tures. The presence of a high toroidal component in the surface velocity field reduces the Lyapunov time.
Our most optimistic estimate for the Earth’s mantle is 136 6 13 Myr, but our models would require improve-
ments to obtain a more accurate value (basal heating and compressibility, among other features).

The limit of predictability of the Earth’s mantle increases with the Lyapunov time, but decreases with uncer-
tainties in initial conditions. For most models used for convection reconstructions, the best guesses for ini-
tial conditions in forward or backward integration are derived from tomographic models. The uncertainties
in these initial conditions are difficult to estimate, especially as a function of wavelength. A rough estimate
would suggest a limit of predictability of 95 Myr. Hence, because of the chaotic nature of the flow, the error
growth is almost as limiting as thermal diffusion for backward advection. Our results suggest that uncertain-
ties in initial conditions could produce unrealistic structures in convection reconstructions over times com-
parable to Pangea dispersal. We propose that future convection reconstructions are published together
with a computation of their limit of predictability (i.e., error analysis). This type of information will be
extremely useful to estimate their level of confidence.
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