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[1] We conducted experiments of isoviscous thermal convection in homogeneous,
volumetrically heated spherical shells with various combinations of curvature, rate of
internal heating, and Rayleigh number. We define a characteristic temperature adapted to
volumetrically heated shells, for which the appropriate Rayleigh number, measuring the

vigor of convection, is RaVH ¼ 1 þ f þ f 2ð Þ
3

ar2gHD5

hkk , where f is the ratio between the inner
and outer radii of the shell. Our experiments show that the scenario proposed by Parmentier
and Sotin (2000) to describe convection in volumetrically heated 3D-Cartesian boxes fully
applies in spherical geometry, regardless of the shell curvature. The dynamics of the
thermal boundary layer are controlled by both newly generated instabilities and surviving
cold plumes initiated by previous instabilities. The characteristic time for the growth of
instabilities in the thermal boundary layer scales as RaVH

�1/2, regardless of the shell
curvature. We derive parameterizations for the average temperature of the shell and for the
temperature jump across the thermal boundary layer, and find that these quantities are
again independent of the shell curvature and vary as RaVH

�0.238 and RaVH
�1/4, respectively.

These findings appear to be valid down to relatively low values of the Rayleigh-Roberts
number, around 105.
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1. Introduction

[2] Due to their rheological and physical properties, cores
and overlying shells (e.g., silicate mantles or ice layers) of
rocky planets and icy moons are or have been animated by
convection. The details of the flow pattern, heat transfer,
and thermal structure, which in turn influence the evolution
of the planetary interiors, depend on several parameters,
including the rheology of the material, the presence of phase
transitions, and the mode of heating. In addition, intrinsic
magnetic fields, if present, and rotation are essential to prop-
erly describe the dynamics of an electrically conducting fluid
layer, a case that we will not consider here. External and
intermediate shells are cooled at their surface, heated at their
bottom, and may furthermore include internal heat sources,
for instance induced by the decay of radiogenic elements or
by tidal dissipation. Planetary cores are also cooled at their
top (unless the overlying mantle is unable to extract heat from

them) and may include internal sources of heat (from radio-
genic heating), i.e., they are heated only from within.
[3] In a fluid heated from below, two thermal boundary

layers (TBL) are present, one at the bottom and the other below
the surface. Hot plumes and cold downwellings are generated
from the bottom and top TBLs, respectively. Internal sources of
heat modify the relative stability of these TBLs. As the amount
of internal heating increases, hot plumes are less vigorous, and
the flow is progressively controlled by cold downwellings
[Travis and Olson, 1994; Sotin and Labrosse, 1999;
McNamara and Zhong, 2005; Deschamps et al., 2010;
O’Farrell and Lowman, 2010]. An important consequence is
that less heat may be extracted from the underlying layer. In
contrast, in a volumetrically heated fluid, only one TBL is
present, below the surface. The flow is fully driven by cold
downwellings, and return flow brings material back to the
surface.
[4] Howard [1966] described high Rayleigh number ther-

mal convection with a scenario based on the conductive
thickening of TBLs. Below the surface of a fluid that is
cooled from the top, a TBL grows by conduction until it
reaches a critical thickness and becomes unstable. The
instability rapidly sinks downward, forming a cold blob
(or downwelling), and a new TBL starts to develop again.
A symmetric scenario describes the growth of hot instabilities
in a layer heated from the bottom. Based on their numerical
experiments, Parmentier and Sotin [2000] showed that
Howard’s scenario describes very well thermal convection in
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volumetrically heated 3D-Cartesian boxes, but also pointed
out some important differences. In particular, they observed
that the cold plumes generated by TBL instabilities survive
for relatively long periods, and participate in the heat transfer
together with the new instabilities. Plumes are finally
removed by merging with another at a rate that is balanced by
the development of new instabilities.
[5] In this study, we performed a series of numerical

experiments of isoviscous thermal convection in volumetri-
cally heated spherical shells, which we analyze following
the method developed in Parmentier and Sotin [2000]. Our
results indicate that the description of thermal convection
proposed byHoward [1966] and modified by Parmentier and
Sotin [2000] is also valid in volumetrically heated spherical
shells, regardless of the core’s size. Furthermore, when using
an appropriate temperature scale, the properties of the TBL can
be described with parameterizations that are independent of
the geometry.

2. Physical Model

[6] To model the convective flow and heat transfer in
spherical shells, we solve the conservation equations of
mass, momentum, and energy for an incompressible,
homogeneous, infinite Prandtl number fluid. We use the
shell thickness D as the characteristic length of the system.
A useful geometric parameter is the ratio f of the core radius
to the total radius of the sphere,

f ¼ Rc

Rc þ D
¼ rc

rc þ 1
; ð1Þ

where Rc and rc are the dimensional and non-dimensional
core radius, respectively. The curvature of the shell is
inversely proportional to the parameter f, which varies
between 0 for a sphere with no core, and 1 for an infinite slab
(3D-Cartesian geometry). The top boundary is isothermal
and the bottom heat flux is set to zero, i.e., the fluid is cooled
from the top and heated within only. Heating is homoge-
neous, with an internal heating rate per unit mass H.
[7] In the case of a volumetrically heated fluid, the bottom

temperature is not a priori prescribed, and the super-
adiabatic temperature difference across the shell cannot be
used as characteristic temperature scale, as is usually done in
Rayleigh-Bénard convection. Instead, temperature may be
scaled from the surface conductive temperature gradient.
For a spherical shell heated from within, this gradient is
[e.g., Schubert et al., 2001]

dT

dr

����
r¼R

¼ � rHR
3k

1� Rc
3

R3

� �
; ð2Þ

where r and k are the density and thermal conductivity of
the fluid, and R = (Rc + D) is the total radius of the shell.
Noting that R = D/(1 � f ), and using the definition of f
(equation (1)), the conductive gradient may be written

dT

dr

����
r¼R

¼ � 1þ f þ f 2ð Þ
3

rHD
k

: ð3Þ

With D as length scale, the characteristic surface conductive
temperature gradient is DT/D, where DT is an implicit
characteristic temperature difference associated with the

conducting state. Setting the non-dimensional value of this
gradient to one, the non-dimensionalization of equation (3)
defines the temperature scale as

DT ¼ 1þ f þ f 2ð Þ
3

rHD2

k
: ð4Þ

An important observable is the average surface heat flux,
Fsurf. For a spherical shell heated from within only, this flux
can be written

Fsurf ¼ 1þ f þ f 2ð Þ
3

rHD; ð5Þ

where the geometric factor a = (1 + f + f 2)/3 is imposed by the
conservation of energy. Given the temperature scale defined
in equation (4), Fsurf is the characteristic heat flux, so that the
observed non-dimensional surface heat flux, Jsurf = FsurfD/
kDT, should be equal to 1.
[8] With equation (4) as characteristic temperature differ-

ence and D2/k as characteristic time, where k is the thermal
diffusivity, the system of non-dimensional conservation
equations we solve is

rrr2u�rrrP ¼ �RaVHTVHez
rrr � u ¼ 0

∂TVH
∂t

¼ rrr � rrrTVH � u � rrrTVH þ hVH
;

8><
>: ð6Þ

where u and P are the non-dimensional velocity and non-
hydrostatic pressure. TVH = (T � Tsurf)/DT is the non-
dimensional temperature, where Tsurf is the dimensional
surface temperature and DT is given by equation (4). The
appropriate Rayleigh number (controlling the vigor of con-
vection) is the Rayleigh-Roberts number,

RaVH ¼ 1þ f þ f 2ð Þ
3

ar2gHD5

hkk
; ð7Þ

where a is the fluid thermal expansivity and g the surface
acceleration of gravity, and the non-dimensional rate of
internal heating is

hHV ¼ 3

1þ f þ f 2ð Þ ð8Þ

and satisfies the conservation of energy with the constraint
that the non-dimensional surface heat flux is equal to 1.
[9] Fixing f to 1 in equations (4) to (7), the geometric factor

a = (1 + f + f 2)/3 reduces to 1, and one finds the 3D-Cartesian
expressions of the characteristic temperature and Rayleigh-
Roberts number for a volumetrically heated fluid. For a
sphere, on the other hand, f = 0 and the geometric factor is
equal to 1/3. Note that taking the outer radius of the shell, R =
Rc + D, as the characteristic length, Schubert et al. [2001]
proposed another definition of the Rayleigh number in a
volumetrically heated shell. With Rc as the characteristic
length, the geometric factor we introduced in equations (4) to
(8) changes to (1 � f 3)/3. Both definitions are of course
equivalent for a sphere ( f = 0, and Rc = D). An advantage of
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taking D as the characteristic length is that it allows conti-
nuity between the parameterizations in spherical and 3D-
Cartesian geometries.
[10] It is useful to keep in mind that the Rayleigh number,

and temperatures in the Rayleigh-Bénard (Ra and T) and
Rayleigh-Roberts (RaVH and TVH) descriptions are related
by

Ra ¼ 3

1þ f þ f 2ð Þ
1

h
RaVH ; ð9Þ

and

T ¼ 1þ f þ f 2ð Þ
3

hTVH ; ð10Þ

where

h ¼ rHD2

kDT
ð11Þ

is the non-dimensional rate of internal heating in Rayleigh-
Bénard description, and DT the superadiabatic temperature
jump. For practical reasons, in our experiments we prescribe
Ra, f, and h. Given f and h, we then adjust the value of Ra to
the desired value of RaVH using equation (9).
[11] Calculations are performed on Yin-Yang staggered

grids using STAGYY [Tackley, 2008]. The solver is a Jacobi
relaxation method, and the convergence of the momentum
and pressure equations is accelerated using a multigrid
method [e.g., Stüben and Trottenberg, 1982]. Time stepping
in the conservation of energy follows an explicit MPDATA
[Smolarkiewicz, 1984] algorithm for advective terms, and a
second-order finite difference scheme for diffusive terms.
The Yin-Yang grid [Kageyama and Sato, 2004] consists of
two strips of equal size that are combined to generate a
spherical surface. The strips’ geometry induces small over-
laps at the strips’ boundaries. STAGYY uses the minimum
overlap defined by Kageyama and Sato [2004], in which the
cells located at the corners of one strip that are entirely
contained within the other strip are eliminated. Scalar and
vectorial quantities are calculated at the middle and on the
sides of each cell, respectively. To better describe the ther-
mal boundary layer below the surface of the fluid, the grid is
vertically refined at the top of the domain. Both the surface
and the bottom of the shells are free slip. The initial condi-
tion for the temperature consists of 3D-random perturba-
tions, and the calculations are carried on until a quasi-
equilibrium state is reached, At this stage, the mean tem-
perature and surface heat flux oscillate around constant time-
averaged values. For cases with high Rayleigh number, we
set the initial condition with a quasi-equilibrium solution
obtained for a case with a lower Rayleigh number, which
significantly reduces the computational time needed to reach
the quasi-equilibrium solution.

3. Numerical Experiments and Results

[12] Using the setup detailed in section 2, we conducted
34 numerical experiments (including 3 experiments in 3D-
Cartesian geometry) varying Ra, f, and h such that RaVH is
between 105 and 1010 (Table 1). Note that the same results
maybe be obtained by setting h = 1 in all experiments and

varying Ra accordingly. For most cases, we set the grid
resolution nphi � ntheta � nr to 512 � 512 � 64 points,
corresponding to Yin and Yang strips with 128 � 384 points
each. For experiments with large (≥3.0 � 107) Rayleigh-
Roberts number, we increased the vertical resolution to 128
points. Together with the radial grid refinement at the top of
the shell, this allows a correct sampling of the thermal
boundary layer at the top of the system. In addition, for cases
combining a large core and a large Rayleigh number (typi-
cally, f ≥ 0.6 and RaVH ≥ 108), we extended the horizontal
resolution of the Yin and Yang strips to 192 � 576 points to
have enough lateral resolution. For 3D-Cartesian cases, we
assumed reflecting sidewalls, we fixed the horizontal to
vertical aspect ratio to 4, and we set the resolution to 256 �
256 � 128 or 384 � 384 � 192, depending on the value of
RaVH.
[13] In a fluid heated from within and cooled on the top, a

thermal boundary layer (TBL) develops below the surface,
but not at the bottom of the fluid. As a consequence, the
horizontally averaged temperature first increases with depth
up to a maximum value and then slowly decreases
throughout the rest of the domain (Figure 1). Setting the
surface non-dimensional temperature to zero, the maximum
in the horizontally averaged temperature profile, Tmax, is a
measure of the temperature jump across the TBL, dTTBL.
The characteristic temperature and heat flux we use further
imply that the non-dimensional thickness of the TBL, dTBL,
is numerically equal to dTTBL. Table 1 lists the volumetri-
cally averaged temperature, 〈TVH〉, temperature jump across
the TBL, dTTBL, and the horizontally averaged temperature
at the bottom of the shell, Tbot. All temperatures listed in
Table 1 are scaled with equation (4), and time-averaged over
a few (usually between 10 and 20) pseudo-periods after the
quasi-equilibrium is reached. Figure 2 shows slices of
snapshots of the non-dimensional temperature for selected
cases. Snapshots are taken during the quasi-equilibrium
stage. Again, in all plots the temperature is scaled with
equation (4). Finally, in all our experiments we checked that
the horizontally and time-averaged non-dimensional surface
heat flux is equal to 1 with great accuracy (1% and less), as
one would expect when quasi-equilibrium is reached.
[14] A careful examination of Table 1, and Figures 1 and 2

indicates that the average temperature, 〈TVH〉, decreases with
increasing Rayleigh number, RaVH, but does not depend on
core size, measured with f. For instance, the cases shown in
Figures 2a and 2b, which have different core size and close
values of RaVH ( f = 0.20 and RaVH = 3.0 � 106, vs f = 0.55
and RaVH = 3.5 � 106), have average properties (Table 1)
that are close to one another. Like 〈TVH〉, the temperature
jump across the TBL decreases with increasing RaVH, as
indicated by Table 1 and Figure 1. Interestingly, the values
of 〈TVH〉 and dTTBL we measured, including those for the
3D-Cartesian cases, fit well along power laws of RaVH
(Figure 3). Least squares fits of our data lead to

TVHh i ¼ 1:744

RaVH 0:238
ð12Þ

and

dTTBL ¼ 2:508

RaVH 0:251
: ð13Þ
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Equation (13) further fits the numerical experiments of
Parmentier and Sotin [2000] performed in 3D-Cartesian
boxes with aspect ratio of 1 or 2. Note that their best fit
multiplicative constant and exponent (respectively 2.2312
and �0.2448) are slightly different from ours. Equation (13)
is consistent with thermal boundary layer analysis, which
predicts that the temperature jump in the TBL scales as
RaVH

�1/4 (section 4). To complete the description of the hori-
zontally averaged thermal structure, we derived a parame-
terization for the horizontally averaged bottom temperature
Tbot, which is not known a priori but may have planetary
applications. Again, Tbot fit well along a power law of RaVH
(Figure 3, bottom series of points),

Tbot ¼ 1:755

RaVH 0:248
: ð14Þ

Our results indicate that, in a volumetrically heated fluid,
the characteristic properties of the temperature distributions,
and in particular the average temperature of the fluid and the
temperature jump across the TBL, are quantified with simple
parameterized laws of the Rayleigh-Roberts number, inde-
pendent of the amount of internal heating and of the geom-
etry. The influences of the geometry and of the amount of

internal heating are implicitly included in the definitions of
the temperature scale (equation (4)) and therefore of the
Rayleigh number (equation (7)). It should be noted that, as
detailed in section 2, the choice of the temperature scale is not
ad hoc, but is imposed by the properties of the system (here,
the geometry and the mode of heating). Equation (4) is
therefore well suited to describe volumetrically heated shells.
[15] Figure 3 suggests that the parameterizations (12)

and (13) still explain the observed 〈TVH〉 and dTTBL for cases
with relatively low Rayleigh number, down to about 105. This
value is much larger than the critical Rayleigh number for
the onset of instability in volumetrically heated shells. Using
linear stability analysis, Zebib et al. [1983] found that this
number decreases with increasing core radius. Note that the
Rayleigh number defined in Zebib et al. [1983] is similar to
that in equation (7), except that it does not include the geo-
metric factor (1 + f + f 2)/3. Using the definition in equation (7),
the critical Rayleigh number calculated by Zebib et al. [1983]
ranges from 3091 for f = 0 to 1023 for f = 0.7. We did addi-
tional experiments with RaVH < 105, and found that the values
of 〈TVH〉 and dTTBL do not fit along equations (12) and (13)
below a value of RaVH around 5.0 � 104, suggesting the
existence of an intermediate regime between the onset of

Table 1. Numerical Experiments of Convection in Volumetrically Heated Spherical Shellsa

f RaVH h Resolution 〈TVH〉 dTTBL Tbot P (�10�2)

0.20 2.98 � 106 20.0 128 � 384 � 64 0.04958 0.06016 0.04710 0.7542
- 1.49 � 108 40.0 128 � 384 � 128 0.01967 0.02246 0.01689 0.0964
- 5.02 � 109 45.0 128 � 384 � 128 0.00841 0.00918 0.00722 0.0177
0.30 1.18 � 106 15.0 128 � 384 � 128 0.06133 0.07545 0.05866 1.4876
- 3.24 � 107 25.0 128 � 384 � 128 0.02836 0.03280 0.02449 0.2521
- 2.04 � 108 40.0 128 � 384 � 128 0.01827 0.02069 0.01539 0.0903
0.40 5.20 � 105 10.0 128 � 384 � 64 0.07438 0.09239 0.06763 1.6660
- 1.66 � 106 3.2 128 � 384 � 64 0.05713 0.06897 0.05246 1.0442
- 5.20 � 106 10.0 128 � 384 � 64 0.04392 0.05194 0.03921 0.5797
- 1.66 � 107 32.0 128 � 384 � 64 0.03337 0.03879 0.02900 0.3329
- 2.03 � 109 30.0 128 � 384 � 128 0.01050 0.01147 0.00882 0.0331
0.55 1.98 � 105 1.0 128 � 384 � 64 0.09465 0.11798 0.08392 3.1047
- 3.09 � 105 5.0 128 � 384 � 64 0.08479 0.10455 0.07517 2.8153
- 6.18 � 105 10.0 128 � 384 � 64 0.07229 0.08775 0.06422 1.6952
- 1.98 � 106 3.2 128 � 384 � 64 0.05531 0.06568 0.04866 0.9008
- 3.46 � 106 5.6 128 � 384 � 64 0.04850 0.05709 0.04227 0.7502
- 6.18 � 106 10.0 128 � 384 � 64 0.04232 0.04943 0.03641 0.5018
- 1.98 � 107 32.0 128 � 384 � 64 0.03215 0.03704 0.02679 0.3080
- 6.18 � 107 10.0 128 � 384 � 128 0.02447 0.02781 0.01999 0.1539
0.60 7.84 � 107 50.0 128 � 384 � 128 0.02308 0.02610 0.01870 0.1274
- 3.40 � 108 40.0 192 � 576 � 128 0.01617 0.01799 0.01340 0.0650
0.70 3.65 � 105 5.0 128 � 384 � 64 0.08253 0.09972 0.07184 2.5703
- 7.30 � 105 10.0 128 � 384 � 64 0.07002 0.08339 0.06114 1.7776
- 2.34 � 106 3.2 128 � 384 � 64 0.05343 0.06256 0.04584 1.0356
- 7.30 � 106 10.0 128 � 384 � 64 0.04092 0.04723 0.03424 0.4760
- 2.34 � 107 32.0 128 � 384 � 64 0.03104 0.03534 0.02552 0.2757
- 5.11 � 108 50.0 192 � 576 � 128 0.01468 0.01612 0.01202 0.0499
0.80 3.17 � 105 30.0 128 � 384 � 64 0.08586 0.10301 0.07456 2.6452
- 9.76 � 105 40.0 128 � 384 � 64 0.06586 0.07743 0.05673 1.3680
- 1.20 � 107 40.0 128 � 384 � 128 0.03641 0.04136 0.03013 0.3693
- 4.55 � 107 35.0 192 � 576 � 128 0.02643 0.02963 0.02180 0.1995
1.00 107 10.0 256 � 256 � 128 0.03811 0.04317 0.03156 0.4076
- 108 10.0 256 � 256 � 128 0.02175 0.02424 0.01750 0.1358
- 109 10.0 384 � 384 � 192 0.01249 0.01369 0.00987 0.0366

aInput parameters are the ratio f between the inner and outer radii of the shell ( f = 1.0 indicates 3D-Cartesian geometry), the Rayleigh-Roberts number
RaVH, which is given by equation (7) and can be related to the Rayleigh-Bénard number through equation (9), and the non-dimensional rate of internal
heating (in Rayleigh-Bénard description) h, given by equation (11). Output observables are the non-dimensional temperature of the well-mixed interior,
〈TVH〉, the temperature jump across the thermal boundary layer, dTTBL, the horizontally averaged temperature at the bottom of the shell Tbot, and the
period P of heat flux oscillations. All temperatures are scaled with equation (4) and time-averaged over several periods after a quasi-equilibrium is
reached. For spherical cases (f < 1.0), the resolution, nphi � ntheta � nr, indicates the size of the Yin volumes, the corresponding Yang volumes
having ntheta � nphi � nr points.
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convection, and the regime described in this study. Interest-
ingly, in the case of a bottom heated fluid, thermal boundary
layer theory also does not work at low Rayleigh number.

4. Dynamics of the Thermal Boundary Layer

[16] A central point in the description of high Rayleigh
number thermal convection proposed by Howard [1966] is
that the TBL thickens by conduction until it reaches a crit-
ical thickness. When this limit is reached, the TBL becomes
unstable, i.e., a cold plume is generated and quickly sinks to
the bottom of the fluid. A conductive temperature distribu-
tion is then restored in the region where the instability
occurred, allowing a new TBL to grow again. The numeri-
cal experiments of Parmentier and Sotin [2000] globally

validated this scenario, but also pointed out that cold plumes
are maintained during longer periods of time than suggested
by Howard [1966]. Furthermore, they showed that when
quasi-equilibrium is reached the creation of new instabilities is
balanced by the coalescence of existing plumes, leaving the
average plumes density constant in time. Figure 4, which plots
a time sequence of the temperature distribution for a case with
f = 0.40, shows that both new instabilities and persisting cold
plumes are simultaneously present at different locations. The
growth of instabilities can be seen on isosurfaces (Figure 4,
left), where new holes are opening, and in the top section of
polar slices (Figure 4, right). We also observe plume coales-
cence, as seen for instance in the region around 50� latitude
and 250� longitude (maps in Figure 4, middle). Figure 4 fur-
ther indicates that cold plumes eventually die by detaching
from the TBL, as in the bottom right section of polar slices.
It is interesting to note that the number of plumes present
per unit surface does not vary in time. In the section repre-
sented on maps (covering 1/6 of the total surface), 6–7 plumes
are present during the entire sequence (the total number of
plumes over the entire surface, not shown here, varying
between 34 and 36). These observations suggest that the
modified scenario proposed by Parmentier and Sotin [2000]
also happens in spherical geometry.
[17] First, it is worth noting that the temperature jump

across the TBL is fully consistent with thermal boundary
layer analysis. At the bottom of the TBL the radial conduc-
tive and advective heat flux balance

k
DTTBL
dTBL

¼ rCpuzTTBL; ð15Þ

where DTTBL is the dimensional temperature jump across the
TBL, dTBL its dimensional thickness, TTBL and uz the dimen-
sional temperature and radial component of the velocity at the
bottom of the TBL, and CP the heat capacity of the fluid. The
viscous and buoyancy forces are also balancing at the bottom
of the TBL (as everywhere else in the fluid),

argDTTBL ¼ h
uz

dTBL
2 : ð16Þ

Combining equations (15) and (16), and assuming that TTBL
scales as DTTBL, and that the horizontally averaged heat flux
across the TBL, FTBL, does not depend on depth and is equal
to kDTTBL/dTBL, one gets

DTTBL
4 � hkF3

TBL

agrk3
: ð17Þ

Because FTBL is assumed constant throughout the TBL, it
is equal to the surface heat flux given in equation (5). Taking
D as length scale and equation (4) as temperature scale, the
non-dimensional temperature jump across the TBL satisfies

dTTBL � 3

1þ f þ f 2ð Þ
hkk

ar2gHD5

� �1�
4

¼ RaVH
�1

4 := ð18Þ

Following Parmentier and Sotin [2000], we have then com-
pared the horizontally and time-averaged profiles of the non-

Figure 1. Time and horizontally averaged temperature
profiles obtained for various Rayleigh number (RaVH) and
core size, measured by the ratio f between inner and outer
radii of the shell ( f = 1 indicates 3D-Cartesian geometry).
From right to left: RaVH = 1.7 � 107 and f = 0.4, RaVH =
7.8 � 107 and f = 0.6, RaVH = 109 and f = 1.0, and RaVH =
5.0 � 109 and f = 0.2. The horizontal bars below the profiles
represent the temperature jump in the TBL (bottom series of
bars) and the volumetrically averaged temperature (top series
of bars) for each case.
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dimensional temperature observed in our experiments, with
the expression given by Howard [1966],

TVH xð Þ ¼ dTTBL 1� 1þ 2x2
� 	

erfc xð Þ þ 2ffiffiffi
p

p xe�x2
� �

ð19Þ
where

x ¼ z

2
ffiffiffiffiffiffi
ptc

p ; ð20Þ

z is the non-dimensional depth, and tc is the non-dimensional
time (scaled with D2/k) for the growth of instabilities in the
TBL. Noting that when quasi-equilibrium is reached the time-
averaged conductive heat flux, given by the solution to half-
space cooling 2kDT/

ffiffiffiffiffiffiffi
pkt

p
, and the observed heat flux, here

given by equation (5), should be equal, an expression for tc is
[Parmentier and Sotin, 2000]

tc ¼ 4

p
dT 2

TBL ; ð21Þ

where we again use equation (4) to scale the temperature jump
in the TBL. We calculated tc either by using equation (21) and
the values of dTTBL in Table 1, or by searching for the value of
tc that provides the best least squares fit of equation (19) to the
observed profiles of temperature, and found that tc varies
as RaVH

�1/2 for both these two methods (Figure 5, bottom and

middle series of points). Equation (19) explains the time and
horizontally averaged profiles from our experiments very well,
with least squares fit around 99% whatever the case. The
values of tc calculated with equation (21) are however larger
by 60% on average than those obtained by the best fit of
equation (19), a result that may be due to the fact that both
existing cold plumes and new instabilities contribute to
remove the TBL [Parmentier and Sotin, 2000].
[18] Another consequence of the persistence of cold plumes

is that they participate in the heat transfer [Parmentier and
Sotin, 2000]. When quasi-equilibrium is reached, variations
in the number and distribution of plumes therefore induce
small variations in the surface heat flux around an average
value that remains constant in time. If heat flux is scaled with
equation (5), this value is equal to one for all cases. In our
experiments, oscillations around the time-averaged value have
amplitude of a few (up to 4) percent. We do not observe a
systematic relationship between the amplitude of these oscil-
lations and the Rayleigh number. In contrast, when time is
scaled with the characteristic diffusion time across the whole
shell (D2/k), their periods P clearly decrease with increasing
Rayleigh number (Figure 6, left column). We measured P by
counting the number of oscillations within a time window
containing 10 or more oscillations, and found that it scales
roughly as RaVH

�1/2 (right column in Table 1, and top series of
points in Figure 5). Rescaling the time with the characteristic

Figure 2. Slices of the non-dimensional temperature (scaled with equation (4)) for 6 cases with various core
size. Panels are scaled such that thickness of the shell is the same in all panels. Snapshots are taken during the
quasi-equilibrium stage. The Rayleigh number RaVH, given by equation (7), increases from Figures 2a to 2f.
(a) f = 0.20 and RaVH = 3.0 � 106. (b) f = 0.55 and RaVH = 3.5 � 106. (c) f = 0.70 and RaVH = 7.3 � 106.
(d) f = 0.30 and RaVH = 3.2 � 102. (e) f = 0.55 and RaVH = 6.2 � 107. (f) f = 0.60 and RaVH = 3.4 � 108.
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time for the growth of instabilities in the TBL (equation (21)),
the period of the oscillations is independent of the Rayleigh
number, and is roughly equal to tc/2.

5. Comparison With Mixed Heated
Spherical Shells

[19] The observation that the dynamics of a TBL in vol-
umetrically heated systems does not depend on the geometry
of the system contrasts with results obtained for bottom and
mixed heated fluids [Deschamps et al., 2010]. In these cases,
two TBLs are present, at the top and at the bottom of the
fluid, respectively. For an isoviscous, 3D-Cartesian system
heated from below, these two layers are geometrically and
dynamically symmetric. Both spherical geometry and inter-
nal heating break this symmetry, and a have strong influence
on the properties of the top and bottom TBLs, resulting in
parameterizations for average temperature and heat flux that
explicitly depend on h and f [Sotin and Labrosse, 1999;
Moore, 2008; Shahnas et al., 2008, Deschamps et al., 2010].
Even when rescaled with equation (4), the average tem-
peratures observed in these studies do not fit along a power
law of the Rayleigh-Roberts number and still have a strong
dependence on h and f.
[20] Based on the results discussed in section 3, a new

parameterization for the average temperature in a mixed
heating fluid may be attempted. This expression should sat-
isfy two boundary conditions, corresponding to the average
temperatures for pure bottom and volumetric heating,
respectively. For pure bottom heating the average tempera-
ture, 〈TBH〉, depends only on the shell curvature through the
parameter f and goes to zero for f = 0 [Vangelov and Jarvis,

1994; Jarvis et al., 1995; Shahnas et al., 2008; Deschamps
et al., 2010]. Here, we will assume that 〈TBH〉 follows the
law suggested by Deschamps et al. [2010], f 2/(1 + f 2). Note
that 〈TBH〉 = 0 for f = 0, which corresponds to pure internal
heating. The second end-member is obtained by rescaling the
average temperature for pure internal heating with the super-
adiabatic temperature jump. For this, we replace RaVH and
〈TVH〉 in equation (12) by their expressions in equations (9)
and (10), which introduces de facto a dependence on f. The
average temperature in a mixed heated fluid should therefore
follow

Th i ¼ f 2

1þ f 2
þ C

1þ f þ f 2ð Þ
3

� �0:762
h0:762

Ra0:238
; ð22Þ

where C is a parameter that depends on f. This additional
dependency is needed to explain the data from numerical
experiments with mixed heating [Shahnas et al., 2008;
Deschamps et al., 2010], and may be related to the fact that
the relative size of the top and bottom TBL strongly varies
with f. With decreasing f, the average temperature tends to
that for pure internal heating, i.e., it is dominated by the
second term of the right-hand-side in equation (22). Follow-
ing Deschamps et al. [2010], we assumed that C depends
linearly on f, C = (c1 + c2 f ), where c1 and c2 are two con-
stants. Ideally, to match the scaling obtained for pure internal
heating (equation (12)), c1 should be equal to 1.744. We
inverted the results of Deschamps et al. [2010], consisting of
56 experiments with mixed heating, for values of c1 and c2
using a generalized nonlinear inversion method [Tarantola
and Valette, 1982], and found c1 = 1.84 � 0.02 and c2 =
�0.85� 0.04, with a c2 equal to 68, indicating that the result
of the inversion is very good. Fixing c1 to 1.744 and inverting
for c2 only, we found c2 = �0.70 � 0.01 with a c2 equal to
81, still indicating that the result of the inversion is good. We
therefore suggest the following parameterization to describe
the average temperature in spherical shells heated from below
and/or from within,

Th i ¼ f 2

1þ f 2
þ 1:744� 0:70fð Þ 1þ f þ f 2ð Þ

3

� �0:762
h0:762

Ra0:238
:

ð23Þ

Figure 7a indicates that the average temperature observed
in various experiments, including those from Sotin and
Labrosse [1999], O’Farrell and Lowman [2010], Shahnas
et al. [2008], and Deschamps et al. [2010] are very well
explained by equation (23). Interestingly, the experiments of
O’Farrell and Lowman [2010] with negative values of h,
modeling the cooling of the system, are well explained by
equation (23) provided that h is replaced by its absolute
value, and C by its opposite value, i.e., �(1.744 � 0.70f ). It
is also interesting to note that O’Farrell and Lowman [2010]
did calculations in 3D-Cartesian geometry with different
aspect ratios, and found that the average temperature does
not vary with aspect ratio. In Figure 7a, we also represented
the temperature at mid-depth observed in the 2D-Cartesian
numerical experiments of Moore [2008], which include
cases with very high rate of internal heating (up to h = 100).
Note that the temperature at mid-depth defined by Moore
[2008] is numerically close to but slightly different from

Figure 3. Volumetrically averaged temperature (〈TVH〉,
middle series of points), temperature jump across the ther-
mal boundary layer (dTTBL, top series of points), and hori-
zontally averaged temperature at the bottom of the shell
(Ttop, bottom series of points) as a function of the Rayleigh
number. All temperatures are time-averaged and scaled with
equation (4). Experiments with various core size are denoted
with different symbols (see legend). The black dotted, plain,
and dashed lines show the scaling providing the best fit to
the data, and are given by equations (12), (13), and (14),
respectively. Also represented are the temperature jump
across the TBL for the 3D-Cartesian experiments of
Parmentier and Sotin [2000] (light blue squares).
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the volume average temperature. Equation (23) fits well
most of Moore [2008] experiments, but clearly fails to
explain those with average temperature larger than about 1.3.
A possible explanation for this disagreement is a funda-
mental change in the mechanism controlling instabilities in
the TBL [Moore, 2008]. In bottom heated and mixed heated
fluids, these instabilities are controlled by both TBL thicken-
ing and interactions with the plumes that originate from the
opposite TBL. These interactions prevent thermal boundary

layer analysis to provide a fine description of the TBL prop-
erties (and in particular of the temperature jump across the
TBL, see below). The volumetrically averaged temperature,
by contrast, is still well described by parameterization such as
equation (23) as long as the heat flux at the bottom is positive
(in which case a TBL, although small, is present). However,
when the rate of internal heating is larger than a critical value
hc, heat cannot be entirely transported toward the surface. The
fluid is cooled both at its top and at its bottom, i.e., the heat flux

Figure 4. A time-sequence of the temperature evolution for the case RaVH = 1.7� 106 and f = 0.40. (left)
Isosurfaces of the non-dimensional temperature (scaled with equation (4)) for TVH = 0.06897,
corresponding to the bottom of the thermal boundary. (middle) Maps of the temperature distribution below
the TBL in a region extending from 10� to 60� in latitude, and from 160� to 280� in longitude. (right) Polar
slices of the temperature distribution. The sequence was taken during the quasi-equilibrium stage, and its
duration is approximately equal to the period of the heat flux oscillations measured for this case.
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at the bottom of the fluid is negative. At h = hc, the bottom heat
flux is equal to zero, which is equivalent to a purely volu-
metrically heated system. It is important to note that the value
of hc increases with increasing Ra, since larger Ra promotes
heat transport toward the surface.
[21] The validity of equation (23) may thus be restricted to

certain ranges of h and Ra, i.e., it may not describe the average
temperature of the system if this temperature is larger than an
upper limit Tc. It is difficult to estimate Tc from Figure 7a. Data
from Moore [2008] are well explained up to values of 〈T〉
around 1.2, but those from Deschamps et al. [2010] are well
explained up to 〈T〉 around 2.0 (although the agreement
appears slightly less good for values of 〈T〉 larger than 1.5).
This is of course partly due to the fact that parameters in
equation (23) were obtained using the data from Deschamps
et al. [2010] only. Furthermore, it cannot be excluded that Tc
depends on the geometry. Moore [2008] defines two para-
meterizations for hc, which, together with his parameterization
for the average temperature, can be used to estimate Tc. His
parameterization based on the temperature jump in the bottom
TBL predicts Tc = 1.06, whereas his parameterization based on
the bottom heat flux implies that Tc slightly depends onRa and
varies between 1.18 and 1.02 in the range 104 ≤ Ra ≤ 108. An
estimate of Tc may be deduced directly from data, assuming
that it is given by the value of 〈T〉 for which the bottom heat
flux becomes negative.
[22] In Figure 7b, we plotted the non-dimensional bottom

heat flux Nubot as a function of 〈T〉 using data from several
studies. When Nubot was not listed, we calculated it from the
non-dimensional surface heat flux Nutop and assumed con-
servation of energy,

Nubot ¼ Nutop=f
2 � 1þ f þ f 2ð Þ

3
h: ð24Þ

The data from Moore [2008], Sotin and Labrosse [1999],
and Deschamps et al. [2010] suggests that Tc is in the range
1.0–1.1, whatever the geometry. Data from Shahnas et al.
[2008] suggest a slightly lower value for Tc. Assuming that
Tc = 1.0 and is independent of the geometry, we have cal-
culated hc as a function of the Rayleigh number and for
various values of f (Figure 8). Interestingly, for the ranges of
Ra and f relevant to planetary shells, typically f ≤ 0.9 and 105

≤ Ra ≤ 108, hc is large, around 10 and more. In the case of
the Earth’s mantle, for instance, f = 0.55 and Ra is between
106 and 107, leading to values of hc in the range 60–100, i.e.,
much larger than the non-dimensional rate of radiogenic
heating in the Earth mantle, around 15. For the outer ice
layer of icy moons, f > 0.8 and the Rayleigh number may be
up to 108, leading again to values of hc around 100. For
comparison, the rate of tidal dissipation within the outer ice
layer may be equivalent to about 10�10 W/kg [Tobie et al.,
2005], leading to values of the non-dimensional volumetric
heating around 5. At planetary conditions, equation (23) thus
provides a good description of the average temperature in
mixed-heated shells.
[23] By analogy with equation (23), we tried to derive a

unique parameterization that would explain the temperature
jump DTTBL in the top TBL of a mixed heated spherical
shell. First, we tested equation (13) against the numerical
experiments of Deschamps et al. [2010], and found that it
does not explain the temperature jump across the top TBL
observed in these experiments. Following the same reasoning
as for the average temperature, and noting that for bottom
heated shells the temperature jump across the top TBL is well
explained by f 2/(1 + f 2), we have then tested a parameteri-
zation of the form

DTTBL ¼ f 2

1þ f 2
þ d1 þ d2fð Þ 1þ f þ f 2ð Þ

3

� �0:75
h0:75

Ra0:25
; ð25Þ

where we approximated the Rayleigh number exponent to
1/4 (instead of 0.251). However, nonlinear inversion of
mixed heated shells data in Deschamps et al. [2010] could
not provide suitable values of d1 and d2. The best fitting
solution (blue squares in Figure 9) has a c2 around 3000,
indicating that it does not explain the input data set. We
performed another inversion in which the exponents of Ra
and h were allowed to vary, but still could not find any set of
parameters explaining all our data set. The best fitting solu-
tion (orange squares in Figure 9) has large a c2, around 600.
Therefore, according to our calculations and those of
Deschamps et al. [2010], the temperature jump across the top
TBL cannot be explained by one single parameterization.
This result confirms that of Deschamps et al. [2010], which
showed that the surface observed heat flux in pure bottom
heating and mixed heating experiments cannot be explained
by a unique parameterization. It suggests that convection
in mixed heated spherical shells cannot be described by
mechanisms similar to those observed in volumetrically
heated fluids. Again, an obvious difference, compared to
volumetric heating fluids, is the presence of hot instabilities
rising from the bottom. These instabilities interact with this
TBL, thus modifying the removal of the top TBL and the

Figure 5. Characteristic conductive time tc for the growth
of instability in the thermal boundary layer as a function of
the Rayleigh-Roberts number, and calculated either from
surface heat flux balance (equation (21), middle series of
points) or least square fit to Howard [1966] formulation
(equation (19), bottom series of points). The measured
period of the oscillations in the surface heat flux is also
shown (P, top series of points). Experiments with various
core size are denoted with different symbol (see legend).
The black dashed and plain lines shows the scaling provid-
ing the best fit to the data.
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heat transfer through the system [Labrosse, 2002; Moore,
2008].

6. Conclusions and Perspectives

[24] The numerical experiments of thermal convection in
a volumetrically heated shell we performed indicate that
the scenario proposed by Parmentier and Sotin [2000] to
describe isoviscous thermal convection in volumetrically
heated Cartesian boxes is also valid in spherical geometry.
The cooling of the fluid is controlled by both new instabilities
in the thermal boundary layer, and persistent cold plumes

issued from previous instabilities. When quasi- equilibrium is
reached, the development of new instabilities is balanced by
the merging of cold plumes, and the surface heat flux oscil-
lates around a constant time-averaged value. Regardless of
the geometry, 3D-Cartesian boxes with various aspect ratios
[Parmentier and Sotin, 2000; this study] or spherical shells
with various curvatures (this study), the volume average
temperature and the temperature jump across the TBL only
depend on the Rayleigh number RaVH and scale as RaVH

�0.238

and RaVH
�1/4, respectively. The conductive time for growth of

instabilities in the TBL is also a power law of RaVH and
scales as RaVH

�1/2.

Figure 6. Time-variations of the observed non-dimensional surface heat flux for 4 cases. (left) Time is
scaled with the characteristic diffusion time, D2/k. (right) Time is scaled with the characteristic time for
the growth of instabilities in the TBL tc, equation (21).
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[25] A limitation of our parameterizations is that they were
determined for an isoviscous fluid. Planetary materials have
a more complex rheology, and in most cases their viscosity
strongly depends on temperature. If the thermal viscosity
contrast is large enough, a conductive lid is generated at
the top of the fluid, and the heat transfer through the fluid
is substantially reduced [e.g., Davaille and Jaupart, 1993;
Moresi and Solomatov, 1995; Deschamps and Sotin, 2000].
For a volumetrically heated fluid, Davaille and Jaupart
[1993] have shown that most of the viscosity contrast is
accommodated by the conductive lid, and that the fluid layer
beneath the lid behaves as an isoviscous fluid. Combined
with appropriate corrections accounting for the presence of
a stagnant lid at the top of spherical shells [e.g., Davaille and
Jaupart, 1993; Grasset and Parmentier, 1998] our para-
meterizations may thus be applied to the thermal evolution
of icy moons and dwarf planets. In particular, since they are

independent of the geometry, i.e., they do not depend on
the value of f, at least for the range of value we explored
(0.2 ≤ f ≤ 1.0), the parameterizations derived in this work may
be used to estimate thermal properties of planetary cores,
provided that these cores have already completed their crys-
tallization and that no intrinsic magnetic field is generated in
these bodies.

Figure 7. (a) Comparison between observed and modeled average temperatures for convection in mixed
heated shells. Modeled temperatures are calculated from equation (23). Light red triangles are fromMoore
[2008], dark red triangles 3D-Cartesian from Sotin and Labrosse [1999], green diamonds from O’Farrell
and Lowman [2010], orange circles from Shahnas et al. [2008], and blue squares from Deschamps et al.
[2010]. (b) Non-dimensional bottom heat flux versus average temperature. The color code for the different
data sets is the same as in Figure 7a.

Figure 8. Critical internal heating hc as a function of
Rayleigh number for several values of f. hc is calculated
following equation (23) and assuming that the upper limit
for the validity of equation (23) is Tc = 1.0.

Figure 9. Comparison between observed and modeled
temperature jump in the top TBL. Blue squares show the
best fit solution to equation (24), where the exponents of
Ra and h were fixed to a = 0.75 and b = 0.25, respectively.
Orange squares show the best fit solution to a modified ver-
sion of equation (24), in which the exponents of Ra and
h were set as free parameters of the inversion.
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