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INTRODUCTION
The nature of seafl oor spreading is critical for 

many aspects of Earth sciences like mantle de-
gassing (Tajika, 1998), sea level (Gaffi n, 1987; 
Flament et al., 2008), ocean chemistry (Ber-
ner and Kothavala, 2001), and Earth’s cooling 
(Labrosse and Jaupart, 2007). More than 50 yr 
of data collection and kinematic reconstruction 
efforts have led to signifi cant improvements in 
plate tectonic modeling back to 200 Ma (Pilger, 
1982; Kominz, 1984; Rowley and Lottes, 1988; 
Scotese et al., 1988; Müller et al., 1997; Lith-
gow-Bertelloni and Richards, 1998; Seton et al., 
2012). Models have been proposed for earlier 
times back to the Paleozoic (Stampfl i and Borel, 
2002), but such works remain challenging be-
cause they are naturally limited by the preserva-
tion of very old seafl oor. As a consequence, it is 
very diffi cult to estimate how seafl oor spread-
ing operated in the Paleozoic and Precambrian. 
Remnants of ancient obduction sequences 
are suggested, dating back to the late Archean 
(Kusky et al., 2001) and even to the early Ar-
chean (Polat et al., 2002). Geochemical studies 
have proposed that the Jack Hills (Australia) 
zircons  (more than 4 b.y. old) could be the earli-
est hints of seafl oor spreading (Harrison et al., 
2005). Therefore, seafl oor spreading could have 
operated while continents represented a smaller 
area than today (de Wit, 1998).

Continental growth, along with mantle cool-
ing, is a fundamental process that has shaped 
Precambrian mantle dynamics. Indeed, the con-
tinental area, occupying now around 30% of the 
surface, may have been as low as 10% in the 
Mesoarchean (Taylor and McLennan, 1995). 
The tempo of continental growth is, however, 
still debated: some models favor massive growth 
between 2.7 and 2.3 Ga (Taylor and McLennan, 
1995), while others propose an earlier growth 
during the Hadean (Armstrong, 1991).

In this paper, we investigate how the size of 
continents infl uences the properties of seafl oor 
spreading using three-dimensional (3-D) spheri-
cal convection models with plate-like behavior 
and continental lithosphere. The calculations 
presented here show that continental growth 
enhances seafl oor production and the time de-
pendence of spreading. Our study suggests that 
mantle heat loss experienced signifi cant fl uctua-
tions through continental growth and reinforces 
the estimate of <10% continental growth since 
the late Archean (Schubert and Reymer, 1985).

CONVECTION MODELS WITH 
CONTINENTS AND SEAFLOOR 
SPREADING

The numerical models employed in this study 
are 3-D spherical convection models built on 
successive generations of software that started 
with the Cartesian models of Tackley (2000) 
incorporating pseudo-plasticity, before being 
extended to spherical geometry (van Heck and 
Tackley, 2008). They now include a basic model 
of continental lithosphere (Yoshida, 2010; Rolf 
and Tackley, 2011), modeled as thick and buoy-
ant rafts, being 100 times more viscous than 
oceanic lithosphere. In this study, we computed 
numerical solutions in spherical geometry with 
a spherical cap–shaped continent covering 10%, 
30%, 50%, or 70% of the surface (both of the 
latter percentages are probably higher than ever 
existed on Earth) and without any continent. 
The numerical models used here are technically 
similar to those in Rolf et al. (2012) and Coltice 
et al. (2012), with a resolution reaching 40 km 
vertically in the top boundary layer. This resolu-
tion appears relatively crude because 1 km reso-
lution needs to be reached to resolve present-
day Earth plate boundaries (Gurnis et al., 2004), 
but the rheology employed here produces broad 
and diffuse plate boundaries that are resolved 

here (a computation with 30% continent and 
improved resolution of 30 km reproduced the 
results). Although the presented models are state 
of the art and converge toward tectonic models 
(Coltice et al., 2013), improvements in rheology 
and resolution are required for a direct compari-
son with the Earth. Also, the Rayleigh number 
of our models (based on the temperature drop 
over the surface boundary layer) is 106, 10–100 
times lower than expected for the Earth. There-
fore, time in the numerical solutions is scaled 
such that the model with 30% continents has a 
present-day Earth’s transit time of 85 m.y., as 
described in Gurnis and Davies (1986). The 
models are purely internally heated; a uniform, 
time-independent internal heating rate of ~3 × 
10−12 W kg–1 is used to obtain a 1300 K drop 
over the lithosphere for 30% continental area 
with our parameters. In a previous study, no sig-
nifi cant differences in the following results were 
observed for the problem addressed here when 
14% of basal heat fl ow was introduced with 
multiple continents covering 30% of the surface 
(Coltice et al., 2012).

The models presented are >3-b.y.-long con-
vection solutions at statistical steady state, so 
they can be used to obtain a statistical descrip-
tion of the production rate of new seafl oor and 
average seafl oor age for a given confi guration 
of continental area. The area-age distribution 
of the seafl oor in the models is computed by 
converting heat fl ow into age assuming a half-
space cooling model, following the approach of 
Labrosse and Jaupart (2007) as used previously 
in Coltice et al. (2012).

RESULTS
We studied the evolution of the area-age dis-

tribution of the seafl oor in models with a con-
tinent covering 10%, 30%, 50%, and 70% of 
the surface of the model, and in a model with 
0% continental area. The snapshots in Figure 1 
were chosen to represent area-age distributions 
closest to box-shaped in order to make a com-
parison between the models. The proportion of 
the seafl oor is the same for any given age un-
til it eventually drops down for the maximum 
age. Such a distribution is expected in a case 
of steady-state convection without a continent: 
cold instabilities start to sink once a critical age 
is reached, corresponding to the maximum age, 
and no younger subduction is expected. How-
ever, mantle convection is not steady-state and 
continents impose a geometrical constraint on 
surface tectonics. Hence, over the course of a 

Seafl oor spreading evolution in response to continental growth
N. Coltice1,2, T. Rolf3, and P.J. Tackley3

1Laboratoire de Géologie de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
2Institut Universitaire de France, 103, Bd Saint Michel, 75005 Paris, France
3Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland

ABSTRACT
The growth of the continental crust has shaped the evolution of the Earth from its interior 

to its fl uid envelopes. Continents have played a major role in the evolution of global tecton-
ics through their interaction with mantle convection. The feedback between continents and 
mantle convection has been studied for the past 25 years, but it is only recently that the 
dynamic infl uence of continents on seafl oor spreading can be explored thanks to progress 
in convection modeling. In this work, we investigate how continental size impacts seafl oor 
spreading activity with state-of-the-art three-dimensional spherical convection models. We 
show that increasing the continental area forces higher production rates of new seafl oor 
with stronger fl uctuations. As a consequence, the average age of the seafl oor decreases with 
increasing continental area. This study suggests that mantle heat loss experienced signifi -
cant fl uctuations through continental growth and reinforces the estimate of <10% continen-
tal growth since the late Archean.

GEOLOGY, March 2014; v. 42; no. 3; p. 1–4 | doi:10.1130/G35062.1 | Published online XX Month 2013

© 2013 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. 

 as doi:10.1130/G35062.1Geology, published online on 10 January 2014



2 www.gsapubs.org | March 2014 | GEOLOGY

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Age of Oceanic Lithosphere [m.y.]

0 40 80 120 160 200 240 280
Age of seafloor (m.y.)

0

1

2

3

4

5

6

Ar
ea

 p
er

 u
ni

t a
ge

 (k
m

2 y
r–1

)

0 40 80 120 160 200 240 280
Age of seafloor (m.y.)

0

1

2

3

4

5

6

Ar
ea

 p
er

 u
ni

t a
ge

 (k
m

2 y
r–1

)

0 50 100 150 200 250 300
Age of seafloor (m.y.)

0

1

2

3

4

5
Ar

ea
 p

er
 u

ni
t a

ge
 (k

m
2 y

r–1
)

0 40 80 120 160 200 240 280
Age of seafloor (m.y.)

0

1

2

3

4

5

6

Ar
ea

 p
er

 u
ni

t a
ge

 (k
m

2 y
r–1

)

Figure 1. Snapshots of convection solutions with increasing continent size (in gray) increasing from top to 
bottom (0%, 10%, 30%, and 70% of surface). Left column represents seafl oor age maps, and right column 
represents corresponding area-age distributions.
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calculation, the area-age distribution is mostly 
linearly to exponentially decreasing once a con-
tinent is present in our calculations (Coltice et 
al., 2012, 2013). The seafl oor age maps, con-
cordantly with the area-age distributions, show 
that younger seafl oor ages dominate the system 
when continental area is increased. The time 
series of the seafl oor production rate for the 
50% continent case displays a long episode of 
periodicity, during which the seafl oor produc-
tion rate varies between the highest and lowest 
values, that other models do not show. This pe-
culiar feature may be caused by the specifi c con-
tinental confi guration, representing a spherical 
harmonic of degree one, which also corresponds 
to the dominant wavelength of convection with 
plate-like behavior and a large continent (Zhong 
et al., 2007; Rolf et al., 2012).

As shown in Figure 1, the production rates of 
new seafl oor are similar in the different snap-
shots and lower than average. However, in most 
cases this production rate is dependent on the 
continental area as shown in Figure 2. Indeed, it 
increases linearly with continental area, and the 
standard deviation of the production rates also 
increases proportionally (Fig. 3). The fl uctua-
tions of seafl oor spreading are hence enhanced 
by increasing continental lithosphere and favor 
linearly decreasing to exponentially decaying 
area-age distributions.

As a consequence, the average age of ocean 
basins in our models decreases linearly with 
increasing continental area (Fig. 3). The aver-
age age obtained with 30% continental cover is 
63 Ma, consistently close to that of the Earth at 
62 Ma (Müller et al., 1997). In this case, the av-
erage seafl oor age reaches a maximum of 80 Ma 
and a minimum of 43 Ma. The case with 50% 
continental cover differs from the others, proba-
bly because of the peculiar regularity of the fl ow 

as already described above, but we think it is an 
outcome of this unique confi guration.

DISCUSSION AND CONCLUSIONS
The models show that increasing the con-

tinental area results in higher production rate 
of new seafl oor. Continental lithosphere repre-
sents a thick conductive lid, hence the growth of 
the continents reduces the area over which the 
mantle can effi ciently cool. As a consequence, 
the oceanic heat fl ow per unit of area and the 
production rate of new seafl oor are higher for a 
smaller oceanic area for a given amount of heat 
sources. The area-age distribution is thus in-
creasingly dominated by young seafl oor ages as 
continents grow, the average age of ocean basins 
decreasing accordingly.

The calculations presented here confi rm 
spreading rate can vary by a factor of two as in 
recent tectonic and convection models (see dis-
cussion and references in Coltice et al., 2013). 
They also suggest that continental growth en-
hances the time dependence of seafl oor spread-
ing. Moresi and Solomatov (1998) already men-
tioned a stronger time dependence of convection 
when continental lithosphere is present. Time 
dependence of the production rate has a large 
impact on the consumption of seafl oor (Becker 
et al., 2009), hence the area-age distribution 
changes notably with time from a box shape 
with reduced spreading to a decay shape with 
substantial spreading (Coltice et al., 2012).

Our models have limitations as discussed 
earlier, but we are confi dent our results will 
hold with improved treatment of shear localiza-
tion in the future because predictions of these 
models already converge toward plate tectonic 
models (Coltice et al., 2013). Previous studies 
show that the multiplicity of continents does 
not affect the average seafl oor production rate 
by more than 10%, but reduces by at least 30% 
the magnitude of the fl uctuations (Coltice et 
al., 2012). Future work on the roles of multiple 
continents, layered viscosity, continental area 

evolution, core heating, and the existence of 
deep chemical heterogeneities will refi ne this 
fi rst attempt to characterize seafl oor spreading 
through continental growth.

The distribution of seafl oor ages is funda-
mental for modeling heat fl ow or continental 
freeboard. When the production of new seafl oor 
is high and the area-age distribution features a 
decay with increasing age, both heat fl ow and 
sea level are high. Our results corroborate the 
work of Labrosse and Jaupart (2007), suggest-
ing that strong heat fl ow fl uctuations and the 
changing shape of area-age distributions have to 
be taken into account when modeling the small 
changes of heat loss through the Precambrian 
(Herzberg et al., 2010).

Continental freeboard has been modeled as 
resulting mainly from the competition between 
two processes (Schubert and Reymer, 1985; 
Galer, 1991; Flament et al., 2008): continental 
growth reduces the size of oceanic basins and 
hence promotes fl ooding, in contrast to mantle 
cooling which deepens ocean basins. The hy-
pothesis of a constant freeboard since the late 
Archean (Eriksson, 1999; Miller et al., 2005) 
has been used to constrain crustal growth to 
a limited amount during this period, so as to 
compensate for the deepening of ocean basins 
subsequent to mantle cooling (Schubert and 
Reymer, 1985). Our results show that the ef-
fect of continental growth on seafl oor spreading 
further prevents ocean basin deepening because 
younger seafl oor is favored when continental 
area increases. For a present-day continental 
area, switching from a box-shape area-age dis-
tribution to a linearly decreasing area-age distri-
bution corresponds to ~400 m of sea-level rise 
(Labrosse and Jaupart, 2007), which is equivalent 
to a growth of continents from 70% to 100% of 
their present-day volume (Galer, 1991). Hence, 
our study strongly reinforces the estimate of 
<10% continental growth since the late Archean 
(Schubert and Reymer, 1985). Progressive emer-
gence of continental landmasses throughout the 
Archean (Eriksson et al., 2006; Flament et al., 
2008; Pons et al., 2011; Arndt and Nisbet, 2012) 
suggests that continental growth occurred early 
within the Earth’s history.
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