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a b s t r a c t

We present a three dimensional numerical study of thermal plumes, developing from a localized heat
source in a yield stress and shear thinning fluid. We assume that the fluid viscosity follows a
Herschel–Bulkley law with a low shear rate viscosity plateau. Comparison of the plume onset time and
morphology observed in the numerical study and in laboratory experiments with Carbopol shows good
agreement. An extensive parameter study allows us to identify two local non-dimensional parameters
that determine whether a plume rises through the fluid. The first parameter is the Bingham number,
Bi, which compares the yield stress to the viscous stress. The second parameter, the yield number W,
compares the stress induced by the buoyancy of an equivalent hot sphere to the yield stress. We find that
a plume develops only if W > Wc = 5 ± 1.2 and Bi < Bic = 1. As the plume rises it loses its buoyancy due to
heat diffusion. So the upward progression of the plume halts as soon as W < Wc or Bi > 1. Hot fluid
continues to rise from the bottom of the tank but spreads under an unyielded, high viscosity region at
the top of the box.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thermal convection and instabilities in yield stress fluids occur
in many different fields, from engineering (food- or glass produc-
tion, [1,2]) to geoscience (formation of dikes and diapirs in the
lithosphere or convection in icy satellites, [3]). Despite its huge
importance it is still not very well understood.

The theoretical difficulty in studying such systems is caused
by an infinite viscosity as the shear rate approaches zero. There-
fore an instability cannot grow from a conductive profile
exposed to an infinitesimal perturbation [3–5]. Former studies
on thermal instabilities in Rayleigh-Bénard convection in a yield
stress fluid considered either a Bingham fluid [4], [6–10] or a
purely shear thinning fluid [11,3]. However, fluids exhibiting a
yield stress as well as shear thinning behaviour have not been
studied extensively. Balmforth and Rust [5] investigated the
stability of a weakly non-linear fluid, concluding that shear
thinning favors an early onset of convection whereas a yield
stress suppresses convection. The same authors tested their
numerical predictions experimentally on Carbopol solutions in
a Rayleigh-Bénard setup and found that fluids with a high
Carbopol concentration, i.e. high yield stress, start to convect
only if exposed to finite perturbations.

In a recent study Davaille et al. [12] investigated the develop-
ment of a thermal plume in Carbopol rising from a localized heat
source. The Carbopol rheology can be described by a Herschel–
Bulkley model [13–16]. The experiments showed that thermal
instabilities in a yield stress fluid behave very differently from
those in Newtonian liquids.

A key parameter is the yield parameter, Y0, which compares the
thermally induced stresses to the yield stress and is therefore writ-
ten as

Y0 ¼
aqgP
kr0

; ð1Þ

where a is the thermal expansivity, q is the density of the fluid at
ambient temperature, g the acceleration due to gravity, P the ther-
mal power supplied by the heat source, k the thermal conductivity
and r0 the yield stress of the fluid. Depending on the yield param-
eter Y0, the system evolves into one of three regimes, which are sep-
arated by two critical yield parameters, Yc1 and Yc2 (cf. [12]). For
Y0 < Yc1 only elastic deformation occurs, while for Yc1 < Y0 < Yc2 a
small cell slowly convects around the heater. Only a high yield
parameter (Y0 > Yc2) allows the cell to evolve into a plume. This
yield parameter is not to be mistaken for the yield number, W,
which is applicable to problems involving rising bubbles [17,18]
or sinking spheres [19,20] in a yield stress fluid. The yield number
is defined as

W ¼ Dqg2req

3r0
: ð2Þ
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For bubbles and spheres, Dq is the density difference between the
object and the fluid and req is the radius of the object. Bubbles or
spheres move if W > Wc = 6.85 [17–20]. For a thermal instability,
Dq = aqDT and req corresponds to the radius of a sphere with a vol-
ume equivalent to the volume of the hot pocket that forms around
the heater [12]. Therefore for a thermal instability, although Y0 is
constant, W evolves with time as the thermal boundary layer grows.
It has been observed experimentally that the plume develops when
W > 8.8 ± 0.7 [12].

The onset time t0 of this plume, i.e. the time at which the plume
starts to rise, depends on the yield parameter and increases with
decreasing yield parameter. As Y0 tends to Yc2, the onset time goes
to infinity. The shape of the thermal instability looks like a finger,
unlike in a Newtonian fluid, where hot, less viscous plumes have a
mushroom shape with a big head on a thin stem [21]. Most defor-
mation is localized to the edges of the thermal anomaly and is or-
ders of magnitude smaller within the thermal anomaly. This
produces a pseudo-plug area on the plume axis. The evolution in
time changes, depending on the rheological parameters of the
fluid. For small consistencies, Km, the plume can show an episodic
behaviour whereas it rises continuously for high Km.

In this study we use numerical simulations to investigate the
extent to which a purely viscous fluid description, using a regular-
ized Herschel–Bulkley model, is able to describe the evolution from
the cell to the plume instability as well as the instability itself. We
therefore systematically vary rheological and thermal parameters,
as well as the applied thermal history of the heated patch. To con-
firm the adequacy of the model, we compare the morphology, the
evolution in time and the dependence of the onset time on the
yield parameter, Y0, observed in our numerical model to laboratory
results. This validation allows us to study a well defined parameter
range, avoiding the uncertainties due to the difficulty in accurately
measuring the rheological parameters in the laboratory. The
advantage of numerical simulations is that they allow us to test
how each rheological parameter, yield stress r0, consistency Km
and shear thinning exponent n, influence the evolution of the
plume instability. We therefore varied these parameters systemat-
ically. Access to the full three dimensional fields allows us to find
the key parameters that characterize the dynamics of the thermal
instability.

2. The model

2.1. Governing equations

In this study, we consider the fluid to be incompressible and in
the Boussinesq approximation. Furthermore we neglect viscous
dissipation [22]. The fluid can be described by the simplified equa-
tions for conservation of mass

r � v ¼ 0 ð3Þ

momentum

Dv
Dt
¼ � 1

q0
rpþ aDTgez þr � r ð4Þ

and energy

DT
Dt
¼ jr2T ð5Þ

where v is the velocity, D/Dt = (@/@t + v � r) the material derivative,
q0 is the density of the ambient fluid, p the pressure, a the thermal
expansivity, DT the temperature difference between heater and
ambient fluid, g the gravity acceleration, r the stress tensor, T the
temperature and j the thermal diffusivity.

2.2. The model rheology

The viscosity of Carbopol depends mainly on the shear rate, but
also on temperature. The shear rate dependence can be described
with a Herschel–Bulkley model [13,14,23], which implies infinite
viscosity as the shear rate approaches zero. To avoid this difficulty
in the numerical simulations we apply a viscosity truncation. Dif-
ferent models exist for a regularized Herschel–Bulkley model
(e.g. [24,25]). We choose the model of de Souza Mendes and Dutra
[26] due to its convenience for curve-fitting of the rheology mea-
sured in the laboratory. This allows for an easier comparison of
simulations and experiments. The adequateness of this model to
describe the flow of a Carbopol solution through an axi-symmetric
expansion has been demonstrated in [27]. In a tensorial represen-
tation it is written as

r ¼ 1� exp
�g0 _c
r0

� �� �
r0 þ KmT _cnð Þ _c _c�1; ð6Þ

where the expression in the first bracket is the regularization term
and the expression in the second bracket describes the Herschel–
Bulkley model. The yield stress is given by r0, KmT is the consistency,
n the shear thinning exponent and _c the magnitude of the strain
rate _c. g0 represents the upper viscosity cut-off and is chosen to
be g0 = 108 Pa s in all the calculations. In Section 3.2.1 we show that
the dynamics of the plume is mostly independent of the cut-off va-
lue. To avoid too large viscosity contrasts, our numerical code uses
an additional lower cut-off for the viscosity. However, we made
sure that this lower value is never reached, so that it does not influ-
ence the dynamics. The value was set to gmin = 0.01 Pa s for Km -
6 0.1403 Pa sn and to gmin = 0.1 Pa s for the other cases.

The laboratory measurements showed that r0 and n do not de-
pend on the temperature. However the consistency KmT varies with
temperature, following an Arrhenius-type law

KmT ¼ KmAeBðT�273:15Þ
; ð7Þ

where A = 1.6927, B = �0.0257 K�1 and where Km is the consistency
at room temperature T = 293.15 K (for details see Appendix A).

2.3. The numerical model and boundary conditions

We solve the set of Eqs. (3)–(5) using a finite volume discretiza-
tion on a staggered grid, implemented in the code StagYY. Code de-
tails and benchmarking for constant viscosity and temperature-
dependent viscosity cases are described in detail in [28] (pp.
286–290 for benchmarking results) and more briefly in [28–30].
For the diffusive term, second order finite differences are used,
and a second order upwind scheme is used for the advective terms.
The convergence criterion is met, if the normalized residuals of the
momentum and continuity equations is smaller than 10�2.

Even though most of the characteristics observed for the plume
in the laboratory are axi-symmetric, the tank in the laboratory is
not. We need to use straight walls in order to avoid optical distor-
tions during the visualization. To ensure the same boundary condi-
tions as in the laboratory, we use a three-dimensional Cartesian
box (Fig. 1). The box is 20 cm long and wide and 40 cm high with
a resolution of 64 � 64 � 128 grid points. We verified that higher
resolutions give the same results. The boundary conditions are de-
scribed by a no-slip and zero-flux condition for the bottom and
sidewalls. The top boundary is free-slip and kept at ambient tem-
perature. To compare with the experiments, for which the heating
power is constant, we prescribed the temperature history of the
heater measured in the laboratory experiments. We calculate the
thermal power P, defined as the surface integral of the heat-flux

P ¼
Z

QdA; ð8Þ
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which is needed for comparison with the laboratory experiments
(e.g. [12]), where Q denotes the heat flux and dA the surface through
which the heat flux is measured. For the numerical simulations the
thermal power is constant within 5% through time, prior to the on-
set, and increases when the plume rises, as the heat flux is in-
creased. We generally refer to the minimum value, when dealing
with the thermal power P.

Due to the numerical grid (Fig. 1B), the heated surface is smaller
than the surface of an equivalent circle with the same radius. With
the resolution 64 � 64 � 128 and a radius of r = 1.25 cm this im-
plies a heated surface of 3.93 cm2 instead of the surface of the cir-
cle 4.91 cm2. The smaller surface of the disk results in a smaller
heat flux and therefore a smaller thermal power P. However, Dava-
ille et al. [12] showed that the system depends strongly on the
yield parameter Y0 (Eq. (1)), therefore a smaller P can be adjusted
with a higher r0 or a.

2.4. The laboratory experiments

The setup of the laboratory experiments and the procedure by
which the fluid is prepared is described in [12]. The heater consists
of a Peltier element underneath a copper disk. In the first set of
experiments Davaille et al. [12] the heater was placed on top of
the tank bottom (Fig. 1C). In addition, we performed a series of

experiments with a flush mounted heater (Fig. 1D), in order to mi-
mic the boundary conditions in the numerical simulations. Addi-
tionally in the new series we also studied the influence of higher
fluid depths, up to h = 39.2 cm.

3. Validation of the purely viscous description

3.1. Input and output parameters

In this study we systematically vary the thermal and rheological
parameters (values listed in Table 1) to evaluate the effect on the
dynamics of the plume. Here we will briefly demonstrate the gen-
eral evolution of a plume and how we evaluate the diagnostic
parameters (listed in Table 1).

Fig. 2 shows the typical evolution of the thermal instability.
Upon heating, a hot pocket of fluid forms by heat conduction
around the heater. Very slow motions are recorded in this hot
pocket. After approximately 1 h, a plume develops. The shape of
the isotherm (Fig. 2A) resembles a finger.

From Eq. (6), we can calculate an effective viscosity

g ¼ r _c�1 ¼ 1� exp
�g0 _c
r0

� �� �
r0 þ Km _cnð Þ _c�1: ð9Þ

Fig. 2B shows that there remains an unyielded region (i.e. where the
viscosity value remains at the cut-off value) at the top of the box
during the whole simulation. This means that the plume has
stopped rising. In the systematic study below, we shall use two
diagnostic variables to characterize the plume evolution: the onset
time t0 (Fig. 2C), and the height where the plume stops hy (Fig. 2D).

� Onset time: Lower viscosity regions form already at an early
stage of the plume (Fig. 2B and C a)), due to a slowly convecting
cell around the heater. The spatiotemporal evolution (Fig. 2C)
shows that at t = 62.33 min (Fig. 2b)) this cell grows very fast.
The time when the small cell evolves into a plume is referred
to as the onset time t0. Several methods to determine the onset
time all give similar results within an error of 3% [12]. We will
show how the transition from the cell to the plume takes place
and provide a precise criterion for the determination of the
onset time in Section 5.1.
� Height where the plume stops: The spatiotemporal evolution of

the viscosity on the plume axis (Fig. 2C) shows that even after
the onset of the plume, high viscosity regions persist at the
top of the box. This means that not the whole fluid is convect-
ing, but only a part of it. To define the height where the plume
stops, we plot a profile of the viscosity on the plume axis
(Fig. 2D). The viscosity shows a local minimum at the head of
the plume. This local viscosity minimum corresponds to the
point where the radial derivative of the radial velocity (dvr/dr)
becomes maximum. Hence, it marks the location of a stagnation
point in the moving plume reference frame, and therefore the
position of the top of the plume head [21]. So, we define the
maximum height that a plume reaches, or height where the
plume stops, hy, as the maximum height of the stagnation point.
This height only varies very gently through time, once a quasi
stationary state is reached. This is assured for all calculations
50 min after the onset of the plume, when the height changes
become negligibly small (<1 mm over 50 min). We always mea-
sure this height at the end of each calculation.

3.2. Influence of the model simplifications

3.2.1. Effects of the viscosity cut-off g0

We tested the influence of different g0 on the plume dynamics,
g0 = [108,1010,1012] Pa s. The choice of g0 neither affects the onset

A

B

C

D

Fig. 1. (A) Schematic illustration of the numerical domain. The calculations are run
in a box of w � d � h = 20 cm � 20 cm � 40 cm with a resolution of nx � ny -
� nz = 64 � 64 � 128. Top boundary: free-slip, and kept at ambient temperature T0,
side walls and bottom plate: rigid with zero heat flux. Patch in the center of the
bottom of the box follows a prescribed temperature evolution. (B) schematic of the
approximation of the circular heated patch in the numerical simulation. While in
the simulations the heated patch is inside the bottom boundary, in the laboratory
experiments it is either; (C) bottom mounted [12] or (D) flush mounted by
embedding the copper disk into a Plexiglas plate.
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Table 1
Shear thinning exponent n, consistency Km, yield stress r0, thermal expansivity a, onset time t0, the thermal power P, height reached by viscosity minimum at plume head at for all
numerical simulations hy and respective yield parameter Y0.

# r0

(Pa)
Km

(Pa sn)
n
(–)

a
(10�4/K)

t0 (min) P (W) hy (cm) Y0 (–) # r0

(Pa)
Km

(Pa sn)
n
(–)

a
(10�4/K)

t0 (min) P (W) hy (cm) Y0 (–)

1 0.0100 0.140 0.58 6.00 1.3550 1.709 – 2666.26 29 0.0630 1.403 0.58 4.78 77.2340 1.157 26.85 228.26

2 0.0100 1.000 0.58 4.78 2.3712 1.539 40.00 1912.83 30 0.0650 1.000 0.58 4.78 82.6539 1.16 30.63 221.81
3 0.0100 1.000 0.58 4.78 3.0487 1.215 40.00 1510.13 31 0.0650 1.000 0.50 4.78 108.3985 1.148 28.92 219.51
4 0.0100 1.403 0.58 6.00 1.3550 1.552 40.00 2421.31 32 0.0650 1.000 0.70 4.78 67.7491 1.18 37.22 225.64
5 0.0100 1.403 0.90 6.00 1.3550 1.682 40.00 2624.13 33 0.0650 1.403 0.58 4.78 90.7838 1.157 28.23 221.24
6 0.0200 1.000 0.58 4.78 5.7587 1.463 40.00 909.18 34 0.0650 1.403 0.50 4.78 131.4332 1.139 27.20 217.80
7 0.0200 1.403 0.58 4.78 5.4199 1.429 40.00 888.05 35 0.0650 1.403 0.70 4.78 71.8140 1.172 31.63 224.11
8 0.0200 1.403 0.58 6.00 4.4037 1.481 40.00 1155.28 36 0.0650 2.000 0.58 4.78 105.6886 1.15 26.16 219.90
9 0.0250 1.403 0.58 4.78 6.7749 1.449 31.63 720.39 37 0.0650 2.000 0.50 4.78 181.5675 1.122 26.16 214.54

10 0.0300 1.403 0.58 4.78 10.1624 1.380 27.85 571.74 38 0.0650 2.000 0.70 4.78 75.8790 1.165 28.92 222.77
11 0.0350 1.403 0.58 4.78 13.5498 1.341 24.95 476.21 39 0.0670 0.140 0.58 4.78 82.6539 1.158 40.00 214.82
12 0.0400 0.140 0.58 4.78 12.8723 1.346 – 418.28 40 0.0670 1.000 0.58 4.78 98.9137 1.148 32.62 212.96
13 0.0400 0.140 0.58 6.00 8.1299 1.426 – 556.18 41 0.0670 1.403 0.90 6.00 81.2989 1.156 40.00 269.18
14 0.0400 1.000 0.58 4.78 16.9373 1.317 23.9 409.255 42 0.0670 1.403 0.58 6.00 37.2620 1.227 23.5 285.71
15 0.0400 1.403 0.58 4.78 16.9373 1.308 22.67 406.43 43 0.0670 1.403 0.58 4.78 108.3985 1.145 29.61 212.41
16 0.0400 1.403 0.58 6.00 10.8399 1.367 27.2 533.17 44 0.0670 2.000 0.58 4.78 126.0133 1.144 27.54 212.22
17 0.0400 1.403 0.90 4.78 8.1299 1.427 40.00 443.41 45 0.0670 14.000 0.58 4.78 1400a 1.025 0 190.15
18 0.0500 1.000 0.58 4.78 30.4871 1.28 23.37 318.18 46 0.0675 1.403 0.58 4.78 113.8185 1.156 30.29 212.86
19 0.0500 1.403 0.58 4.78 33.8745 1.263 21.8 313.96 47 0.0680 1.403 0.58 4.78 120.5934 1.140 30.96 208.37
20 0.0600 1.000 0.58 4.78 55.5542 1.196 27.20 247.75 48 0.0700 1.000 0.58 4.78 131.4332 1.157 36.00 205.43
21 0.0600 1.000 0.50 4.78 73.1690 1.183 25.81 245.06 49 0.0700 1.000 0.50 4.78 170.7277 1.123 33.59 199.40
22 0.0600 1.000 0.70 4.78 46.0694 1.215 30.29 251.69 50 0.0700 1.000 0.70 4.78 113.8185 1.215 40.00 215.73
23 0.0600 1.403 0.58 4.78 62.3292 1.183 25.11 245.06 51 0.0700 1.403 0.58 4.78 146.3380 1.14 32.95 202.42
24 0.0600 1.403 0.50 4.78 89.4288 1.163 24.07 240.92 52 0.0700 1.403 0.50 4.78 222.0000 1.111 31.63 197.27
25 0.0600 1.403 0.70 4.78 48.7793 1.198 27.89 248.17 53 0.0700 1.403 0.70 4.78 117.8834 1.137 40.00 201.88
26 0.0600 2.000 0.58 4.78 73.1690 1.173 23.37 242.99 54 0.0700 2.000 0.58 4.78 166.6627 1.138 30.29 202.06
27 0.0600 2.000 0.50 4.78 108.3985 1.146 23.37 237.39 55 0.0700 2.000 0.50 4.78 319.7757 1.103 30.63 195.85
28 0.0600 2.000 0.70 4.78 51.4893 1.195 26.16 247.55 56 0.0700 2.000 0.70 4.78 121.9483 1.145 34.22 203.30

a Plume develops even after that time.
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viscosity, which marks stagnation point.
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time, nor the dynamic behaviour (Fig. 3A). The viscosity profile in-
side the plume remains the same (Fig. 3B), and only the unyielded
structure above the plume (h > hy) is influenced by the cut-off va-
lue. However the height where the plume stops, hy, does not
change for different cut-off values (see close up Fig. 3). This shows
that the regularization has no significant influence on the plume’s
behaviour. Given this result, all simulations were run with the
same viscosity cut-off value of g0 = 108 Pa s.

3.2.2. Dependence on the thermal history
The laboratory experiments [12] have a constant heating power,

which leads to a temperature drop in the copper plate when heat is
suddenly taken away by the plume lift off (Fig. 4A i) solid blue
line). However, in the present paper we intend to vary the rheolog-
ical parameters. An increase in the yield stress will then lead to an
increase in the onset time. If the onset time lies beyond the onset
time of the laboratory experiments, a temperature drop in the
heated patch would influence (delay or suppress) the onset time
or might affect the dynamics of a plume that starts before the lab-
oratory plume. Therefore we generalize the heating history by
smooth prolongation of the thermal history curve prior to the on-
set (cf. Fig. 4A i) dashed orange line). In the case of the real temper-
ature history, the unyielded region is slightly larger, i.e. hy is
smaller, than for the generalized heating. As the supply of heat
drops slightly in the laboratory case, the plume is less buoyant
and rises less high. However, the difference is rather small, 3% of
the absolute value (cf. cross section at 250 min Fig. 4B). Keeping
this in mind, we will use in most of the runs the simplified heating
history as shown by the dashed orange line in Fig. 4A i).

3.3. Comparison with laboratory experiments

The uncertainties of the laboratory experiments, e.g. an error of
30% [12] on the yield stress, make it difficult to match the exact
conditions and to reproduce a series of experiments. As we will

show in detail later, the system is very sensitive to small changes,
not only in yield stress, but also in shear thinning exponent or in
consistency. However, we will show here that the basic character-
istics of laboratory experiments, e.g. a finger-like instability and a
strong dependence of the onset time on the yield parameter Y0

[12], are well captured by our numerical model. Furthermore, in
a new set of laboratory experiments with a larger fluid height,
we observe the persistance of unyielded regions even after the
plume is established. Davaille et al. [12] had not been able to ob-
serve this phenomenon, due to the smaller fluid height. This will
allow us to examine in more detail how each rheological property
affects the dynamics of the system.

3.3.1. Onset and evolution
Fig. 5 shows the dependence of the onset time on the yield

parameter Y0, for the numerical simulations, the flush mounted
experiments and the bottom mounted experiments [12]. The on-
set-time of the plume strongly depends on the yield parameter Y0.
The numerical simulations show a good agreement with the results
obtained with the modified setup, where the heating is flush
mounted. The critical value for the flush mounted experiments
and for the numerical simulations is Yc � 165 ± 25. The dash-dotted
line in Fig. 5 marks the lower limit at Y0 = 140, and the error can be
explained with the uncertainties in the laboratory measurements
(10% on the thermal power P and 30% on the yield stress r0).
However, the critical value for the flush mounted experiments is
well below the value for the bottom mounted heating determined
by [12] of Yc2 = 260. We attribute this discrepancy to the different
heater shapes, which will change the local stress distribution. The
plot suggests that n and Km also influence the onset time, however
this will be discussed later. Globally, the plot shows that the onset
time approaches two asymptotical values, depending on the yield
stress. For low yield parameter, i.e. when the yield stress is impor-
tant compared to the thermally induced stresses, the onset time is
increasing rapidly with decreasing Y0. On the other end, for high
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yield parameter, i.e. low yield stresses, the onset time approaches a
finite limit. This is to be expected as the system turns towards the
purely shear thinning or Newtonian case.

In Fig. 6 the typical spatiotemporal evolutions of a plume for
both laboratory and numerical simulations, are compared. Fig. 6
A presents the time evolution of the heated patch for experiment
(black) and simulation (grey), in the case where we used the real
temperature history. Fig. 6C shows a typical snapshot of the plume
in the laboratory experiments. The white broad lines outlined in
colour are isotherms (blue dash dotted: 23.9 �C, yellow dotted:
31.1 �C, red dashed: 39.9 �C) and thin white lines correspond to
particle trajectories. Therefore a horizontal line indicates a particle
at rest and white streaks upwards and towards the right are parti-
cles moving upwards along the axis. Fig. 6D shows the vertical vis-
cosity profile on the plume axis for the numerical simulations
where the viscosity increases from dark blue to dark red. Black
lines indicate the position of the same isotherms as visualized in
the laboratory, where temperature is increasing from inside (bot-
tom) to outside (top).

The thermal power in the laboratory is P = 1.85 ± 0.185 W, the
yield stress is determined to be r0 = 0.09 ± 0.015 Pa, the consis-
tency Km = 1.403 ± 0.2 Pa sn and the shear thinning exponent is
determined to be n = 0.58 ± 0.01. The measurements have been
done using a Physica MCR501-rheometer (Anton Paar, www.an-
ton-paar.com) with a coaxial cylinder geometry (CC27).

We find a good agreement of the onset-time derived from the
numerical simulation and the laboratory experiment
(t0 = 119.9 min in the laboratory, t0 = 120.59 min in the simula-
tions, t = 120 min indicated by the green dashed line) with the
parameter combination P = 1.14 W, r0 = 0.068 Pa, Km = 1.403 Pa sn

and n = 0.58. The thermal properties are the same with small errors
on the values for the experiments. The thermal expansivity is
a = 4.78 ± 0.01 K�1 and the thermal conductivity is
k = 0.435 ± 0.02 W/m K. Therefore we can calculate the yield
parameter for the laboratory experiments Y0 = 266.86 ± 71.09 and
for the numerical simulations Y0 = 208.36. The value for the simu-
lations is well within the error range of the laboratory experi-
ments, explaining the good agreement of the onset times.
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However, a match of both onset times does not necessarily im-
ply an identical behaviour of the developping instability (Fig. 6).
This is most evident for the isotherms, which, for the simulations,
propagate much higher at the onset than in the experiment. There
are also similarities: the upper part of the box remains unyielded
through time, as indicated by the green arrows. In the experiments
this can be seen by following the particles in the upper part of the
box. They describe a horizontal line, i.e. the particles are not mov-
ing (Fig. 6B). In the numerical simulations the very high viscosity
(dark red regions in the figure) indicates that shear rate vanishes
and that the fluid is not moving. The maximum shear rate at the
plume head is represented by the low viscosity in this region as
highlighted by the horizontal black dashed line. Above this line vis-
cosity increases rapidly.

3.3.2. The plume morphology
Fig. 7 shows that small shear rates are already present before

the plume evolves, while the isotherms (black lines) still have a cir-
cular shape. A small cell is convecting around the heater and as the
shear rate increases, this cell evolves into a plume. This plume then
exhibits locally very strong deformation, which is localized on the

edges of the thermal anomaly. The deformation is much weaker in-
side (difference of two orders of magnitude). Above the plume, the
fluid exhibits unyielded regions. The inner structure of the thermal
anomaly develops as a plume with a small head (A ii) and B iii))
whereas the outer isotherm looks more like a finger. Once the
small head is lost, only the stem remains midway in the tank.

The instability in the simulations develops just like the instabil-
ity in the experiments. The dependence of the onset time on the
yield parameter is the same as in the laboratory experiments.
The thermal anomaly looks like a finger and the instability exhibits
strong deformation at the edges of the thermal anomaly and a
pseudo-plug flow inside the thermal instability, as observed in
the laboratory. Therefore we conclude that the purely viscous reg-
ularized Herschel–Bulkley model is a sufficient description of the
fluid and suitable for studying numerically the development of
thermal plumes in Herschel–Bulkley fluids like Carbopol.

4. Effects of rheological parameters on the dynamics

The laboratory experiments of Davaille et al. [12] show a strong
dependence of the onset time and evolution of the plume on the
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yield stress. A closer look at different flow curves (Fig. 8) reveals
that a change of the shear thinning exponent (Fig. 8A) and/or the
consistency (Fig. 8B) might also affect the system, as those changes
affect the effective viscosity. The flattening of the viscosity curve
(Fig. 8A and B i)) and the deviation from the stress plateau
(Fig. 8A and B ii)) for shear rates _c < 10�8 s�1 are due to the viscos-
ity cut-off g0. The uncertainties on the determination of the rheo-
logical parameter make it difficult to study the effect of small
changes in the laboratory. We therefore examine numerically
how small changes for all rheological parameters (r0,Km and n)
influence the development of the plume.

In order to investigate the effect of the yield stress on the
plume’s dynamics we varied r0 between 0.01 Pa and 0.07 Pa for
constant Km = 1.403 Pa sn and n = 0.58. With increasing yield stress
(Fig. 9A) from (i) r0 = 0.035 Pa over (ii) r0 = 0.04 Pa to (iii)

r0 = 0.06 Pa, the onset time increases, as the yield parameter
diminishes. At a given power P it then becomes increasingly diffi-
cult for the hot pocket to overcome the yield stress and to pene-
trate the surrounding fluid. Increasing the yield stress from
r0 = 0.035 Pa to r0 = 0.04 Pa induces a decrease of hy. As the
plume cools down on its way up by heat diffusion (cf. Fig. 10 iso-
therms), its thermal buoyancy decreases until it cannot anymore
overcome the yield stress. hy should therefore depend on the ini-
tial buoyancy and the yield stress. At a given P, we expect hy to
decrease with increasing r0, as is observed. However, a further in-
crease of the yield stress yields again a higher hy, which may ap-
pear surprising at first. Yet this could be explained by the strong
increase of the onset time when approaching the critical yield
parameter, which allows the plume to accumulate more buoy-
ancy before rising.
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The increase of height hy with increasing yield stress can also be
observed in the laboratory experiments. In terms of the yield
parameter Y0, an increase in the yield stress is comparable to a de-
crease of the thermal power P. Fig. 10 shows the spatiotemporal
evolution of the pixel line on the plume axis for two laboratory
experiments with the same fluid, but with different thermal power

P. The experiments show that, like in the numerical simulation, a
decrease in Y0 (obtained by decreasing P in the experiments and
increasing r0 in the simulations) leads to an increase of hy.

We furthermore tested numerically that we obtain the same
behaviour by applying a constant temperature. So, whatever the
details of the heater history are (constant power in the laboratory
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experiments or simplified temperature history in the simulations
or constant temperature) hy is not a monotonous function of Y0,
but with increasing Y0, hy first decreases and then increases again.

The effect of the increase of the consistency is depicted in
Fig. 9B and increases from (i) Km = 1.0 Pa sn to (iii) Km = 2.0 Pa sn at
r0 = 0.06 Pa and n = 0.58. The flow curve for the viscosity (Fig. 8B
i)) shows that a fluid with a high consistency exhibits higher vis-
cosities at constant shear rate. As a result, we observe that the on-
set time changes only slightly (compared to the effect of a change
in the yield stress), as the consistency increases. On the other hand
hy decreases with increasing Km by �15% from Km = 1.0 Pa sn to
Km = 2.0 Pa sn. Inside the instability the viscosity increases with
increasing Km. With constant r0 = 0.06 Pa and Km = 1.403 Pa sn an
increase of the shear thinning exponent induces lower viscosities
for a given shear rate, Fig. 8A i). Therefore, the onset time decreases
(Fig. 9C) when n increases from (i) n = 0.5 to (iii) n = 0.7. Further-
more this decrease in the effective viscosity also results in higher
hy.

5. Discussion

5.1. The onset of the plume

As we saw in the previous section, the onset time does not only
depend on the yield parameter, but also on the consistency and the
shear thinning exponent. A parameter comparing the yield stress
to the viscous stresses is the Bingham number, which is for a Her-
schel–Bulkley fluid defined as

Bi ¼ r0

Km _cn
: ð10Þ

We calculate this parameter using the maximum shear rate at each
time step and then track the evolution of Bi (Fig. 11A). Fig. 11B

shows the evolution of the viscosity on the plume axis. A compari-
son of both plots shows that the Bingham number value becomes
Bi = 1 right prior to the take off of the plume. We can furthermore
compare this to the evolution of the temperature field; Fig. 11C
shows the temporal evolution of a vertical pixel line at the plume
axis and Fig. 11D a horizontal pixel-line cutting the thermal bound-
ary layer through the plume axis. The grey dotted line indicates the
onset time as determined in the laboratory experiments [12], where
the necking of the isotherms as seen in Fig. 11D has been used as a
criterion for the onset. The state at which Bi = 1 occurs slightly be-
fore the onset as determined by the deformation of the isotherms in
(Fig. 11D). However, when we plot the onset time as determined
from the isotherms versus the onset time determined by the crite-
rion Bi = 1 for different rheologies (Fig. 13) the data collapse on a
straight line of slope one. Therefore, the Bingham number criterion
is suitable to determine the onset time. Additionally, this method
provides a more accurate determination of the onset time, since
the other methods depend on the choice of the isotherm (cf.
Fig. 11D: the inner (red) isotherm deforms earlier than the outer
(blue) isotherm).

Bi = 1 at onset gives a characteristic scale for the shear rate that
has to be overcome to generate a plume. This critical shear rate is
then written as

_ccr ¼
r0

Km

� �1=n

: ð11Þ

This further implies that at onset the local stresses fulfill the follow-
ing criterion

r ¼ r0 þ Km
r0

Km

� �1=n
 !n

¼ 2r0: ð12Þ

The experiments of Davaille et al. [12] indicate that the critical
yield number W as defined for bubbles to rise [17,18]) or spheres to
sink [19,20] in a yield stress fluid is also applicable for the onset of
the plume. The data range accessible from the simulations provides
a much cleaner way to determine this parameter, than by the lab-
oratory experiments. Similar to [12] we determine the volume of
the fluid with a temperature excess 0.1DT at the onset, where DT
is the temperature difference between the heated patch and the
ambient fluid. We then calculate the equivalent radius of a sphere
with the same volume req and determine its mean buoyancy, which
is derived via the temperature difference of the mean temperature
of the hot pocket and the ambient fluid DT as Dq ¼ aqDT . Substi-
tuting these values into the definition of [18]

W ¼ gdDq
3r0

ð13Þ

with d = 2req yields values well above, for our simulations 1.6–3.8
times, the critical value Wc = 6.85 given by these authors (cf.
Fig. 12). This indicates that W P 6.85 is a necessary but not suffi-
cient criterion, as at the same time the Bingham number also needs
to be supercritical (Bi < 1).

Plotting the maximum velocity versus the product of the equiv-
alent radius req and the maximum shear rate (Fig. 14) yields a good
agreement between those two velocities. Thus, treating the ther-
mal anomaly as a hot pocket of radius req rising through the fluid
is a good approximation.

5.2. Height where the plume stops

In Section 4 we illustrated the effect of the rheological proper-
ties of the fluid on the evolution of the thermal instability and
found that all parameters strongly influence the height hy where
the plume stops. Fig. 15 summarizes these results for the simula-
tions. Fig. 15 A therefore assembles hy for all the simulations with
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Y0 < 1000. For higher Y0 the plume always arrives at the surface.
The highlighted series (green h, Km = 1.403 Pa sn, n = 0.58 and vary-
ing r0) will now be discussed. With increasing yield parameter Y0,
we can observe that hy first decreases and then increases again. We
therefore compare two simulations that stop at approximately the
same height but are on either branch of that curve (cf. points
marked as PI and PII in Fig. 15). For each simulation we visualized
the evolution of the viscosity on the plume axis through time
(Fig. 15C1 and C2). The plume at lower yield parameter, PI with
Y0 = 245.1, starts much later than PII (Y0 = 476.2). Once it starts,
PI is much faster than PII, as shown by the maximum velocity
(Fig. 15B), which is 1.5 times higher for PI than for PII. This can
be explained by PI having accumulated much more buoyancy than

PII, as it was heated for a longer time. In Fig. 14 we can see that a
plume with a higher shear thinning exponent (comparing red
points with n = 0.7 to blue points with n = 0.5) rises much faster.
Fig. 15A and B show that these faster plumes also rise higher (high-
er hy). However this does not explain why the plume stops and
how the transition from the left to the right branch of Fig. 15 takes
place.

A plume rises if it is buoyant enough, and as we could see at the
onset, the Bingham number has to be supercritical (Bi < 1). We
therefore calculate in a first step the Bingham number along the
plume axis through time (Fig. 15D) using the local shear rates
and the respective fluid parameters. Comparing this evolution for
each fluid shows that the Bingham number for PI becomes subcrit-
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this article.)
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ical (Bi > 1) at the plume head as the plume stops. On the other end
PII stops even though its Bingham number is still supercritical. In a
second step we now calculate the local yield number W, with the
maximum temperature difference between head of the plume
and ambient fluid and req as determined for the onset. We find that
as PII stops, the yield number becomes W = 5.124, which is below
the critical value of W = 6.85 given by [17–20] and also the one
determined experimentally for the thermal instability in Carbopol
by [12].

If we do this analysis for all data points, we find simulations in
which the Bingham number is already subcritical while the yield
number W is still supercritical and vice versa. This indicates that,
as soon as Bi or W become subcritical, the plume stops rising.
The critical yield number is Wc = 5 ± 1.2. This uncertainty is due
to the fact that we are not saving every field at every time step.

We then determined for each simulation, which parameter be-
comes subcritical first, i.e. whether it is the Bingham or the yield
number that causes the plume to stop, and the time ts when the
respective parameter becomes subcritical. At ts we now deter-
mined the value of the other parameter, which is still super critical
at this time. The results are plotted against the yield parameter Y0

(Fig. 16) where the filled symbols show the yield number W (when
the Bingham number becomes subcritical) and the open symbols
the Bingham number (when the yield number becomes
subcritical).

The plot (Fig. 16) is divided into two parts, where separation oc-
curs at Y0 = Y0c � 300, corresponding to the minimum observed in
Fig. 15A. Approaching Y0c = 300 the yield number approaches the
critical value (W ? Wc) and the Bingham number Bi ? Bi = 1.

Besides the differences for hy, we can observe that the morphol-
ogy of the plume changes from the left to the right branch
(Fig. 15E). On the left branch, where the dynamics are dominated
by the Bingham number, the strongest deformation occurs at the
edges of the instability. Around the plume axis, deformation is
low ð _c < 10�3 s�1Þ and inside the instability as well (Fig. 15D1).
The transition from the edges of the instability towards the inside
is rather sharp, compared with (Fig. 15D2 and Fig. 15E2) PII on the
right branch, where it is more smeared out. For PII the deformation
pattern resembles much more the pattern observed in a Newtonian
or purely shear thinning fluid.

6. Conclusions

We performed a systematic numerical study on the influence of
the rheological properties in a regularized Herschel–Bulkley fluid
on the development of thermal instabilities produced by a small
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heated patch. The comparison with laboratory experiments shows
that the purely viscous description of [26] is adequate to describe
the plume onset and its development. In agreement with [12], we
find that the yield parameter Y0 = aqg P/kr0 is the key external

parameter to describe the transition from a slowly convecting
hot cell around the heater towards a rising plume. Its critical value
depends on the heater geometry and is Y0c = 165 ± 25 for a heater
flush-mounted on the bottom of the tank. In addition, the determi-
nation of the 3D temperature, velocity, shear stresses and viscosity
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Fig. 17. Dependence of consistency KmT on temperature T. Rheological properties
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T, with A = 1.6927 and B = �0.0257 K�1.
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fields allows us to show that there are two necessary local condi-
tions for a plume to take off and continue to rise. First, the local
buoyancy of the hot pocket of fluid should be greater than the yield
stress (which implies that W = Dqg2req/3r0 P Wc = 5 ± 1.2). Sec-
ond, the Bingham number, which compares the yield stress to
the viscous stresses, Bi ¼ r0=Km _cn, should be smaller than 1.0. This
implies that the local shear rate should be greater than a character-
istic shear rate scale that only depends on the rheological proper-
ties of the fluid. As soon as W < Wc or Bi > 1, the plume stops its
upwards progression. Hot material will continue to rise from the
bottom of the tank but it will spread under an unyielded, high vis-
cosity region at the top of the box. Further work is now under way
to characterize plume dynamics in steady state.
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Appendix A. Temperature dependence of the consistency

The temperature dependence for KmT has been evaluated per-
forming a temperature sweep test at constant shear rate. To verify
the uniformness of the model, we used two different mixtures of
Carbopol (for rheological properties see figure caption Fig. 17)
and applied two different shear rates _c ¼ 1 s�1 and _c ¼ 10 s�1.
The results are plotted in Fig. 17. The figure shows that the model
KmT = KmA e�B T with the coefficients A = 1.6927 and B = �0.0257 K�1

fits the data reasonably well, for both fluids and at both shear rates.
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