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ABSTRACT. We present a model for self-perpetuating magmatism resulting from Rayleigh-Taylor like 
instabilities developing spontaneously in regions that are partially molten. or at the solidus. The 
mechanism is capable of generating large volumes of magma without the need of a plume, or other deep 
source. Numerical models have been used to determine characteristic timescales, spacings and eruption rates 
in terms of non dimensional parameters. Scaled to realistic parameter space. the results correspond to 
timescales and eruption rates compatible with observations of small-scale intra-plate volcanism. 
Applications to oceanic seamount production, volcano spacing and rapid lithospheric erosion are discussed. 

1. Introduction 

Volcanoes occur in diverse forms on the Earth's surface. However, they are usually attributed 
to one of two distinct causes: plate-boundary effects (spreading centers, back-arcs), and deep 
mantle plumes. Several separate arguments lead to the conclusion that deep mantle plumes 
reaching the base of the lithosphere must exceed a certain minimum size; these are, diapirs 
arising from D" exhibit a characteristic size (Griffiths, 1986; Olson et al., 1987), weak plumes 
may get swept up by the large-scale flow (Boss and Sacks, 1985; Richards and Griffiths, 
1988), and weak plumes cannot penetrate phase changes (Uu et aI., 1991) and possible 
chemical boundaries (Kellogg, 1991) in the mantle. However, intra-plate volcanism is 
observed to have a broad spectrum of sizes, ranging down to small (1 OOs of meters high) 
seamounts. Hence an alternative mechanism for intra-plate volcanism is required. This 
argument is reinforced by recent observations of Venus by the Magellan spacecraft. 
Hundreds of mainly small «lOOkm diameter) features, probably volcanic in origin, and 
probably too small to be caused by deep mantle plumes, have been observed. 

In this paper we present a novel mechanism, previously proposed by Stevenson (1988), 
for the production of such intra-plate volcanism. The mechanism involves Rayleigh-Taylor 
instabilities developing spontaneously in regions of the asthenosphere which are partially 
molten, or at the onset of melting. The emphasis in this paper is on an understanding of the 
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basic concepts and physics, and an identification of the important parameters and their 
effects, by means of numerical models and physical argument. 

2. Description of the Instability 

2.1. GEOMETRY AND INSTABILITY 

Figure 1 shows schematically the unstable initial condition which may be representative of, 
for example, young oceanic lithosphere and asthenosphere. By 'lithosphere' we refer to rock 
which is over three orders of magnitude more viscous than the asthenosphere, rendering it 
effectively immobile to asthenospheric flow. With realistic temperature-dependent viscosity 
the base of this viscous lithosphere corresponds to a geotherm about 3000C lower than the 
asthenospheric temperature, i.e. typically lOoooC. 

As a first approximation, a simple univariant solidus is assumed. The geotherm, which is 
adiabatic at great depth, intersects the solidus at some lesser depth. Phase equilibria between 
solid and melt buffer the temperature at the solidus temperature or 'wet adiabat' above this 
depth, until the influence of the cold upper boundary causes the temperature profile to depart 
from this wet adiabat and drop steeply to the surface (following approximately an error 
function in the case of oceanic lithosphere). D, the distance between the depth of onset of 
melting and the base of the viscous lithosphere, is the most important length scale. 
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Figure 1. Initial condition. On the left is a cross-section through the lithosphere and 
asthenosphere, and on the right is the corresponding temperature profile, with the solidus 
indicated (dashed lines). D is the most important length scale. 
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The layer of rock at the solidus, which may be either partially molten or on the onset of 
melting, is unstable to a Rayleigh-Taylor like instability as follows: If an element of rock is 
given an infinitesimal velocity upwards, it will experience pressure-release partial melting, and 
hence a decrease in density since the melt (and possibly the solid residuum - see section 2.3) 
is less dense than the solid. The resulting buoyancy causes increased upwelling velocity and a 
higher rate of melting, a positive feedback situation which can lead to an episode of 
circulation, magma production and possibly surface magmatism. Since the degree of partial 
melting and hence buoyancy is proportional to the vertical distance moved, the growth of 
velocity is exponential, as in a conventional Rayleigh-Taylor instability at early times 
(Turcotte and Schubert, 1982). 

2.2. EFFECT OF MELT MIGRATION 

The situation is made more complicated by migration of melt by percolation through the 
solid matrix. Since melt buoyancy drives the bulk flow, percolation of melt up and out of the 
system diminishes the buoyancy and vigor of the flow. Melt percolation can reasonably be 
described by Darcy's law (McKenzie, 1984; Stevenson and Scott, 1991); arguably the most 
realistic form in this application is one in which the permeability, k, is proportional to 
porosity squared. This predicts that the melt velocity relative to solid is proportional to the 
porosity. The volume flux of melt per unit area of solid is therefore proportional to porosity 
squared. 

Thus, the bulk average upwelling velocity of solid and liquid is linear in melt fraction, and 
the flux of melt through the solid is quadratic in melt fraction. Since the melting rate is 
proportional to upwelling velocity, at low melt fractions melting will exceed percolation. 
Therefore the melt fraction and hence flow velocity will increase, reaching a nearly steady-
state at which the melting rate is balanced by percolation. 
To get a clear picture of how melt migration affects the dynamics it is instructive to consider 
limiting cases. In the limit of infinite permeability the melt is removed instantaneously, hence 
there is no buoyancy, and no bulk flow occurs. In the limit of zero permeability (k=O), the 
melt fraction, hence buoyancy and circulation velocity, is at its maximum possible value 
determined by the vertical dimension of the melting region Dmelt, and the rate of melting of 
an adiabatically upwelling element, df/dZ: 

af f max = Dmelt az I k=O 
(1) 

However, in this case no magmatism is observed at the surface. 

2.3. COMPOSITIONAL CHANGES 

Since it is the denser components, garnet and clinopyroxene, that melt first, the residual solid 
component is also less dense than the unmelted rock, and provides an additional contribution 
to the buoyancy. Even in the case of infinite permeability, buoyancy would be present. This 
effect has been used as a buoyancy source in some models (Mutter et aI., 1988). However, the 
situation is made complicated on Earth by garnet-spinel-plagioclase phase transitions 
occurring at depths of interest, and by the possible existence of a stably stratified depleted 
layer at the top of the asthenosphere as a result of mid-ocean ridge melting processes. On 
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other planets the presence of this buoyancy source is less certain. All these effects have been 
numerically modelled. but since the aim of this paper is to describe the basic physics in a way 
which is scalable to different dimensional parameters and different planets. compositional 
buoyancy is ignored here. 

3. Equations and Numerical Model 

Three sets of equations are necessary. describing the bulk flow. melt percolation and 
advection/diffusion. 

It is appropriate to nondimensionalise the equations to the vertical dimension of the 
melting region (D. shown in figure 1). the diffusive timescale (D2/K • where K=thermal 
diffusivity). the maximum melt fraction (fmax• (1)). and the superadiabatic temperature drop 
across the mobile part of the upper boundary layer which is about 3000C in this case 
(section 2.1). Nondimensional variables are denoted by tildas. 

The bulk flow v of the local center of mass of solid and liquid. assumed to be incompressible 
and of infinite Prandtl number. is described by mass conservation and the Stokes equation 
with an extra term describing the buoyancy due to melting: 

V·y=o (2) 

Vi> -V2y = (Ra. t + Rm.f).i (3) 

where t is the nondimensional temperature. f is the normalized melt fraction and i> is the 
nondimensional pressure. Ra and Rm are the Rayleigh numbers for thermal buoyancy-driven 
and melt buoyancy-driven flow respectively: 

11K 

Rm =_gfmaxD3 ap 
11K af 

(4) 

(5) 

where IX is the thermal expansivity. 11 is the asthenospheric viscosity at the depth of onset of 
melting. 1C is the thermal diffusivity. and fmax is defined in (1). 

A realistic temperature dependent viscosity law is used. so that the lithosphere arises naturally 
from the equations rather than being artificially imposed. 

( Eact ) 11(T) = 110 exp RT (6) 



311 

R is the gas constant. We use a value of Eact' the activation energy, of 420kJ/mole. 

The segregation of solid and melt u, is described by Darcy's law. We assume melt percolation 
is in the vertical direction, and porosity is equal to melt fraction. 

- -f(- -) Rm -2 u= Vliq -VIol =M"(l-f).f .z 

where M is the melt retention number: 

M= TIliqD2 
TI ko 

(7) 

(8) 

TIliq is the viscosity of the melt, and leo is the permeability constant. High values of M 
correspond to very slow percolation, resulting in vigorous bulk circulation, and low values of 
M correspond to fast percolation, resulting in slow bulk circulation, as discussed earlier. 

The full form of Darcy's law for melt migration problems includes a term related to 
compaction of the solid matrix. This term is only important on lengths of the order of the 
compaction length, which is around O.l-lkm for reasonable mantle properties in this case 
(Stevenson and Scott, 1991). The length scales of interest here are tens of kilometers, so we 
neglect this term. It is also possible that the permeability is zero below a certain melt fraction 
threshold of order 1% (Nakano et al., 1989). Since this does not fundamentally alter the 
physics of the mechanism, in fact slightly favoring the development of these instabilities, we 
neglect this possibility. 

Finally, advection/diffusion equations are required for temperature and melt fraction, f: 

at = y2t _ v sol - Vi' - L. m 
at 

- aii -_ 
af --(I-f)--v I-Yf+m at - az so 

(9) 

(10) 

where L is the latent heat, m is the rate of melting, and vsol = v-u is the velocity of the solid 
component. 

The equations are solved using a Petrov-Galerkin finite element scheme (Hughes, 1987; 
Hughes et al., 1989) with a varying element size, designed to give maximum resolution at the 
top of the asthenosphere where it is most needed. 

In the lithosphere the mechanism for melt migration changes to one of rapid propagation 
through cracks. Since this is beyond the scope of the numerical model, melt percolating by 
Darcy flow in the upper part of the partially molten layer is simply removed, and measured as 
an 'eruption rate'. In reality only a fraction of this material would erupt at the surface. 
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4. Results 

In order to isolate and study the effects of melt buoyancy, the thermally-driven component to 
the flow was eliminated by setting n, hence Ra, to zero, and imposing zero heat flux at the 
lower boundary. Values of Ra appropriate to this situation are probably close to critical 
(Haxby and Weissel, 1986). 

The velocity boundary conditions are impermeable, stress-freeoon the base and outside of 
the box and rigid at the top. The temperature boundary conditions are isothermal at the top, 
and zero heat-flux at the base. Calculations in larger boxes verified that box is sufficiently 
large that the limited box size and velocity boundary conditions have negligible effect on the 
flow, and calculations at higher resolutions verified that the resolution is adequate. The initial 
push is provided by a temperature perturbation of 0.4% of the total temperature drop (scaling 
to about 5°C), exponentially decreasing away from the symmetry axis. This temperature 
perturbation is immediately converted into partial melt. 

4.1. TYPICAL SIMULATIONS 

Figure 2 show a typical simulation for the values Rm= 105(= lOOk), M=150. Time is 
normalized to the diffusive timescale D2/K, which is about 50Ma for D=40km. The four 
frames show the growth, peak, decline and death of the circulation. The circulation dies out 
for two reasons. Firstly, some of the depleted and cooled material that has already upwelled 
once gets recirculated into the upwelling. This material cannot contribute to the buoyancy, 
and so has the effect of progressively pinching off the upwelling. Secondly, the system as a 
whole is undergoing cooling, particularly near the base of the viscous lithosphere. Thus the 
viscous lithosphere thickens, reducing D and hence M and Rm. Cooling also causes increased 
viscosity in dry areas of the asthenosphere, further diminishing the flow. 

The time evolution of bulk flow velocity and eruption rate are shown in figure 3 for three 
cases. Velocity, time and eruption rate are nondimensionalised to thermal quantities, lC/D, D2/K 
and KD respectively (about O.lcm/yr, 50Ma and 1300km3/Ma for D=40km, K=1O·6m2/s). In 
each case the rapid rise, leading to a long, gradually decreasing plateau, and a fairly rapid 
dying out, are apparent. The growth of the velocity with time looks linear on this semi-
logarithmic plot, confirming that the growth is indeed exponential. The time lag between the 
velocity curve and the eruption curve is indicative of the melt percolation time through the 
layer. 

The three cases shown are a reference case (Rm=50k=5.l04, M=150), one with Rm 
doubled, which corresponds to figure 2 (Rm=lOOk, M=150), and one with M increased by an 
order of magnitude (Rm=50k, M=1500). The effect of doubling Rm is, to first order, a 
doubling of nondimensional velocity with the nondimensional timescale remaining constant. 
Increasing M increases both the flow velocity and timescale. 

4.2. EFFECT OF PARAMETERS 

The effect of the main parameters Rm, M and D on the length scale, timescale and eruption 
rates are now investigated more thoroughly. All results are nondimensionalised to thermal 
quantities, as described above. 
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time = 0.0000 

time = 0.0359 

time = 0.0685 

time = 0.1123 
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Figure 2. Simulation for Rm=IOOk, M=150, Ra=O, in axisymmetric geometry, at four times 
showing start, peak, decline and death of the instability. Each frame shows temperature (right, 
shaded), velocity (right, arrows). melt fraction (left. contours at ° and intervals of 2.5%), 
composition (left, shaded means depleted). and eruption rate per unit area (graph on top). 
Dimensions of box are 3.250 and 2.750. initial lithospheric thickness is O. 
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Figure 3. Time evolution of velocity and eruption rate for three cases. Time, velocity and 
eruption rate are nondimensionalized to D2/K, IC/D and id) respectively. 

4.2.1. Length scale. Drawing an analogy between this instability and the classical Rayleigh-
Taylor instability between two highly viscous fluids of different densities bounded by upper 
and lower boundaries (Turcotte and Schubert, 1984), the preferred spacing of upwellings is 
expected to be determined solely by the vertical length scale, D. 

To determine this preferred spacing, numerical experiments were performed in long 
Cartesian boxes with random initial temperature perturbations. A typical result, in an aspect 
ratio 4 box with impermeable boundary conditions, is shown in figure 4. The initial random 
temperature perturbations are of amplitude 0.4% the total temperature drop, as before. After 
a short time, five upwellings have formed, two of them being strong, and three weak. In 
general, experiments at this aspect ratio lead to between three and five upwellings, indicating 
that the preferred number is about four, corresponding to a spacing of 2.5xD. This preferred 
spacing is also observed with other aspect ratios. 

4.2.2 Timescale. Figure 5 a) and b) shows the effect of Rm and M on the nondimensional 
timescale, defined as the elapsed time between the start of the simulation and the point at 
which the melt fraction and velocity are zero everywhere. 

The timescale is approximately constant for Rm > 50k, decreasing rapidly at low values. 
However it increases significantly with increasing M, beginning to saturate at about M=lOS. 

4.2.3. Peak Velocity and Eruption Rates. The effect of Rm and M on the peak velocity is 
shown in figure 5 c) and d). The relationship between peak velocity and Rm appears linear, 
except at low Rm values where thermal diffusion becomes important. The peak velocity 
increases steadily with M until it saturates at about M=IQ4. 

Similar curves for eruption rate, averaged over the lifetime of the system, are shown in 
figure 5e) and 0. The eruption rate, like the velocity, appears approximately linear in Rm. 
However, in M-space the eruption rate reaches a peak at around M=103, and declines rapidly 
either side of this. 
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time 0.0000 

time = 0 .0 162 

Figure 4. Simulation in a 4xl cartesian box for Rm=50k, M=150, Ra=O. Upper plot shows 
random initial condition, lower plot shows subsequent development of upwellings. 
Temperature (shaded), velocity (arrows), melt fraction (contours) and eruption rate (graph), 
as figure 2. 

s. Discussion 

5.1. INTERPRETATION OF PARAMETERS 

The results in the previous section lead to a qualitative interpretation of the main parameters. 
Rm may be interpreted as V stokesfV thermal, where V stokes is the characteristic velocity 

induced by melt buoyancy, derived by dimensional analysis from the Stokes equation, and 
V thermal is the same from the energy equation. Although one can interpret the thermal 
Rayleigh number Ra in the same way (except with thermal buoyancy), there is an important 
difference between the buoyancy forces in each case: in melt-driven flow, the buoyancy of an 
element increases as it rises, but in thermally-driven flow within an otherwise adiabatic region, 
the buoyancy remains constant. 



316 

o 

.. 
Q)d 
«i 
0", 
rIl .. 
Q)o 

S 
E=C!; 

o 

a) Timescale v's Rm 

100.0 200.0 

! LI ________ ______ ________ ______ __J 

0.0 100.0 

Rm (x 103 ) 

i 
c) Velocity v's Rm 

>. 
+> -u 
-Q) 
> 

Q) 
p., 

C! I ........... .. 
0.0 100.0 100.0 

Rm (x 103) 
200.0 

e) Eruption Rate v's Rm 

b) Timescale v's M 
: 

" Q)O -«I 
0 
rIl"! 
Q)" 

S ..... 
E-<-.. 

.. 
0 

10" 10" 10' 10" 

M 

0 
d) Velocity v's M 

>. 
+> 
• .... 0 
0' -Q) 
> 
«I:il 
Q) 

p., 

.. 
0 

10" 10" 10' 10" 

M 

f) Eruption Rate v's M .. 
Q) 9 r, ----,-----,-----.------, C! ii, I 

Q)" 
iij iij 

-
O"l 0 .,....G ...... 

+> +>0 

;:::l"l ;:::l 

o 0 
biJw biJ 
> > 
<"l <"l ."1 o .. 

0.0 50.0 100.0 100.0 200.0 10" 10" 10' 10" 

Rm (x 103) M 

Figure 5. Effect of Rm and M on timescale, velocity and eruption rate. In a) c) and e) M is 
fixed at 150, in b), d) and f) Rm is fixed at 50k. Time, velocity and eruption rate. 
nondimensionalized to D2/lC, 1C/D and lCD respectively. 
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Rm primarily affects the nondimensional peak velocity and average eruption rate in an 
approximate proportionality, and has little effect on the nondimensional timescale except at 
low values. At these low values, thermal cooling becomes comparable with advection of heat, 
particularly during the early growth of the instability when the thermal velocity may exceed 
the flow velocity, and so the size of the initial perturbation becomes important. In the low Rm 
limit, thermal cooling dominates advection of heat, and the observed activity is simply due to 
relaxation of the initial condition. 

M may be interpreted as V stokesiV melt. and in a sense is closer to the thermal Rayleigh 
number in physical meaning than Rm is, since both M and Ra are the ratio of flow velocity to 
the velocity at which the buoyancy force is dissipating. It affects the peak velocity and the 
timescale in a similar way, both increasing steadily with M and then saturating at high M. 
However, the eruption rate increases with M, then decreases. The effect on velocity can be 
understood as follows: In the limit of zero permeability (M=infinity) the maximum possible 
peak flow velocity, determined by Rm, is obtained; at finite M the buoyancy is reduced due to 
melt percolation and only some fraction of this velocity is reached. The effect on the 
timescale is due to the presence of melt buffering the system against cooling: melt fraction 
and thus timescale increase with increasing M. The eruption rate is low for high M because it 
is related to the percolative flux of melt at the top of the asthenosphere, and at high M the 
permeability and hence flux is small. At low M the eruption rate follows the trend of the 
velocity and other indicators of activity. 

S.2. INITIAL STATE 

In a partially molten layer where the temperature is buffered at the solidus, infinitesimal 
perturbations will grow exponentially into significant flow, so that these instabilities will 
develop spontaneously, as in the classical Rayleigh-Taylor instability (Turcotte and Schubert, 
1984). In this case the instability greatly amplifies the amount of melt available for 
magmatism. 

If the temperature is merely close to the solidus, then a vertical "push" is required to initiate 
melting and melt-driven flow. The required "push" could be provided by local small-scale 
flow, for example thermally-driven flow (Buck and Parmentier, 1986; Haxby and Weissel, 
1986; Richter and Parsons, 1975), flow induced by fracture zones (Robinson et al., 1988), 
and passive comer-flow circulation induced at spreading centers. Hence a pervasively 
partially-molten asthenosphere is not required for these instabilities to develop. 

5.3. INTERACTION WITH OTHER SMALL-SCALE FLOW 

Simulations which include thermal buoyancy indicate that the melt-driven flow, once induced, 
can dominate thermally-driven flow. Even at lower values of M and Rm, melt buoyancy is 
observed to have a significant effect on the thermally-driven flow. The interaction between 
the two driving forces can result in a richness of phenomena not observed by treating each 
force separately. Thus, to correctly model flow in the asthenosphere it is necessary to include 
melt buoyancy. 
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5.4. VOLCANO SPACING 

Characteristic spacing of major volcanic centers is observed in many situations, for example 
along hotspot chains. One current theory explains this by invoking stresses in the lithosphere 
(ten Brink, 1991). However, in the results presented in section 4.2.1, upwellings exhibit a 
characteristic spacing related to D, the vertical distance between the onset of melting and the 
base of the viscous lithosphere. Thus, fluid dynamics in the asthenosphere provides an 
alternative explanation for the spacing observed in nature. One upwelling may correspond to 
one volcano or a cluster of volcanoes, depending on the details of crack dynamics in the 
lithosphere. 

5.5. LITHOSPHERIC EROSION 

Melting of the rock as it rises adiabatically is accomplished by the absorption of latent heat 
by the melt. The subsequent vertical percolation of the melt to the top of the partially molten 
layer is effectively transporting this latent heat energy upwards, enhancing the vertical heat 
transport. In the calculations presented in this paper, much of this melt was removed from the 
top of the layer, removing the energy from the system. Calculations in which all the melt is 
allowed to freeze at the top of the asthenosphere. releasing its latent heat. indicate 
considerable thinning or erosion of the viscous lithosphere on timescales much shorter than 
predicted by diffusion alone. 

The exact mechanism for this is as follows: The presence of partial melt at the top of the 
asthenosphere effectively buffers the temperature to the solidus temperature. The entire 
partially molten layer is being advected upwards by the bulk circulation described by Stokes 
equation. Thermal diffusion is important on small length scales near the top of the partially 
molten region, warming and hence softening the base of the viscous lithosphere. allowing 
further upward movement by Stokes flow. While melt is being supplied to the top of the layer 
by Darcy flow, Stokes flow and pressure-release melting at a faster rate than it is freezing due 
to thermal conduction, the lithosphere will thin. This combination of diffusion on small 
length scales and advection causes much faster erosion than thermal diffusion alone. Since 
the erosion timescale is much less than the corresponding diffusion timescale, a non-
equilibrium lithospheric temperature profile results. 

Preliminary results suggest that lithospheric thinning by a factor of up to two in a few 
million years may be possible. Due to difficulty in resolving the high thermal, viscosity and 
compositional gradients resulting from the non-equilibrium temperature profile, further 
investigation is needed to validate these numerical results.The situation is further complicated 
by the possibility of a high melt-fraction compaction layer at the base of the lithosphere 
(Sparks and Parmentier, 1991). 

5.6. OCEANIC SEAMOUNTS 

There are a large number of oceanic seamounts, which have been particularly well studied in 
the Pacific Ocean. Batiza (1982) estimated that there are 22-55,000 >lkm high seamounts on 
the Pacific floor, and Smith and Jordan (1988) estimate roughly one million of all sizes. 
Smith and Jordan's analysis suggests that 78% of the large (> lkm high) non-hotspot. non-
fracture zone seamounts were formed away from the axis of the East Pacific spreading center, 
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on lithosphere that was already up to several tens of Ma old. Examples of seamounts 
produced off-axis are described by Honda et al. (1987). 

There is much uncertainty in the values of parameters appropriate to young oceanic 
asthenosphere, particularly in 1] and leo. However, Rm and M are most sensitive to D. The 
depth of onset of melting for n-type Mid-Ocean Ridge Basalt (MORB) has been calculated to 
be at around 80km (McKenzie and O'Nions, 1991). Taking reasonable parameters: 
1]=1018Pa.s, 1]liq=IOPa.s, dp/df=-500kg/m 3, ko=3xlO- 10m 2, D=30-50km, we obtain 
Rm=20-74k and M=31-90. Scaling the numerical results to this dimensional space, we obtain 
flow velocities of up to -1Ocm/yr, timescales of -IOMa, spacings of -100km, and magma 
production rates of up to -1500 km3/Myr. The total magma volume can be several times that 
required to build the largest seamounts, and the observed seamount volume per unit area in 
the Pacific (Smith and Jordan, 1989). Thus, the mechanism provides a plausible explanation 
for oceanic seamounts. The fertile asthenospheric material would be provided by rock which 
is drawn up by the mid-ocean ridge comer-flow but misses the proposed focussed upwelling 
directly under the ridge (Buck and Su, 1989; Scott and Stevenson, 1989). Some distance 
from the ridge, there is still a vertical component to the velocity, leading to the temperature 
profile in figure 1. Each upwelling may feed several volcanoes, the number being determined 
by cracks in the lithosphere, and the height determined by the depth of the feeding magma 
chamber, related perhaps to the thickness of the lithosphere. 

5.7. LARGER VOLCANOES 

Where anomalously high asthenospheric temperatures exist, for example where material has 
been emplaced by a plume, the depth of onset of melting may be much deeper than 80km; 
McKenzie and O'Nions (1991) calculate 120km for e-type MORB. Using D=50-90km and 
otherwise the same parameters as in section 5.6, we obtain Rm=74-430k, M=90-290. The 
numerical results scale to flow velocities of -10-20 cm/yr, timescales of 10-40 Ma, eruption 
rates of -1000-40000 km3/Ma, and spacings of 125-200km. Thus, this mechanism may be 
important in the dynamics of such regions. 

6. Conclusions 

We have presented a model for self-perpetuating, melt-buoyancy-driven asthenospheric flow 
and volcanism arising from Rayleigh-Taylor instabilities in the asthenosphere. The 
mechanism can generate surface volcanism without a deep source, such as a plume. In the 
presence of pre-existing small-scale circulation, the instability can be triggered without a 
pervasively partially-molten asthenosphere. The important parameters are the melt-buoyancy 
Rayleigh number Rm, the melt retention number M, and the vertical distance between the 
onset of melting and the base of the viscous lithosphere, D: the time scale is determined 
mainly by M and the amount of magmatism by M and Rm. 

The melt-driven upwellings exhibit a characteristic spacing proportional to D. This may 
provide an explanation for the frequently observed characteristic spacing of volcanic centers. 

If a large fraction of the melt generated freezes at the base of the viscous lithosphere rather 
than erupting, then significant lithospheric thinning is possible. 

When scaled to parameters realistic to young oceanic lithosphere, the magma volumes 
produced and timescales are compatible with observations of intra-plate volcanism, in 
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particular the tens of thousands of large seamounts in the Pacific which appear unrelated to 
major hotspot chains. 

Melt buoyancy can have a major effect on asthenospheric dynamics. Flow resulting from 
the interaction of thermal buoyancy and melt buoyancy exhibits greater complexity than 
flow driven by either of these individually. Hence, it is important to consider partial melting 
when studying the dynamics of the asthenosphere. 
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