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C. Grigné,1 S. Labrosse,2 and P. J. Tackley1

Received 28 November 2005; revised 12 April 2007; accepted 30 April 2007; published 1 August 2007.

[1] A scaling law for the heat flux out of a convective fluid covered totally or partially by
a finitely conducting lid is proposed. This scaling is constructed in order to quantify the
heat transfer out of the Earth’s mantle, taking into account the effect of the dichotomy
between oceans and continents, which imposes heterogeneous thermal boundary
conditions at the surface of the mantle. The effect of these heterogeneous boundary
conditions is studied here using simple two-dimensional models, with the mantle
represented by an isoviscous fluid heated from below and continents represented by
nondeformable lids of finite thermal conductivity set above the surface of the model. We
use free-slip boundary conditions under the oceanic and continental zones in order to
study in an isolated way the possible thermal effect of continents, independently of all
mechanical effect. A systematic study of the heat transfer as a function of the Rayleigh
number of the fluid, of the width of the lid, and of its thermal properties is carried out. We
show that estimates of continental lithosphere thickness imply a strong insulating effect
from continents on mantle heat loss, at least locally. The heat flux below continents was
low in the past and of the order of the present one if the continental thickness has remained
broadly constant over the Earth’s history.

Citation: Grigné, C., S. Labrosse, and P. J. Tackley (2007), Convection under a lid of finite conductivity: Heat flux scaling and

application to continents, J. Geophys. Res., 112, B08402, doi:10.1029/2005JB004192.

1. Introduction

[2] The clear dichotomy at the surface of the Earth
between oceans and continents implies heterogeneous
boundary conditions at the surface of the convective mantle.
The oceanic lithosphere is recycled into the mantle, and can
be considered as the active upper thermal boundary layer of
the mantle. Continents, due to their chemical buoyancy and
to their strength, do not participate in mantle convection.
Estimates of mantle heat flux under stable continental
shields are low, of the order of 7–15 mW m�2 [Pinet et
al., 1991; Guillou et al., 1994; Jaupart et al., 1998], while
the mean oceanic heat flux is close to 100 mW m�2, which
indicates a strong insulating effect of continents on mantle
heat loss.
[3] We construct a scaling law for the heat flux out of a

system covered either partially or totally by a lid of finite
conductivity, which represents a continent. The purpose of
the present study is to better understand the ratio between
the continental and the oceanic heat flux in the present Earth
and in the past. While the mantle was hotter in the past,
yielding higher heat flux, geochemical data suggest that
continental geothermal gradients in the Archean were not

much different from present ones [Bickle, 1978; England
and Bickle, 1984; Boyd et al., 1985]. We aim to study this
counterintuitive feature, referred to as ‘‘the Archean para-
dox,’’ with an approach that takes into account the different
thermal boundary conditions seen by the mantle below
oceans and below continents.
[4] A better understanding of the heat transfer in a system

with two types of thermal boundary condition is also
important in reconstructions of the thermal history of the
Earth. Several studies [e.g., Christensen, 1985; Conrad and
Hager, 1999; Korenaga, 2003; Grigné et al., 2005] have
pointed out the contradictions between geochemical data
and geophysical parameterized approaches that track back
the history of heat loss out the Earth’s mantle: Standard
parameterized models predict a too rapid cooling of the
Earth at the beginning of its history, leading to a low
present-day secular cooling rate, which, added to the
internal heat production derived from geochemical esti-
mates of radioactive elements concentrations in the mantle,
cannot explain the observed present-day heat loss of the
Earth. Grigné and Labrosse [2001] proposed that this
problem of ‘‘missing heat’’ could be solved by introducing
the thermally insulating effect of continents to slow down
mantle cooling. The models in that study were, however,
simple, considering perfectly insulating continents and
assuming an oceanic heat flux not influenced by the con-
tinents. A better quantification of the effect of continents on
heat transfer across the mantle is clearly necessary. In
particular, in the history of continental growth [e.g.,
Collerson and Kamber 1999], we need to know when
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Switzerland.

2Sciences de la Terre, Ecole Normale Supérieure de Lyon, Lyon,
France.

Copyright 2007 by the American Geophysical Union.
0148-0227/07/2005JB004192$09.00

B08402 1 of 17

http://dx.doi.org/10.1029/2005JB004192


continental size is important for the thermal evolution of the
Earth.
[5] Guillou and Jaupart [1995] built experimental models

to study the effect of continents on mantle dynamics, using
fixed rigid lids of finite conductivity to represent continents.
They obtained a particular pattern of convection, with a
zone of upwelling beneath the continent. In this paper, we
construct numerical models of convection using a similar
approach: Continents are represented by finitely conducting
nondeformable lids, while the oceanic zones are the free
isothermal parts of the surface. The mechanical boundary
conditions are, however, different: The models by Guillou
and Jaupart [1995] had rigid boundary conditions on their
whole surface, while we impose a no shear stress condition.
[6] The choice of free-slip boundary conditions is made

in order to fully isolate the purely thermal effect of a lid of
finite conductivity. With rigid boundary conditions on the
whole surface or on a part of the model, the upper part of the
fluid under the zone where a rigid condition is imposed
becomes stagnant, with heat transferred by conduction
through this part of the fluid, which increases the effective
thickness of the imposed lid and leads to a higher thermal
insulation. The total effective thickness of the conductive
part in the model, that is to say the imposed solid lid and the
stagnant fluid, is not a well constrained parameter, since the
thickness of the stagnant part of the fluid is not known a
priori. We aim to study purely the insulating effect of the lid
and thus made the choice to use free-slip boundary con-
ditions in order to fully control the thickness of the insulating
lid. The effects of the mechanical coupling between the fluid
and the lid will be addressed in another paper.
[7] We also limit this study to models of moderate aspect

ratio. The presence of the lid modifies the pattern of
convection in the fluid, generating a large-scale horizontal
circulation, with convection cells wider than those obtained
with no lid. Experiments in the present paper are carried out
in boxes of aspect ratio less than or equal to 4. For the case
of a lid partially covering the fluid, the lid is in the center of
the model, and two convection cells develop, one in each
half of the model. These convective cells are always
partially covered by the lid, and there is not enough space
in the model for the development of cells that are not
covered by the lid. The results obtained for larger boxes
will be presented in another paper.
[8] A scaling law for the heat transfer efficiency in such

models partially covered by a finite conductivity lid was
proposed by Lenardic and Moresi [2003], but the effect of
the geometry of the flow on the heat transfer efficiency was
not addressed in their scaling analysis. In the present study,
the aspect ratio of the cells is a parameter on which the heat
flux depends explicitly.
[9] After a presentation of the model, a scaling law for

convection under a lid covering the entire surface of the
model is constructed. Results obtained for a partial lid are
presented in section 3, and implications for the Earth are
presented in section 4.

2. Model

[10] We construct two-dimensional Cartesian models of
convection for an isoviscous fluid under a lid of finite

conductivity. A sketch of the model and the notations used
is presented in Figure 1. Shear stress free mechanical
boundary conditions are applied on the horizontal bound-
aries of the model, and periodicity is imposed on the vertical
walls. Regarding the thermal boundary conditions, a fixed
temperature is imposed at the base of the model. The lid, set
on top of the fluid, can cover either a part or all of the
surface of the fluid. In the former case, a fixed temperature
of zero is imposed at the surface of the fluid outside the lid.
We impose continuity of heat flux and of temperature at the
interface between the fluid and the lid. A fixed temperature
of zero is imposed on the top of the lid, as well as on its
vertical walls in the case of a partial lid. We denote by dc the
thickness of the lid, kc its thermal conductivity and a its
width. dc, kc and a are free parameters, whose effects are
explored in a systematical way. For the sake of simplicity,
we consider only bottom heated cases and have no internal
heating in the models.
[11] For the fluid, we solve the equations of convection

for a fluid at infinite Prandtl number, using the code Stag
[e.g., Tackley, 1993]. We use a regular grid with square cells
and 128 cells in the vertical direction, so that our resolution
is 512 � 128 for models of aspect ratio 4. Resolution tests
were carried out to compare results obtained with this
resolution and those obtained with a 1024 � 256 grid. At
Rayleigh numbers smaller than or equal to 107, all studied
values with the 512 � 128 resolution, specifically mean
temperature, mean local heat flux below the lid and below
the free part of the model and mean heat flux on the whole
surface of the model, were within 0.6% of the ones obtained
with a 1024 � 256 grid. For Rayleigh numbers 107 < Ra �
108, the differences did not exceed 1.4%. A regular grid is
also added on top of the grid of the fluid, to model
the diffusive heat transfer through the conductive lid. The
horizontal resolution in the lid is equal to that within the
fluid. The vertical resolution depends on the thickness of
the lid, and we choose a number of cells inside the lid so
that the vertical resolution within the lid is equal or better
than that in the fluid.
[12] The finite conductivity lid imposes a ‘‘mixed’’

condition at its base [Sparrow et al., 1964]. Heat is carried
through the lid only by conduction. If the lid is wide enough
compared to its thickness, that is to say if lateral transfer of
heat can be neglected inside the lid, the equation for the
temperature Tc of the lid is

@Tc
@t

¼ kc

@2Tc

@z2
; ð1Þ

where kc is the thermal diffusivity of the lid. We denote by
TL the temperature at the interface between the lid and the
fluid. For a stationary state with no internal heating, the heat
flux through the lid is

qc ¼ �kc
@Tc
@z

¼ �kc
TL

dc
; ð2Þ

where z = 0 at the surface of the fluid and z is positive
downward. The continuity of the heat flux through the
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interface between the lid and the fluid leads to the following
equilibrium:

k
@T

@z

� �
z¼0

¼ kc
TL

dc
: ð3Þ

Using the depth d of the fluid as the characteristic length,
equation (3) gives in a dimensionless form:

@T

@z

� �
z¼0

� kc

k

d

dc
TL ¼ 0: ð4Þ

A dimensionless number, named the Biot number [Sparrow
et al., 1964], can be introduced:

B ¼ kc

k

d

dc
: ð5Þ

This number describes the thermal boundary condition seen
by the fluid under the lid. If the thermal conductivity kc of
the lid is very low, or if its thickness dc is large, the Biot
number is small. The boundary condition (equation (4)) is
then reduced to (@zT)0 = 0, that is to say a condition of fixed
zero heat flux. On the other hand, for a thin or very
conductive lid, B is large and the controlling term in
equation (4) is TL = 0. The thermal boundary condition thus
varies from one of fixed heat flux for low values of the Biot
number B to one of fixed temperature for large values of B.
[13] To obtain the boundary condition given by equation (4),

the hypothesis was made that there is no horizontal transfer
of heat within the lid. For a lid of finite width this
hypothesis is not accurate, and one must take into account
the lateral transfer of heat. This case has been considered by
Hewitt et al. [1980] and Guillou and Jaupart [1995], who
showed that the lid is less insulating when significant lateral
heat transfer occurs, that is to say for thick lids. Tests were
carried out during the present study to quantify the reduc-
tion of thermal insulation with thicker lids; the results are

presented in the appendix. For the full lid case, the boundary
condition is always well described by the externally
imposed Biot number. The lateral transfer of heat has a
significant effect only for the partial lid cases. In order to be
able to quantify the insulating effect of a lid using the Biot
number defined a priori using simply kc and dc (equation (5)),
we chose to carry out experiments with lids whose thickness
does not exceed 0.1d. This value is chosen because hori-
zontal heat diffusion is then almost negligible for the value
of the heat flux under the lid. For the numerical implemen-
tation, this value is also large enough to allow a significant
number of grid points in the lid.
[14] For the Earth, if one assumes the thermal conductivity

of the continental lithosphere to be the same as that of the
mantle, the Biot number is then the ratio between the
thickness of the mantle and that of the continental litho-
sphere. Using measurements of heat flux in precambrian
continental shields in North America and Africa and esti-
mates of concentrations of radioactive elements in the
continental crust and subcontinental lithosphere, Jaupart
and Mareschal [1999] obtained a continental lithosphere
thickness of between 200 and 330 km. Rudnick et al.
[1998], from heat flux measurements and geochemical data
in subcontinental xenoliths, gave estimates of continental
lithosphere thickness ranging from 150 to 200 km. A new
approach was introduced by Michaut and Jaupart [2004]
using models in which the continental lithosphere is not in
steady state, which leads to a nonuniqueness of the solution
for the heat flux at the base of the lithosphere and for its
thickness, and they obtained possible values of the thickness
of between 200 and 270 km for the Kaapvaal craton, South
Africa, and the Canadian craton. The range of thickness
150–330 km corresponds to 0.05d < dc < 0.11d for whole
mantle convection, and 0.21d < dc < 0.47d for upper mantle
convection. This range justifies the choice of dc = 0.1 d in
numerical experiments for whole mantle convection. It
corresponds to 8 < B < 20 for whole mantle convection
and 2 < B < 7 for upper mantle convection. During this
study, experiments were carried out for Biot numbers
ranging from 0 to 100.

3. Convection Under a Total Lid

3.1. Patterns of Convection With Insulating
Horizontal Boundaries

[15] Laboratory experiments of convection never reach
perfect conditions of fixed temperature, and these condi-
tions are only approached using very conductive horizontal
walls. The differences that may appear between the case of
highly conductive boundaries and the theoretical case of a
perfect isothermal condition have thus been studied inten-
sively, in order to understand how laboratory experiments
could differ from theoretical studies. However, the case of
poorly conductive boundaries has received far less study.
[16] Theoretical studies [Sparrow et al., 1964; Hurle et

al., 1967] predicted long wavelengths for convective rolls at
the onset of convection when the fluid is bounded by poorly
conducting horizontal walls. Possible applications of this for
the pattern of convection in the Earth were proposed early
on: Chapman and Proctor [1980] and Chapman et al.
[1980] carried out a study of the onset of convection when
a heat flux is imposed on the horizontal boundaries of the

Figure 1. Model and notations used in the present study.
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model and showed that short-wavelength modes develop
fast but are unstable for all longer wavelength modes, and
convective cells then keep on growing with time and are
only limited by the dimensions of the model. Chapman et
al. [1980] then concluded that a boundary condition of
fixed heat flux may be more appropriate than a condition of
fixed temperature for the Earth. Numerical experiments
with fixed heat flux on the two horizontal walls of the fluid
were also carried out by Hewitt et al. [1980] and they easily
obtained convective cells of aspect ratio wider than 5.
[17] These studies all considered symmetrical conditions

between the top and the base of the model. The case of
nonsymmetrical conditions has received far less attention.
One of the rare studies with nonsymmetrical boundaries was
carried out by Ishiwatari et al. [1994] using a numerical
approach. They imposed fixed heat flux or fixed tempera-
ture independently at the base and the top of the fluid, with or
without internal heating. Experiments were done at Ra = 104

and with a Prandtl number of 1, which restricts the com-
parison with the present study for which the Prandtl number
is infinite. Ishiwatari et al. [1994] obtained a long wave-
length of convection only if a fixed heat flux is imposed
both at the base and the top of the fluid. Lenardic and
Moresi [2003] also carried out numerical experiments of
convection with a fixed temperature at the base of the fluid
and a lid of finite conductivity covering the surface of the
model. Unlike in this study, the mechanical boundary
conditions were rigid in their experiments. With these
asymmetrical conditions and at high Rayleigh numbers
larger than 107, they obtained convective cells of aspect
ratio close to one in models of aspect ratio 4.
[18] In the present study, with a fixed temperature at the

base of the fluid, a finitely conducting lid covering the
entire surface and free mechanical boundary conditions, we

did not obtain a significative increase in the wavelength of
convection compared to the case of isothermal boundary
conditions: The cells generally have an aspect ratio close to
one.
[19] The main difference from the isothermal case con-

cerns the thermal state of the fluid. Under an insulating lid
the temperature of the fluid is higher than for isothermal
conditions, and for a given Rayleigh number, the mean heat
flux is lower. The horizontal profiles of heat flux at the
surface and at the base of the fluid are presented in Figure 2,
for either isothermal boundary conditions or a finite con-
ductivity lid. With isothermal conditions, the heat flux
profiles at the base and at the surface are exactly symmet-
rical, as expected. With a lid, the horizontal profile of heat
flux at the base of the fluid is similar to that without a lid,
whereas the heat flux profile at the surface is flatter, with
smaller amplitude lateral variations (see Figure 2). Let qb

B(x)
be the heat flux at the bottom of the model for a Biot
number B, and qb

1(x) the corresponding quantity for the
case of no lid, that is to say B !1. Figure 3 shows that the
ratio qb

B(x)/qb
1(x) is independent of x outside vertical

plumes. On the other hand, the ratio qt
B(x)/qt

1(x) for the
heat flux at the surface of the model depends on x, and the
flattening of the profile qt

B(x)/qt
1(x) increases as B decreases,

so that for this example at Ra = 107, the surface heat flux can
be considered to be quasi-uniform for Biot numbers smaller
than 20 (Figure 2).

3.2. Scaling Law for the Temperature and the Heat
Flux Under a Global Lid

[20] When a lid of finite conductivity is set on top of the
entire surface of the model, a temperature higher than in the
case of an isothermal condition is obtained, as well as a lower
mean heat flux for a given Rayleigh number. Examples of

Figure 2. Time-averaged heat flux (left) at the surface of the fluid and (right) at its base, for convection
at Ra = 107 in a model of aspect ratio 2, for isothermal boundary conditions (solid line), or with a lid of
finite conductivity at the surface (dashed and dotted lines), for variable Biot numbers. A hot upwelling is
located at x = 0, and a cold downwelling is located at x = 1.
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vertical profiles of horizontally averaged temperature are
presented in Figure 4.
[21] These profiles are classical ones for a convective

fluid. Even though the thermal conditions imposed at the
base and at the surface of the fluid are not symmetrical any
more, the profiles show that the symmetry between the
upper and lower boundary layers is maintained, with simply
a nonzero temperature at the surface of the fluid. The mean
temperature of the fluid for a given Rayleigh number is
higher for a smaller Biot number, that is to say for a more
insulating lid. For a fixed Biot number, the fluid is hotter at
higher Rayleigh number.

[22] Ti is the mean temperature of the fluid, which is also
the homogeneous temperature in the core of the convective
cells. With symmetrical boundary layers, we can write

Ti ¼
1þ TL

2
; ð6Þ

where TL is the temperature at the surface of the fluid. This
hypothesis is not perfectly relevant at low Rayleigh
numbers (Ra � 105), for which we always obtain a
temperature TL at the interface slightly higher than 2Ti � 1,

Figure 4. Profiles of horizontally averaged temperature for a convection under a total lid (solid line) or
with no lid (dotted line), at Ra = 105 and Ra = 108.

Figure 3. (left) Ratio qt
B(x)/qt

1(x) and (right) qb
B(x)/qb

1(x) for the case presented in Figure 2.
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but is observed for higher Rayleigh numbers more relevant
to the Earth.
[23] When a fixed temperature T0 is imposed, a boundary

layer model can be used, which gives the following mean
heat flux [e.g., Turcotte and Oxburgh, 1967; Turcotte and
Schubert, 1982]:

q ¼ 2k dT
u

pk‘

� �1=2
; ð7Þ

where k is the thermal conductivity of the fluid, k its
diffusivity, dT the temperature jump through the thermal
boundary layer, and u is the horizontal velocity in the
horizontal boundary layers, considered constant and uni-
form along the width ‘ of the convective cell. At the surface
of the fluid, underneath the finitely conducting lid, the heat
flux is not of the same form as the flux obtained when a
fixed temperature is imposed. Therefore the model given by
equation (7) cannot be used. On the other hand, the
boundary condition at the base of the fluid is one of fixed
temperature, and the heat flux has the form of the one
obtained with no lid (see Figures 2 and 3). Equation (7) can
thus be used at the base of the fluid. In a dimensionless
form, the temperature jump across the lower boundary
layer is 1 � Ti. The characteristic velocity used for the
nondimensionalization is the diffusive one: [u] = k/d. The
dimensionless mean heat flux at the base of the fluid is
then

Qb ¼ 2 1� Tið Þ U

pL

� �1=2

; ð8Þ

where L is the dimensionless width of the convective cell
(L = ‘/d). The form of the observed horizontal velocity
profiles in the boundary layers stays broadly the same as
in experiments with no lid, and the horizontal velocity is
the same in the upper and lower boundary layers. We
then use the same loop model as the one introduced in
Grigné et al. [2005], with the same forms for the
horizontal profiles of vertical and horizontal velocities.
Grigné et al. [2005] showed that the form of the vertical
velocity at middepth of a convective cell was not linear
but that the width on which the vertical velocity is not
negligible was always close to the half depth of the
model, and we denoted this width by l. The horizontal
velocity u can then be written

u ¼ k
d

Ra

2
ffiffiffi
p

p
� �2=3 dT

DT

� �2=3 ‘=dð Þ1=3

‘
d
þ d3

8l3

� �2=3 ; ð9Þ

with l ’ 0.5 d, where d is the depth of the fluid. dT is
the temperature difference across the thermal boundary
layer. DT is the temperature difference between the base
of the fluid and the surface of the lid. This difference DT
is used as the characteristic temperature to render
equation (9) nondimensional. The characteristic length is

the depth d of the fluid. We thus obtain for the dimen-
sionless velocity U:

U ¼ Ra

2
ffiffiffi
p

p
� �2=3

1� Tið Þ2=3 L

L2 þ L
8l3

� �2=3 : ð10Þ

Equations (8) and (10) then lead to the following mean
heat flux at the base of the model:

Qb ¼
2

p

� �2=3

Ra1=3
1� Tið Þ4=3

L2 þ L
8l3

� �1=3 : ð11Þ

Equation (4), using equation (6) to replace TL by Ti, can
be written

Qt ¼ B 2Ti � 1ð Þ; ð12Þ

where Qt is the mean heat flux at the surface of the
model. The equilibrium between Qt and Qb yields

1� Tið Þ4

2Ti � 1ð Þ3
¼ B3

Ra

p2

4
L2 þ L

8l3

� �
: ð13Þ

We thus obtain a scaling for the mean temperature Ti of
the fluid as a function of the Rayleigh number Ra, the
Biot number B and the width L of the convective cells.
Knowing Ti, the mean heat flux can be obtained using
equation (12). The Rayleigh number Ra is here defined
using the temperature jump DT between the bottom of
the fluid and the top of the lid, and thus does not
describe exactly the vigor of the convection in the fluid.
The effective temperature jump across the fluid is not
known a priori, but depends on the Biot number B. The
effective Rayleigh number Raeff = Ra (1 � TL) for the
fluid can thus be computed only a posteriori.
[24] Figure 5 presents the scaling law given by equations

(12) and (13) for the temperature Ti and for the mean heat
flux compared to the values obtained by the full computa-
tion of the equations of convection, and a very good
agreement is obtained. One can, however, notice that the
predicted heat flux is slightly too low at Ra = 105. To
compute the heat flux, we use Qt = B(2Ti � 1). This
expression depends on the hypothesis TL = 2Ti �1
(equation (6)), which is not perfectly correct at low
Rayleigh numbers, for which we observe TL > 2Ti � 1,
yielding a predicted heat flux that is too low.

4. Convection Under a Partial Lid

4.1. Pattern of Convection

[25] We showed in section 3.1 that no modification of the
pattern of convection was obtained, compared to isothermal
boundary conditions, when a lid of finite conductivity
covers the entire surface of the model. However, putting a
partial lid of finite conductivity on a fluid whose surface is
otherwise isothermal strongly modifies the pattern of con-
vection: A zone of hot upwelling appears under the lid. This
result was already obtained in laboratory experiments by
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Guillou and Jaupart [1995] and in numerical experiments
that include insulating continents [e.g.,Gurnis, 1988;Gurnis
and Zhong, 1991; Lowman and Jarvis, 1993; Zhong and
Gurnis, 1994; Trubitsyn and Rykov, 1995; Bobrov et al.,
1999; Lowman and Gable, 1999; Yoshida et al., 1999;
Honda et al., 2000]. Figure 6 presents the temperature
fields obtained for two values of the Rayleigh number under
a lid with a Biot number B = 10. At Ra = 105 convection is
stationary with a fixed hot plume centered under the lid. At
higher Rayleigh numbers convection is time-dependent and
exhibits a set of small plumes under the lid.

4.2. Two Regimes of Cellular Circulation

[26] In the rest of this paper, two regimes of cellular
circulation will be described: The first one, named ‘‘free
loop,’’ is the one obtained when sets of hot and cold
plumes are present on wide zones of the model (e.g., the
case Ra = 108 in Figure 6). The second one, named ‘‘forced
loop,’’ is obtained when the circulation can be described as
real convective cells (e.g., Ra = 105 in Figure 6). The
difference and transition between these two regimes is
presented hereafter.

Figure 5. (left) Temperature and (right) mean heat flux as a function of the Biot number, predicted by
the scaling law proposed in this paper, compared to the values obtained by numerical models of
convection (symbols), for different Rayleigh numbers and for cells of width L = 1 or L = 2, obtained in
models of aspect ratio 2 and 4, respectively.

Figure 6. Temperature fields obtained under a lid with a Biot number B = 10 at Rayleigh numbers (left)
105 and (right) 108. The case in Figure 6 (left) is in the forced loop regime, and the one in Figure 6 (right)
is in the free loop regime (see text for explanations).
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[27] Figure 7 presents the horizontal profiles of tempo-
rally averaged velocity at middepth for Ra = 106 and B = 0
for a model of aspect ratio 4, for lid width ranging from 1.0
to 1.75, as well as snapshots of the corresponding tempera-
ture fields. For a = 1 there is a clear contrast between the
vertical velocity of the hot and cold plumes. For wider lids,
the velocity of the hot plume under the lid increases gradually
and becomes equal to that of the cold plume for a = 1.75.
Figure 7 (right) shows that this evolution corresponds to the
transition between an upwelling with several small plumes
and an upwelling with a single hot plume under the center of
lid. We thus observe a transition between two regimes when
the width of the lid is increased.
[28] The regime that was named free loop is obtained for

narrow lids, and the forced loop regime is obtained for wide
lids, or for low Rayleigh numbers for which convection is
stationary. In the former regime, the lid is narrow enough
for the upper boundary layer, under the fixed temperature
zone, to cool and reach the threshold thickness for cold
plumes to form before the vertical boundary of the model is
encountered. For the latter, the lid is too wide compared to
the size of the model to let a free cellular circulation
develop, and the convection pattern is forced by the size
of the model. These two regimes are shown schematically in
Figure 8.

5. Scaling Laws

[29] To construct a scaling law for the heat flux out of the
model, four parameters have to be considered: the width of

Figure 7. (left) Horizontal profiles of temporally averaged vertical velocity at middepth at Ra = 106

under a perfectly insulating continent of variable width and (right) snapshots of the corresponding
temperature fields. The transition from free to forced loop regime as the continental size increases is
illustrated.

Figure 8. Schemes of the two regimes of cellular circula-
tion under a lid.
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the model, the width of the lid, the Biot number, and the
Rayleigh number of the fluid. For simplicity, we will first
consider the case of a perfectly insulating lid (B = 0). To
simplify the writing, we will also refer to the lid as
‘‘continent,’’ and to the zone outside the lid as ‘‘ocean’’,
and the fluid will be named ‘‘mantle.’’ We remain, however,
aware of the simplicity of the model, and one must keep in
mind the fact that we study an isoviscous fluid under a
nondeformable lid of finite conductivity.

5.1. Zero Heat Flux Under the Continent

5.1.1. Heat Flux Scaling
[30] For the oceanic part of the surface, we can use a

model of cooling by conduction of a half-space, and with a
perfectly insulating continent, we can consider that the
upper boundary layer starts to cool and thicken only beyond
the edge of the continent. Using a system of reference such
that x = 0 is the position of the center of the continent, the
edge of the continent is located at x = a/2 and the oceanic
heat flux in a dimensionless form can be written

qoc xð Þ ¼ DToc
U

p x� a=2ð Þ

� �1=2

; ð14Þ

where U is the mean horizontal velocity at the surface and
DToc is the temperature jump across the thermal boundary
layer. We observe in our models that the mantle is thermally
well mixed in the core of the convective cell, and Ti denote
this homogeneous temperature. The temperature jump DToc
is then

DToc ¼ Ti: ð15Þ

We observe that the horizontal velocity U is reduced
compared to the case of simple Rayleigh-Bénard convection
with no continent. The profiles of horizontally averaged
temperature in models with a partial continent have a form
similar to what is obtained with a full continent, shown in
Figure 4, with temperature jumps that are equal through the
upper and bottom thermal boundary layers. The total
dimensionless temperature jump across the mantle is there-
fore notDT = 1, as would be obtained with no continent, but
DT = 2 (1� Ti). The insulating effect of the continent gives a
temperature Ti greater than 0.5, so that DT < 1. This
decreased temperature jump across the model explains the
observed reduced velocity, but the relationship is not
straightforward: The high temperature Ti implies that the
buoyancy available to drive hot upwellings is reduced
compared to the case with no continent, but there is more
buoyancy available for cold downwellings. These two
opposite effects lead to a velocity U which is not a simple
function of the temperature jump 1 � Ti.
[31] However, we observe empirically that the values of

the temperature Ti and the mean velocity U are always
coupled in such a way that the observed heat flux qoc(x)
over the oceanic part of the model is very close to the heat
flux that would come out of a normal convective cell of
width L, with a mean temperature Tm = 0.5 and with the
upper boundary layer starting to cool at the position x = a/2,
that is to say

qoc xð Þ ¼ Tm
Urb

p x� a=2ð Þ

� �1=2

; ð16Þ

where Urb is the horizontal velocity for simple Rayleigh-
Bénard convection for a convective cell of width L. This
velocity is [Grigné et al., 2005]

Urb ¼
Ra

2
ffiffiffi
p

p
� �2=3

T2=3
m

L

L2 þ L
8l3

� �2=3 ; ð17Þ

where l ’ 0.5.
[32] An example is shown in Figure 9, for Ra = 106, a

continent of width a = 1 and a convective cell of width L = 2.
The observed time-averaged heat flux is presented, as well
as the models given by equations (14) and (16), showing
that these two models equally well fit the observed heat
flux.
[33] Equations (14) and (16) give for the horizontal

velocity:

U ¼ Urb

Tm

Ti

� �2

: ð18Þ

The mean horizontal velocities obtained in models with
different Rayleigh numbers and continental widths are
presented in Figure 10 as a function of the internal
temperature Ti, along with the model given by equation (18),
and it shows a good agreement.

Figure 9. Observed time-averaged surface heat flux with
the center of the continent located in x = 0, for a continent of
width 1 (edge of the continent at the position x = 0.5). Solid
circles indicate the model given by equation (14), and open
squares indicate the model given by equation (16).
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[34] From equation (16), we can derive the mean heat
flux over the oceanic part of the model:

Qoc ¼
1

L� a=2

Z L

a=2

Tm
Urb

p x� a=2ð Þ

� �1=2

dx

¼ 2 Tm
Urb

p L� a=2ð Þ

� �1=2

:

ð19Þ

With Urb given by equation (17), we obtain

Qoc ¼
2

p

� �2=3

Ra1=3
T4=3
m

L2 þ L
8l3

� �1=3 L

L� a=2

� �1=2

: ð20Þ

The heat balance in the mantle for the case of a perfectly
insulating continent is

L� a

2

� �
Qoc ¼ L Qb; ð21Þ

so that the mean heat flux at the base of the model is

Qb ¼
2

p

� �2=3

Ra1=3
T4=3
m

L2 þ L
8l3

� �1=3 L� a=2

L

� �1=2

; ð22Þ

which is simply the mean heat flux obtained for Rayleigh-
Bénard convection, multiplied by (1 � a/(2L))1/2. This
model is presented with solid lines in Figure 11 and nicely
predicts the observed heat flux.

5.1.2. Temperature
[35] For a global lid with a fixed Biot number, the mean

temperature of the fluid is higher for a higher Rayleigh
number (see Figure 5). This trend is much less obvious for a
partial lid, especially for highly insulating lids. Temper-
atures obtained for a perfectly insulating lid for various
Rayleigh numbers and various widths of the lid are pre-
sented in Figure 12.
[36] The form of the mean temperature Ti as a function

of the lid width a is relatively complex. One can for
instance study the form of Ti as a function of a for the
case Ra = 106 (stars in Figure 12): Ti first increases
linearly with a, up to a = 1, and then stays broadly
constant up to a = 1.75, before it increases again. The
same behavior is observed for Ra = 107 (triangles), but with
a plateau observed for 1.5 < a < 2. The trend Ti = f (a) is
more monotonic for Ra = 105 and Ra = 108. These trends
can be associated with the two regimes of cellular circula-
tion defined in section 4.2.
[37] For Ra = 106, the transition between the two regimes

of cellular circulation for a going from 1.0 to 1.75 (see
Figure 7) corresponds exactly to the plateau in the temper-
ature increase. The same behavior is observed for Ra = 107,
but for a going from 1 to 2. For Ra = 105 the convection is
always steady state, whatever the continental width. In
contrast, for Ra = 108 there are always several hot plumes
under the continent. These two last cases thus have a more
continuous trend than the ones where there is a clear
transition between the two flow regimes (Figure 12).
[38] From the global heat balance we already obtained a

scaling law for the heat flow at the base of the model
(equation (22)). To get a scaling for the temperature in the
model, we can compare that expression to another, inde-
pendent expression, obtained by noting that the form of this

Figure 10. Observed time-averaged horizontal velocity at
the surface of models of aspect ratio 4, as a function of the
mean temperature Ti, for different Rayleigh numbers
(symbols) and for different widths of the continent. The
solid line is the model given by equation (18).

Figure 11. Mean heat flux at the base of models of aspect
ratio 4, under a perfectly insulating continent of variable
width. Solid lines correspond to the model given by
equation (22).
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flux is similar to the one obtained in a normal Rayleigh-
Bénard convective cell, as was the case for a lid covering
the whole surface of the model (see Figures 2 and 3 and
section 3.1). The temperature jump to be considered at the
base of the mantle is 1 � Ti, so that the mean heat flux at the
base of the model for a cell of width L should be written

Qb ¼
2

p

� �2=3

Ra1=3
1� Tið Þ4=3

L2 þ L
8l3

� �1=3 : ð23Þ

However, the hypothesis that the heat flux at the base of the
model corresponds to a cell of width L is verified only for
the regime named forced loop, where the convective cell
actually spreads over the whole width L of the model. For
the free loop regime, with a cellular circulation consisting of
a set of small plumes, one can consider as a first
approximation that for each hot plume, there is a correspond-
ing cold plume at a distance L � a/2 (Figure 8). Hence the
mean heat flux at the base of the model is not the one given
by equation (23) but instead

Qb ¼
2

p

� �2=3

Ra1=3
1� Tið Þ4=3

L� a=2ð Þ2þ L�a=2

8l3

� �1=3 : ð24Þ

[39] For the forced loop regime, equations (22) and (23)
give, for the mean temperature Ti,

Ti ¼ 1� Tm
L� a=2

L

� �3=8

; ð25Þ

and for the free loop regime, equations (22) and (24)
yield

Ti ¼ 1 � Tm
L� a=2

L

� �3=8 L� a=2ð Þ2þ L�a=2

8l3

L2 þ L
8l3

 !1=4

: ð26Þ

These two models are presented in Figure 12. The observed
temperatures almost all lie within the limits of these two
models. The free loop model is valid for narrow continents
for Ra � 106, and values tend toward the forced loop model
for larger continents.

5.2. Nonzero Heat Flux Under the Continent

[40] We first consider the case of an imposed heat flux
under the continent, and denote this heat flux by Qc.
Figure 13 shows that the mean oceanic heat flux decreases
linearly for increasing imposed continental heat flux for
continents of a given width. The slope a in the linear
relation between Qoc and Qc depends on the width a of
the continent:

Qoc ¼ Q0
oc � a að ÞQc; ð27Þ

where Q0
oc is the mean oceanic heat flux obtained for a

perfectly insulating continent (Qc = 0) of width a.
[41] To find the expression for the slope a(a), we assume

that equation (27) is still valid in the extreme case where the
continent is not insulating at all, that is to say in the case
where the mean heat flux under the continent is what would

Figure 12. Mean temperature of the fluid for various
Rayleigh numbers as a function of the continental width for
a model of aspect ratio 4. The continent is perfectly
insulating. The solid line is obtained for the free loop model
(equation (26)), and the dashed line is obtained for the
forced loop model (equation (25)).

Figure 13. Mean oceanic heat flux as a function of the
imposed heat flux under the continent for models of aspect
ratio 4, at Ra = 107. Symbols are the observed values.
Straight lines have the slope given by equation (32); a is the
width of the continent. The heat flux given by the dotted
line is the one obtained without continent.
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be obtained over the same zone with no continent. Using the
following form for the surface heat flux:

q xð Þ ¼ Tm
Urb

px

� �1=2

; ð28Þ

we compute this heat flux Qcz under the continental zone:

Qcz ¼
2

a

Z a=2

0

Tm
Urb

px

� �1=2

dx ¼ 2 Tm
2Urb

pa

� �1=2

: ð29Þ

The same computation can be done for the oceanic zone
between x = a/2 and x = L:

Qoz ¼
1

L� a=2

Z L

a=2

Tm
Urb

px

� �1=2

dx

¼ 2 Tm
Urb

p

� �1=2
L1=2 � a=2ð Þ1=2

L� a=2

 !
:

ð30Þ

For a perfectly insulating continent, the cooling of the
upper thermal boundary layer starts after the continental
zone, at x = a/2, and the mean oceanic heat flux Qoc

0 is
given by equation (19). In order for equation (27) to still be
valid when no continent is present, the following equation
must be correct:

Qoz ¼ Q0
oc � a að ÞQcz: ð31Þ

[42] Taking Qoc
0 , Qcz, and Qoz from equations (19), (29)

and (30), respectively, we obtain the slope a(a):

a að Þ ¼ a=2ð Þ1=2

L� a=2
L� a=2ð Þ1=2�L1=2 þ a=2ð Þ1=2

h i
: ð32Þ

These coefficients a(a) have been used to plot the solid
lines in Figure 13. The energy conservation in the mantle is

L Qb ¼ L� a

2

� �
Qoc þ

a

2
Qc: ð33Þ

Qoc is given by equation (27), with a(a) given by
equation (32) and Q0

oc by equation (19), which can also
be written

Q0
oc ¼ Qrb

L

L� a=2

� �1=2

; ð34Þ

where Qrb is the mean heat flux obtained for simple
Rayleigh-Bénard convection for a cell of width L. This
leads to the following expression for the mean heat flux
at the base of the mantle, when a fixed heat flux Qc is
imposed under the continent:

Qb ¼
L� a=2

L

� �1=2

Qrb þ
a=2ð Þ1=2

L
L1=2 � L� a=2ð Þ1=2
� �

Qc:

ð35Þ

[43] All the results obtained during the present study with
an imposed continental heat flux are plotted in Figure 14
and indicate a very good agreement between the scaling law
given by equation (35) and the heat flux observed in full
models of convection.
[44] To extend this scaling law to the case of a continental

lid of finite conductivity with a given thickness, we use, for
the heat flux Qc under the continent, the flux that is obtained
for the case of a continental lid covering the whole surface
of the model. There is no algebraic solution for this heat
flux under a total lid, as shown in section 3.2, and we use
equations (12) and (13) to get the heat flux under the
continent. The mean heat flux can then be computed as a
function of the Rayleigh number of the mantle, the width of
the convective cell L, the Biot number B and the width a of
the continent.
[45] The comparison between this scaling law and the

observed values of the mean heat flux in two-dimensional
models of convection is presented in Figure 15, which
shows that our scaling nicely predicts the observed values
of the heat flux. However, the simplification that consists of
using the scaling law obtained for a total lid in the case of a
partial continent is accurate only for low Biot numbers, that
is to say for a continent with a significant insulating effect,
and for large enough continents. In those cases only, the
observed heat flux under a partial lid is close to that
obtained for a total lid. Figure 15 indicates a poor
agreement between our scaling law and the observed heat
flux at Ra = 105 for Biot numbers B = 100 and B = 20. The
prediction is also unsatisfactory at Ra = 106 for B = 100.

Figure 14. Mean heat flux obtained in models with an
imposed fixed heat flux under the continent, as a function of
the heat flux predicted by equation (35). Results are
obtained for models of aspect ratio between 2 and 6 and
Rayleigh numbers 105 < Ra < 108.
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[46] These discrepancies can be understood by going
back to the significance of the Biot number. The Biot
number represents the maximum heat flux that can be lost
through the continent. Indeed, if no heat is lost laterally
inside the lid, the boundary condition at the surface of the
mantle under the continent is written (@zT)z=0 = B TL. The
temperature TL at the interface between the continent and
the mantle cannot be larger than 1, and the Biot number is
thus the maximum dimensionless heat flux (@zT)z=0 under
the continental lid. A comparison between this value and the
heat flux obtained at a given Rayleigh number with no
continent gives a good insight of the insulating efficiency of
a continental lid. At Ra = 105 and Ra = 106, the dimen-
sionless heat flux obtained for convective cells of width L= 2
with no continent is 8.42 and 16.6, respectively. A continent
of Biot number B � 20 then has a low thermal blanketing
effect at both these Rayleigh numbers. The heat fluxes
obtained under the partial continent for the cases presented
in Figure 15 are then significantly larger than the ones
predicted in the case of a full lid, which renders the method
used here inaccurate. The scaling law given by equation (35),

using the actual observed continental heat flux for Qc

instead of the scaling law given in section 3.2, is plotted
with dashed lines in Figure 15 for the cases B = 100 at
Ra = 105 and Ra = 106. This shows that the discrepancy
between the parameterization and the observed heat flux at
low Rayleigh numbers is due to the simplification that we
made, consisting of using the predicted heat flux for a total
lid in the case of a partial lid.
[47] Equations (33) and (35) allow the derivation of the

mean oceanic heat flux:

Qoc ¼
L

L� a=2

� �1=2

Qrb

� a=2ð Þ1=2

L� a=2
L� a=2ð Þ1=2þ a=2ð Þ1=2�L1=2

h i
Qc:

ð36Þ

For the case with Ra = 107, Figure 16 presents the mean
heat flux in the oceanic and in the continental portions of
the model, using equation (36) for the predicted mean
oceanic heat flux, and the scaling law given by equations (12)

Figure 15. Mean heat flux obtained in models of aspect ratio 4 with a partial lid. Symbols are the
observed values for different Biot numbers. The thin horizontal lines give the heat flux obtained with no
continent. The thick solid lines are obtained with the scaling law given by equation (35), using for Qc the
continental heat flux calculated with the scaling law proposed for a continental lid covering all the surface
of the model (equations (12) and (13)). The dashed lines at Ra = 105 and Ra = 106 are obtained using the
scaling law given by equation (35) but with the actual observed heat flux under the continent for Qc.
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and (13) to predict the mean continental heat flux. This
shows that our theory, with the restriction mentioned above,
allows one to derive not only the mean heat flux over the
whole surface of the model, but also the local mean flux
below the oceanic part of the model and below the
continent. The prediction holds for continents that are
neither too narrow (a � 0.5) nor too wide (a � 3.5). In the
former case, lateral transfer of heat within the continental lid
cannot be neglected, rendering the effective insulating effect
of the continent different from what is predicted with the
Biot number defined a priori using only the thickness and
thermal conductivity of the lid. In the latter case, the oceanic
part of the model is too narrow for our model to be valid:
We compute the mean oceanic heat flux using the idea that
the cooling of the thermal boundary layer below the oceanic
surface of the model starts at the border of the continent.
With a wide continent, this hypothesis does not hold, as the
cooling of the thermal boundary layer already started below
the continent.
[48] No more precise scaling law for the heat flux under a

continent covering only a part of the surface of the model
could be found during the present study. It is, however, to be
noted that the scaling law is satisfactory for the Rayleigh
and Biot numbers estimated for the Earth’s mantle and the
continental lithosphere: We indicated in section 2 that the
Biot number for the continental lithosphere for whole
mantle convection was lower than 20, which corresponds
to a domain of validity of the scaling law for the Rayleigh
number: Ra > 5.106, which is expected for whole mantle
convection. Under this restriction, the agreement between
the scaling law and the observed values is very good.

[49] The scaling law for a global lid proposed in
section 3.2 and the results plotted in Figure 5 indicate that
the insulating effect of a lid at a given Biot number is higher
at higher Rayleigh number. We noted above that the Biot
number is the maximum heat flux that can be observed
under the lid. To have a perception of the insulating
efficiency of the lid, the Biot number must therefore be
compared to the heat flux obtained with no lid at a given
Rayleigh number. The fact that a lid with a fixed Biot
number is more insulating at higher Rayleigh numbers is
also clearly visible in Figure 15. For a continent covering
the whole surface of the model, the reduction in the mean
heat flux for B = 100, compared to what is obtained with no
continent, is of 4%, 6%, 17% and 21% for Ra = 105, 106,
107 and 108, respectively. The lines obtained for the different
nonzero Biot numbers tend to get closer to the case B = 0
when Ra increases, due simply to the fact that the ratio
between the Biot number and the heat flux obtained with no
continent decreases with Ra, which renders the effect of the
lid closer to that of a perfectly insulating lid with higher
Rayleigh numbers.

6. Applications to the Earth

6.1. Insulating Effect of Continents

[50] The experiments carried out during the present study
and the scaling laws obtained for the cases of a total or
partial lid show that the insulating effect of a lid of finite
conductivity is stronger at higher Rayleigh numbers. This
effect leads to a lower mean heat flux over the whole
surface of the model compared to a convection with no
lid at the same Rayleigh number, and also to a lower heat
flux under the continental lid itself.
[51] We noted that the Biot number is the maximum heat

flux that can be seen at the base of the continental lid. As
was noted at the end of section 2, estimates of the Biot
number for the Earth for whole mantle convection are
between 8 and 20 for a continental lithosphere of thickness
330 km and 150 km, respectively. Using k = 4 W m�1 K�1

for the thermal conductivity of the continental lithosphere
and of the mantle, and a superadiabatic temperature jump
DT = 2500 K across the mantle, these Biot numbers 8 and
20 correspond to maximum heat flux under the continent of
27 and 69 mW m�2, respectively. Estimates of heat flux in
oceanic regions are of the order of 100 mW m�2 [Sclater et
al., 1980]. The insulating effect of a 150 km thick litho-
sphere is thus moderate, while it is important for a 330 km
thick lithosphere.
[52] The characteristics of convection under a lid of finite

conductivity easily explain what is referred to as the
Archean paradox, as was already pointed out by Lenardic
[1998]. The Archean paradox refers to the fact that geo-
chemical data in Archean rocks suggest that Archean
continental geothermal gradients were not much different
from the present ones [Bickle, 1978; England and Bickle,
1984; Boyd et al., 1985], while the mantle was hotter and
thus, according to common thinking, less viscous, yielding a
more vigorous convection. Higher heat flux is then expected
a priori. However, if one considers that the continental
lithosphere had a thickness close to the present one, then
the maximum heat flux that can be lost through continents is

Figure 16. Mean heat flux under the oceanic part of the
model, observed (open symbols) and predicted (solid lines)
and mean heat flux under the continental part of the
model, observed (solid symbols) and predicted (dashed
lines), at Ra = 107.
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imposed by this lithospheric thickness, and can be estimated
via the Biot number. High continental geothermal gradients,
even with a vigorously convective mantle, cannot be
obtained. This simple reasoning, as well as the scaling
law proposed in section 5.2 and the results of the experi-
ments carried out through this study, show that a large
ratio between the oceanic heat flux and the continental
heat flux can easily be obtained at high Rayleigh numb-
ers. At Ra = 108, for a finitely conducting lid covering one
third of the surface of a model of aspect ratio 4, the ratio
between the oceanic heat flux and the continental heat flux
is close to 6 for B = 20 and 13 for B = 8. Large oceanic heat
flux can be obtained, while the continental heat flux remains
close to the present one.
[53] Setting heterogeneous boundary conditions on top of

a convective fluid, with a conductive zone through which
the heat loss is limited, naturally generates a contrast in the
heat loss between the free zone and the zone under the lid.
For a given thermal conductivity and thickness of the
conductive lid, this contrast increases with the Rayleigh

number, and obtaining a low heat flux in the conductive
zone and a high heat flux in the free zone is not a paradox.

6.2. Modification of the Pattern of Convection

[54] In all experiments carried out through this study, a
hot zone of upwelling was obtained under the continental
lid, generating a cellular circulation on both sides of the lid.
We recall that our models are simple, with an isoviscous
fluid and no mechanical coupling between the fluid and the
lid. This configuration is not realistic for the Earth’s mantle,
although some features observed for the case of a slow
moving continent can be obtained in our models: The form
of the heat flux at the surface of the model, low below the
continental lid and showing a sharp increase at the edge of
the continent, is a feature than can be seen at the margins of
the African shield [Lucazeau et al., 2004]. We can infer
from our results that continents must have a first-order
effect on the dynamics of the mantle, and help generate a
long-wavelength circulation.
[55] In a previous study [Grigné et al., 2005] we noted

the first-order importance of the wavelength of convection
on the efficiency of the heat transfer. We here proposed a
scaling law for the heat flux on top of a fluid partially
covered by a finite conductivity lid. The width L of the
convective cells is a first-order parameter in our parameter-
ization. The scaling law for the heat flux as a function of the
width of the cell L and of the width of the continent, for the
case of a perfectly insulating lid, is presented in Figure 17. It
indicates that the same heat flux can be obtained for
different configurations. Three possible configurations that
lead to a mean heat flux equal to 60% of the heat flux
obtained for a cell of aspect ratio 1 with no continent are for
instance presented in Figure 17. It must then be emphasized
that studying the insulating effect of a lid of finite conduc-
tivity, in terms of total heat transfer, cannot be complete
without taking into account the geometry of the flow. Our
scaling law does not, however, predict this geometry of the
flow, but only expresses the heat transfer efficiency as a
function of the obtained wavelength of the convection.

7. Discussion and Conclusions

[56] In this paper, a complete scaling for the heat transfer
efficiency of a two-dimensional isoviscous fluid covered
completely or partially by a finitely conducting lid was
built. This scaling expresses the heat flux out of the model
as a function of the Rayleigh number of the fluid, the width
of the convective cells and the width of the conductive lid
and its insulating effect, through the Biot number. The
presence of a finite conductivity lid on top of the fluid
changes the wavelength of convection in the model, and we
showed that this effect was as important in reducing the heat
transfer efficiency as the local insulating effect of the lid.
[57] Two regimes of convection were identified, distin-

guishable by the fact that upwellings under the conductive
lid occur in the forms of one narrow simple plume or of a wide
set of several plumes. The scaling law proposed in this paper
applies straightforwardly for the heat flux (equation (22)), but
the two regimes imply changes for the scaling of the
temperature (equations (26) and (25)).
[58] The insulating effect of the lid is quantified by the

Biot number. This dimensionless number gives a good

Figure 17. Mean heat flux normalized by the maximum
heat flux obtained for cells of aspect ratio 1 with no
continent, as a function of the width of the convective cell,
for a perfectly insulating lid. The numbers along the curve
indicate the width of the lid. The three circles correspond to
the three configurations presented at the bottom, where the
bold numbers indicate the widths of the lid and of the
convective cell.
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approximation of the maximum heat flux that can be lost
through the lid. In the case of the Earth, if one assumes that
the thermal conductivities of the continental lithosphere and
of the mantle are the same, the Biot number is simply the
ratio between the convective mantle thickness and the
continental lithosphere thickness. The maximum heat flux
that can be lost at the base of a continental lithosphere
of thickness between 200 and 300 km ranges from 30 to
50 mW m�2 with this approach, independently of the vigor
of convection in the mantle. According to most parameter-
ized models of mantle cooling [e.g., Christensen, 1985;
Breuer and Spohn, 1993; Grigné and Labrosse, 2001], the
oceanic heat flux was higher in the past. Thus the ratio
between oceanic and continental heat flux could easily have
been over 10 times larger in the Archean than at present-day.
[59] The approach used in this paper is simple, using an

isoviscous fluid, no internal heating, and no mechanical
coupling between the fluid and the lid, which allowed a
quantitative systematic study and the construction of a
parameterization. The introduction of internal heating with-
in the continents can be expected to enhance the insulating
effect of continents. The continental crust is indeed enriched
in radioactive elements, and the internal heating rate in the
continents is most probably at least 10 times larger than the
one in the mantle. Introducing such internal heating rates in
our models will lead to higher temperatures inside the lid
and lower heat flux at its base. At Ra = 107, the heat flux
under a partial lid of width 1 and with a Biot number B = 10
is 7.5 with no internal heating in the lid. It decreases to 3.7
when a dimensionless heating rate of 100 is introduced in
the lid. In dimensional form, if we consider whole mantle
convection with a continental lithosphere with the same
thermal conductivity as the mantle and a thickness of
290 km, corresponding to a Biot number of 10, the value
of 7.5 with no internal heating in the lid corresponds to
26 mW m�2. The dimensionless internal heating rate of 100
corresponds to 0.1 mW m�3, and the heat flux under the lid
is then 13 mW m�2, a value close to what is obtained under
the Canadian Shield [Pinet et al., 1991; Jaupart et al., 1998;
Jaupart and Mareschal, 1999].
[60] The insulating effect of continents can also be

enhanced by the fact that the continental lithosphere is not
in a thermal steady state: Diffusive heat transfer inside the
continental lithosphere has a timescale comparable to the
half-lives of radiogenic elements inside continents (e.g., U,
Th, K), and the resulting transient behavior can increase the
temperature at the base of the continental lithosphere by up
to 150 K compared to a steady state model, further lowering
the heat flux at the base of the lithosphere [Michaut and
Jaupart, 2004]. A mechanical coupling between the conti-
nental lid and the convective fluid will also increase the
insulating effect of the lid in models: Rigid boundary
conditions will apply under the lid, forming a stagnant zone
in the upper part of the fluid, rendering the effective
thickness of the lid larger than the one actually imposed
at the surface of the model.
[61] The simplifications used in this paper must be kept in

mind. The effect of a temperature-dependent viscosity needs
to be taken into account. Lenardic et al. [2005] questioned
the actual global insulating effect of continents: The thermal
blanketing effect of continents, increasing mantle tempera-
ture and thus lowering its viscosity, could lead to a more

rapid overturn of oceanic lithosphere and to higher oceanic
heat flux than in the case with no continents. The presence
of rigid oceanic plates at the surface of the mantle should be
taken into account: Tectonic plates generates long convec-
tive wavelength, which has a strong effect on the heat
transfer efficiency. The effect of the wavelength of the flow
was already studied by Grigné et al. [2005] but with no
continents, and the effect of thermally insulating continents
in the context of tectonic plates remains to be studied. It is
also possible that the global insulating effect of continents
is exaggerated in two-dimensional models [Lowman and
Gable, 1999], and it will be necessary to investigate how
scaling laws presented here can be extended to three-
dimensional models.
[62] It appears, however, that under a wide range of

conditions, the presence of a lid of finite conductivity on
top of a convective fluid leads to a particular pattern of
convection, with a zone of upwelling under the lid and a
large cellular circulation centered beneath the lid. This
particular pattern strongly modifies the heat transfer effi-
ciency, compared to convection with homogeneous top
boundary conditions. The complete scaling law we pre-
sented here, taking into account the geometry of the flow,
can be used as a reference for future studies with more
complex rheologies.

Appendix A: Lateral Heat Transfer in a
Conductive Lid

[63] The thermal boundary condition under a finitely
conducting lid, given by equations (4) and (5), is valid only
if no horizontal heat transfer occurs inside the conductive
lid. This hypothesis is accurate for thin lids only. As was
shown by Hewitt et al. [1980] and Guillou and Jaupart
[1995], lateral transfer of heat within the lid reduces its
insulating effect, and the effective insulation is not known a
priori, but is a function of the form of the temperature field
within the lid.
[64] We carried out a large number of numerical experi-

ments to study the effect of the horizontal heat diffusion
inside the lid on its insulating effect. Various thicknesses dc
and thermal conductivities kc, leading to the same Biot
number, were imposed. These tests were carried out for
Rayleigh numbers ranging from 105 to 108, for lid thick-
nesses ranging from 0.05d to d and for conductivities
between 0.5k and 100k. For a lid covering the entire surface
of the fluid and a given Biot number, the difference obtained
for the mean temperature of the fluid Ti between a model
with a lid of thickness dc = 0.1d and a model with dc = d is
never larger than 1.1%. For the mean heat flux at the surface
of the fluid, this difference does not exceed 4%. For the full
lid case, the boundary condition is thus always well
described simply by the Biot number, and indicating the
thickness and conductivity of the lid is not required.
[65] For a partial lid, horizontal diffusion of heat within

the lid has a more important effect. A higher temperature at
the interface between the lid and the fluid is clearly obtained
for a thinner less conductive lid than for a thicker more
conductive one with the same Biot number. On the range of
parameters for the experiments carried out during this study,
the difference for the mean heat flux out of the whole
surface between the case dc = 0.05d and the case dc = d is
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less than 4%. The corresponding range for the mean
temperature Ti does not exceed 1% of its value. The way
the Biot number is imposed is not a critical parameter for
the mean thermal state of the fluid. The combination [kc, dc]
is much more important for the heat flux under the lid and
for the thermal state of the lid itself. For instance, at Ra =
107, a heat flux three times larger is obtained for the
combination [kc = 10k, dc = d] than for the one [kc =
0.5k, dc = 0.05d], both cases leading to the same a priori
Biot number, as defined by equation (5). In all the experi-
ments carried out, the difference between the combinations
[kc = k, dc = 0.1d] and [kc = 0.5k, dc = 0.05d] never exceeds
20%.
[66] As indicated in section 2, we carry out experiments

with lids whose thickness does not exceed 0.1d. The
equation of conduction of heat through the finite conduc-
tivity lid is fully resolved, and the lateral transfer of heat,
though almost negligible with dc � 0.1d, is taken into
account in our algorithm.
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