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EFFECTS OF STRONGLY TEMPERATURE-DEPENDENT VISCOSITY ON 

TIME-DEPENDENT, THREE-DIMENSIONAL MODELS OF MANTLE CONVECTION. 
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Abstract. Numerical simulations of thermal convection in 

a wide (SxSxl) Cartesian box heated from below with 
temperature-dependent viscosity contrasts of 1000, and 
Rayleigh number 105 show that boundary conditions and 
aspect ratio have an enormous effect on the preferred flow 
pattern. With rigid upper and lower boundaries, spoke-pattern 
flow with small (diameter ~ 1.5) cells is obtained, consistent 
with laboratory experiments and previous numerical results. 
However, with the arguably more realistic stress-free 
boundaries, the flow chooses the largest possible wavelength, 
forming a single square cell of aspect ratio 8, with one huge 
cylindrical downwelling surrounded by upwelling sheets. The 
addition of stress-dependence to the rheology weakens the 
stiff upper boundary layer, resulting in smaller cells, though 
still with upwelling sheets and downwelling plumes. 

Introduction 

Increasingly realistic numerical models of 
three-dimensional (3-D) thermal convection in planetary 
mantles have been published in recent years, with Rayleigh 
numbers approaching that of the Earth, and various other 
complexities such as spherical geometry, depth-dependent 
properties, and mineralogical phase changes [Bercovici et al., 
1989; Balachandar et al., 1992; Tackley et al., 1993 ]. 
However, by far the largest approximation in these 
calculations is the assumption of viscosity which is constant, 
or only depth-dependent. The viscosity of the Earth's mantle 
is known to be very strongly temperature dependent, resulting 
in the formation of rigid surface plates, and strongly 
modulating the characteristics of other proposed features, 
such as plumes from the core-mantle boundary. Thus, it is 
essential to incorporate such rheology into numerical models. 

Laboratory experiments have given some insights into 
variable viscosity convection, but are limited in their 
applicability to the Earth by the use of rigid boundary 
conditions, since the mobility ofplates on the Earth suggests 
that stress-free boundary conditions are appropriate. White 
[1988] determined that the spoke-pattern is prefered for rigid 
boundary conditions, Rayleigh numbers above about 25000 
and large viscosity variations. 

Numerical work has mainly focussed on steady-state 
solutions in small boxes. Og•awa et al. [1992] modeled 
viscosity contrasts of up to 10 •, identifying the stagnant lid 
regime, characterized by upwelling plumes and downwelling 
sheets beneath a stagnant lid, and the whole-mantle regime, 
characterized by up- and down-welling plumes with sheet-like 
extensions. Christensen and Harder [ 1991] determined that in 
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small boxes (aspect ratio up to 1.5) temperature-dependent 
viscosity favors upwelling plumes and downwelling sheets. 
They also obtained a spoke-pattern solution for rigid boundary 
conditions in a 4x4xl box with viscosity contrasts of 30. 
Perhaps the most prophetic result was obtained by Weinstein 
and Christensen [ 1991 ], who, in the same 4x4x 1 box, found 
that simply changing the upper boundary condition to 
stress-free resulted in a much longer wavelength pattern 
consisting of upwelling sheets and a downwelling plume. 

In order to understand the Earth's mantle, it is important to 
determine the flow patterns with stress-free boundaries at both 
top and bottom, with large viscosity contrasts, and in a box 
whose aspect ratio is similar to the effective aspect ratio of the 
Earth's mantle. Here, solutions with these characteristics are 
presented. 

Model 

In order to isolate the effect of variable viscosity, the 
Boussinesq approximation is assumed, with all coefficients 
constant except viscosity. The infinte Prandtl number 
equations, non-dimensionalized to thermal diffusion timescale 
(D2/K), mantle depth (D), and superadiabatic temperature 
drop (AT), are as follows: 

V.v--0 (1) 

V.•- Vp -- RamTz (2) 

'gij = Tl(Vi,j+Vj,i) (3) 

3T/3t = V2T- V.(v_.T) (4) 

where v, p, T, •, and rl are velocity, dynamic pressure, 
temperature (varying from 0 at the top boundary to 1 at the 
base), deviatoric stress and dynamic viscosity, respectively, z 
is a unit vector in the vertical direction, and the Rayleigh 
number Ral/2 is defined using the viscosity at T=0.5 as 
follows: 

Ra•/2 = ogotATD3/q•/2< (5) 
where p=density, g=gravitational acceleration, or=thermal 
expansivity and <=thermal diffusivity. Viscosity is described 
by an Arrhenius law: 

qNew(T) = exp (13.8155(1/(T+1)-1/1.5)) (6) 

giving a variation between 100 and 0.1, with q(0.5) = 1.0 
For the stress-dependence case: 

T]non. New = T]New 1/n el/n'lo01'l/n 
1 1 Tie ff = 2 (YlSew '1 + Ylnon. Sew' )' 

(7) 

(8) 

where n is the power-law index, e is the strain rate and o0 is a 
reference stress. This gives Newtonian creep at low stresses, 
and non-Newtonian creep at high stresses. 
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The side boundaries are periodic, with top and bottom 
boundaries being isothermal (T--0 and 1 respectively) and 
impermeable, and either stress-free or rigid. 

Numerical Method 

The instantaneous velocity and pressure fields given by 
(1)-(3) are calculated by a finite difference (control volume) 
multigrid technique, using primitive variables (y_ and p) on a 
staggered grid [e.g., Patankar, 1980]. The iterative scheme is 
extremely robust, converging for almost any viscosity 
contrast. This scheme is incorporated into a standard multigrid 
V-cycle [Brandt, 1982; Press et al.,1992], giving convergence 
in order (number of points) operations. When stress-dependent 
viscosity is included, the viscosity field is re-calculated after 
every V-cycle. Explicit timestepping (equation (4)) is 
performed using the MPDATA algorithm [Smolarkiewicz, 
1984] for advection, and second order finite-differences for 
diffusion. Steps of one-half the Courant condition are used. 
The method is well suited to parallel computers, and the 
presented results were obtained on the Intel Touchstone Delta 
at the California Institute of Technology. 

Extensive benchmarking has been performed, in two 
dimensions against the standard benchmarks for constant 
[Travis et al., 1990] and temperature-dependent [Blankenbach 
et al., 1989] viscosity, and in three dimensions againt the 
results of Travis, Olson and Schubert [1990] for constant 
viscosity, and Ogawa et al. [1991] for viscosity contrasts of 
up to 3.2xl 04. For cases with Rayleigh number of order 105 , 
agreement of the Nusselt number to 2% was found with 32 
vertical grid cells. 

Parameters 

The four cases presented are listed in Table 1: one has 
constant viscosity, two have temperature-dependent viscosity 
and different boundary conditions, and one has 
stress-dependence added. All cases are entirely heated from 
below, with an aspect ratio of 8 in both horizontal directions, 
slightly less than the effective aspect ratio of the Earth's 
mantle (~10 at mid-depth), and 128x128x32 grid cells in the 
two horizontal and vertical directions respectively. Ral/2 is 
105, two orders of magnitude lower than that of the Earth's 
mantle, but similar to that used in previous numerical and 
laboratory studies. 

Cases were started from an identical initial state consisting 
of an isothermal interior (T--0.5), error-function boundary 
layers at top and bottom, and small random (white noise) 
perturbations of amplitude 0.05. After initial transients, the 
flow patterns were found to evolve very slowly but steadily, 
requiring large integration times (time--0.2-0.4, 10000-19000 
steps) to ensure solutions had overcome their transient nature 
and basal and surface Nusselt numbers were in good 
agreement. 

In case 4, the nondimensional reference stress o0 was set to 
500, approximately the mean stress from case 3, in order to 
weaken the upper boundary layer without getting the extreme 
viscosity variations obtained with non-Newtonian creep at all 
stress levels [Malevsky and Yuen, 1992]. 

Results 

Temperature-dependent viscosity reduces the Nusselt 
number (Nu) and increases the mean temperature (Tmean), as 

listed in Table 1. The remainder of the discussion will focus 

on convective pattern. 
The constant viscosity case (case 1) is illustrated in Figure 

1 a. There is a rough symmetry between up- and 
down-wellings, which both start off as sheets, decaying into 
plumes as they ascend or descend respectively. The 
downwellings exhibit greater connectivity in this very weakly 
time-dependent pattern, reflected in Tmean being slightly lower 
,than 0.5; however, this is just by chance, since the equations 
are symmetric with respect to the vertical coordinate in this 
case. In small aspect-ratio boxes, stable patterns at this 
Rayleigh number include 2-D rolls, bimodal flow, and square 
or hexagonal cells, depending on the box dimensions and 
initial conditions [Travis et al., 1990]. The weakly 
time-dependent pattern obtained here lies somewhere 
between these idealized cases, also displaying some 
characteristics of the spoke pattern. 

Case 2 (Figure lb) has temperature-dependent viscosity 
and rigid boundary conditions. The spoke pattern is observed, 
as in laboratory experiments [White, 1988]. There is an 
asymmetry between up- and down-wellings, also noted by 
Christensen and Harder [1991]: downwelling sheets persist 
beyond mid-depth, whereas upwelling sheets have broken up 
into plumes by mid-depth. 

A completely different pattern is obtained with stress-free 
boundary conditions (case 3, Figure 1 c). Initially, many small 
cells formed, but over a nondimensional time of ~0.05 the 
downwellings merged to form one huge quasi-cylindrical 
downwelling, resulting in a single square cell filling the entire 
computational domain. Upwelling sheets extend all the way 
from the base to the surface. Although the overall pattern 
remained very stable throughout the remainder of the 
calculation, the exact details of upwellings and downwellings 
were highly time-dependent. Thus, two scales of flow were 
exhibited. In order to test the robustness of this solution to 

initial conditions, an additional calculation was done, starting 
from the final state of the rigid boundary case 2. After a 
nondimensional time of ~0.1, a single square cell was again 
formed. Stable long-wavelength flows resulting from 
temperature-dependent viscosity and stress-free boundaries 
have also been found in two-dimensional simulations 

[Davies, 1988a]. 
In case 4 (Figure ld), the stress-dependent viscosity has 

resulted in softening of the stiff upper boundary layer, making 
it easier for it to enter the interior and hence resulting in 
smaller circulation cells. Again, upwelling sheets and 
downwelling plumes are obtained. 

Discussion 

The upwelling sheets and downwelling plumes found in 
the stress-free cases are compatible with the result obtained by 
Weinstein and Christensen [1991] in a 4x4xl box with 

TABLE 1. Simulation Characteristics 

Boundary 
Case Viscosity Conds. Time (steps) Nu Tmean 

1 constant stress-free 0.437(19600) 9.05 0.486 
2 1000,n=l rigid 0.353(14200) 4.15 0.674 
3 1000,n--1 stress-free 0.188(10500) 6.22 0.629 
4 1000,n--3 stress-free 0.231(15200) 8.91 0.602 
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Fig. 1. Isocontours of residual temperature, showing where the temperature is higher (red) or lower (blue) than the 
horizontally-averaged value, by +0.15 except where stated: a) (top left) Case 1, b) (top right) Case 2, c) (bottom 
left) Case 3, red contour is +0.1, d) (bottom right) Case 4, contours are +0.1 

isothermal, rigid lower and stress-free upper boundaries, and 
a viscosity contrast of 50. The pattern can be understood in the 
following terms: Depth-dependent properties cause the local 
Rayleigh number to decrease with depth, resulting in large 
cells with downwelling sheets and upwelling plumes 
[Balachandar et al., 1992]. In these simulations, the local 
Rayleigh number increases by 3 orders of magnitude with 
depth. Thus, the inverse flow pattern is obtained: upwelling 
sheets and downwelling plumes, with the viscous upper 
boundary layer imposing a long wavelength to the flow. 
Future calculations must establish the flow pattern when both 
depth-dependent properties and temperature-dependent 
viscosity are included, as well as the effects of spherical 
geometry, which favors upwelling plumes and downwelling 
sheets [Bercovici et al., 1989], and strong internal heating, 
which favors isolated cold plumes [Houseman, 1988]. If taken 
literally, the upwelling sheets would suggest active deep 
upwelling below mid-ocean ridges. However, this would 
seem to contradict various geophysical observables [Davies, 
1988b]; thus the robustness of these features to the above 
mentioned effects must be tested. 

Although linear slab-like downwellings are not obtained, 
on the Earth these occur almost exclusively at continental 
margins, suggesting that continents are necessary to obtain 
slabs. On Venus, the huge quasi-cylindrical downwellings 
may correspond to plateau-shaped highlands found in e.g., 
Ishtar Terra or Aphrodite Terra [Bindschadler et al., 1992]. 

In these simulations, the upper boundary layer participates 
in the flow. If the viscosity contrast were increased 
sufficiently, a 'stagnant lid' would develop [Ogawa et al., 
1991], and the convective pattern might resemble the rigid 

boundary case, with small cells. However, the mobility of 
plates on the Earth suggest that this regime is not relevant to 
Earth dynamics, even though the viscosity contrast over the 
lithosphere may be extremely large. On Venus, the high 
surface temperature also raises doubts about the relevance of 
this regime. 

Conclusions 

These results show clearly the importance of stress-free 
boundary conditions and wide domains in understanding 
mantle convection with temperature-dependent viscosity. 
Very large cells are formed, with upwelling sheets and 
downwelling plumes, in contrast to the small-wavelength 
spoke pattern obtained with rigid boundary conditions. 
Although deep upwelling below mid-ocean ridges is 
suggested, the robustness of these patterns to internal heating, 
depth-dependent properties, spherical geometry and higher 
Rayleigh number needs to be established. 
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