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Abstract 

Despite the fundamental importance of plates in the Earth’s mantle convection, plates have not generally been included 
in numerical convection models or analog laboratory experiments, mainly because the physical properties which lead to 
plate tectonic behavior are not well understood. Strongly temperature-dependent viscosity results in an immobile rigid 

lid, so that plates, where included at all in 3-D models, have always been imposed by hand. An important challenge 
is thus to develop a physically reasonable material description which allows plates to develop self-consistently; this 
paper focuses on the role of ductile shear localization. In two-dimensional geometry, it is well-established that strain-rate 
softening. non-Newtonian rheologies (e.g. power-law, visco-plastic) cause weak zones and strain-rate localization above 

up- and down-wellings, resulting in a rudimentary approximation of plates. Three-dimensional geometry, however, is 
fundamentally different due to the presence of transform plate boundaries with associated toroidal motion. Since power-law 
and visco-plastic rheologies do not have the property of producing shear localization, it is not surprising that they do 

not produce good plate-like behavior in three-dimensional calculations. Here. it is argued that a strain-rate-weakening 
rheology, previously shown to produce plate-like behavior in a two-dimensional sheet representing the lithosphere, is a 
reasonable generic description of various weakening processes observed in nature. One- and two-dimensional models are 
used to show how this leads to shear localization and the formation of ‘faults’. This rheology is then applied to the 
high-viscosity lithosphere of 3-D mantle convection calculations. and the velocity-pressure/viscosity solution for the entire 

3-D domain (lid and underlying mantle) is solved self-consistently. It is found that the lithosphere divides into a number of 

very high-viscosity plates, separated by narrow, sharply defined weak zones with a viscosity many orders of magnitude less 
than the plate interiors. Broad weak zones with dominant convergent/divergent motion above up- and down-wellings are 
interconnected by a network of narrow weak zones with dominant strike-slip motion. Passive spreading centers are formed 

in internally heated cases. While the resulting plates are not fully realistic, these results show that self-consistent plate 
generation is a realizable goal in three-dimensional mantle convection, and provide a promising avenue for future research. 
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1. Introduction 

Plate tectonics is arguably the most important 

manifestation of mantle convection. However, it is 
a long-standing problem that mantle convection ex- 

periments, either computational or laboratory, do 

not naturally develop plate tectonics. Strongly tem- 

perature-dependent viscosity is clearly an important 

ingredient, but this leads to an immobile, rigid lid, 
essentially a single plate covering the entire planet 
[1,2]. Thus, it has been necessary to impose plates 

by hand, either as a velocity boundary condition (e.g. 
[3]), or by specifying the locations of weak zones 
(WZs) or faults (e.g. [4,5]). A long-standing and 

fundamental challenge in geodynamics is to identify 
a physically reasonable material description which 

allows plates to form self-consistently. rather than 

being imposed by the modeler. 
‘Real’ plate margins are thought to involve faults 

in the crust and upper lithosphere where brittle and 
elastic modes of deformation are important, with 

ductile shear zones below this depth [6-81. It is not 

clear what the relative importance of brittle faults 
versus ductile shear localization is in producing plate 

margins, since the brittle and ductile layers are of 
comparable strength, and the crust is often decou- 
pled from the mantle lithosphere by the weak lower 

crustal layer. Perhaps brittle failure occurs first, guid- 
ing the locations for ductile shear localization [7]. 

However, in some cases, ductile shear localization is 

observed to precede brittle failure [9]. In any case, 
the mantle convection community has focused on the 
role of ductile strain-rate localization mechanisms, 

an approach which is continued in the present study. 
In two-dimensional geometry (2-D), it is well- 

established that strain-rate softening, non-Newtonian 
rheologies cause weak zones (WZs) and strain-rate 
localization above up- and down-wellings [ lo,1 11, 
resulting in a rudimentary approximation of plates 

[12,13]. This is easy to understand since in 2-D, 
there are only convergent and divergent margins, 
which have concentrated buoyancy/stress sources 
below them to ‘break’ the rigid lid and focus defor- 
mation. Three-dimensional geometry (3-D) is fun- 
damentally more challenging due to the transform 
(strike-slip) boundaries, associated with toroidal mo- 
tion, which makes up almost half of the total plate 
velocity field [14]. There are no concentrated lo- 

cal buoyancy forces available to drive and localize 
transform boundaries; indeed, buoyancy in the man- 
tle cannot directly drive toroidal motion at all if the 
viscosity is purely depth-dependent [ 15,161. Thus, 
it is not surprising that the rheologies that produce 

reasonable ‘plates’ in 2-D do not work well in 3-D 

[17-191. 
Real upper mantle shear zones are commonly 

observed in large massifs in erogenic belts [20,21], a 

particularly notable, 170~km-long example of which 
is observed in west Greenland [22]. When formed at 
moderate temperatures (i.e., less than about 950°C) 
and high stresses, these shear zones are narrow (from 
cm to km width) and contain mylonites, a type of 

rock characterized by strong grain-size reduction and 
(commonly) hydration [21]. 

What physical mechanism(s) could be responsi- 

ble for such shear zones? Shear localization requires 
‘self-lubrication’ or strain weakening (i.e., the stress 

required to maintain a given strain rate decreases 
with increasing strain), for which several mecha- 

nisms have been proposed: (1) grain-size reduction 
due to dynamic recrystallization, which can lead to 

a transition from grain-size insensitive dislocation 
creep to grain-size sensitive diffusion creep, with 
a potential viscosity reduction of many orders of 
magnitude. Field observations [9,20,21,23], labora- 

tory experiments [24,25], and 1-D numerical models 
[26] strongly support this mechanism; (2) produc- 

tion of voids (pores and microcracks) followed by 

volatile ingestion. again indicated by field observa- 
tions [27.28]; (31 the feedback between viscous dissi- 

pation and temperature-dependent viscosity [29,30], 

for which some field evidence exists [31]; and (4) 
damage theory (e.g. [32-34]), which involves the 

weakening of material by ‘damage’ (production of 
microcracks, voids, etc.), although this is more ori- 
ented towards the seismogenic zone. In the remain- 
der of this paper, however, the term ‘damage’ will be 

used to refer to any of the above weakening mecha- 
nisms (i.e. grain-size reduction, voids, microcracks, 
volatile infiltration, temperature increase). 

These mechanisms all cause strain weakening. 
However, the ‘damage’ also heals with time, due 
to annealing or diffusional processes. Using suit- 
able parameterizations of these mechanisms, one 
can derive a ‘steady-state’, in which production of 
damage (described by a damage vs. strain relation- 
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ship) is balanced by healing (described by a damage 
vs. time relationship) to give a damage vs. strain- 
rate relationship, and hence (through a viscosity vs. 
damage relationship) a stress vs. strain-rate rela- 
tionship. Examples for the viscous dissipation and 
void-volatile mechanisms are derived in [27]. In all 
cases, the stress increases with strain-rate to some 
critical point, after which further strain rate leads 
to weakening, i.e. stress reduction. Such a strain- 
rate-weakening (SRW) rheology thus appears to be 
a robust, generic description of the physical pro- 
cesses which can lead to shear localization. Whether 
such a ‘steady-state’ is actually attained in nature 
depends on the time-scales for damage production 
and healing relative to the time-scale on which driv- 
ing force or deformation is applied. For the purposes 
of obtaining a basic, first-order understanding of the 
underlying physics, a ‘steady-state’ SRW rheology is 
adopted in this paper. The details of the time-evolu- 
tion of damage and shear localization must certainly 
be addressed in future. 

Particular examples of this SRW rheology have 
been successfully applied to the problem of plate 
generation in a two-dimensional lithospheric sheet 
by Bercovici [19,35], with deformation of the sheet 
driven by specified sinks and sources. The mod- 
els showed that SRW rheology, in the form of a 
general ‘stick-slip, rheology [19,35], viscous-dissi- 
pation feedback [36], or void-volatile self-lubrication 
[27], is extremely effective in producing self-local- 
ization of shear and very narrow shear bands which 
give a good approximation of transform faults. 

In this paper, SRW rheology is applied to the 
high-viscosity lithosphere of 3-D mantle convec- 
tion calculations, with driving stresses derived from 
thermal buoyancy of up- and down-wellings. These 
solutions are preceded by simple one- and two- 
dimensional analyses to gain an understanding of 
how the self-localization works. 

2. Strain-rate-weakening rheology 

As argued above, a strain-rate-weakening (SRW) 
effective rheology is a consequence of combining 
strain weakening by some type of ‘damage’, with 
time-dependent healing of the damage. The form of 
SRW rheology adopted here arises under the fol- 

lowing generic conditions: (1) the rate of damage 
production is proportional to the product of stress 
and strain rate, i.e. the rate at which work is done 
on the system; (2) the rate of healing of damage is 
proportional to the amount of damage (i.e. an ex- 
ponential decay), although this is more complicated 
for grain-size reduction [26]; and (3) viscosity de- 
creases linearly with increasing damage. A ‘steady- 
state’ stress vs. strain-rate relationship can be derived 
by equating damage-production rate to healing rate, 
then using the viscosity vs. damage relationship to 
obtain viscosity as a function of strain rate: 

(1) 

where o = stress, q = viscosity for ‘undamaged’ 
material, oyyield = yield stress (the maximum possible 
stress), vet = ‘effective’ viscosity, and the scalar 
strain rate 2 is similar to the second invariant of the 
deviator% strain-rate tensor: 

;=G (2) 

This is very similar to the stress vs. strain-rate 
relationship obtained by Bercovici for viscous-dis- 
sipation [36] or void-volatile self-lubrication [27], 
but differs by being parameterized in terms of yield 
stress and ‘undamaged’ viscosity. Asymptotically, 
for small the material behaves like a Newtonian fluid 
with the ‘undamaged’ viscosity, whereas for large t?, 
stress is inversely proportional to strain rate. 

3. One-dimensional model 

We first consider a 1-D model, in which a domain 
of length 1 is sheared with velocity V. There is 
only one stress component (the shear stress), and the 
momentum equation reduces to: 

(T = constant (3) 

where o = shear stress, with the boundary condition 

L 
1 

e=v 
Jo 

where t? = shear strain rate, defined here as the ve- 
locity gradient, twice the conventional definition. For 
the purposes of analysis, a simplified SRW rheology 
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is assumed, with the following form: 

(5) 

This has the same asymptotic slopes as the full 
rheology (Eq. (1)). Viscosity r~ and yield stress oYyi&j 
are both taken to be unity for this 1-D analysis. 
The maximum possible stress is thus 1, with two 
possible strain-rate values for a particular value of 
stress. These two values can be called the ‘plate’ and 
‘weak’ branches. Thus: 

c = constant = iplate = l/eweak (6) 

In order to satisfy the boundary condition for 
general 0 and V, it is necessary for some fraction 
W of the domain to be on the weak branch, with the 
remainder on the plate branch. It is straightforward 
from Eq. (6) and matching the velocity boundary 
condition (i.e. Weweak + (1 - W)kplate = V) to derive 
relationships for W as function of V and CJ, or CJ as a 
function of V and W: 

v-u 
w = (l/(a -a)’ (T = 

v+/@-4(1- W)W 

2(1 - W) 
(7) 

Thus, for each value of imposed velocity V, there 
is a continuum of solutions with different (T and W. 
These are illustrated in Fig. 1. For V -c 1 there are 
two possible solutions for each W, one with high 
stress (a modulation of uniform shear) and one with 
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Fig. 1. Relationship between stress and weak zone width, W, for 
one-dimensional shear with various values of imposed velocity, 

V (marked on curves). 

low stress (in which most of the shear occurs across 
the WZ), but for V > 1 there is only one solution 
for each W. Which solution will the system choose? 
A reasonable assumption is that is will choose the 
solution which minimizes dissipation, which in this 
case is equivalent to minimization of stress (because 
stress is constant). The resulting solution is: 

0 = 0, w = 0, ewe* = 00, kplate = 0 (8) 

This describes a fault with zero strength: away 
from the fault the medium is rigid, with all shear 
taken up in the infinitely narrow fault region. Would 
the system really choose this solution? A couple of 
physical arguments can be made to support this: (1) 
the negative stress/strain-rate gradient in the ‘weak’ 
branch implies a negative ‘incremental viscosity’ 
[19]. Since viscosity can be regarded as a diffusion 
coefficient for strain rate, and normally (for positive 
values) spreads out the strain for a focused driving 
stress, this will tend focus the strain rate; and (2) dur- 
ing the process of formation of these ‘faults’, which 
corresponds numerically to successive iterations, or 
physically, to time evolution of a strain-weakening 
mechanism, some regions will have higher strain- 
rates than others. These higher strain-rate regions 
become weaker, while lower strain-rate regions be- 
come stronger, further accentuating the differences 
in strain rate, and eventually leading to a narrow 
weak ‘fault’ amidst strong surroundings. 

The solution does not specify where the WZ 
forms in the domain: it could be anywhere. This 
inherent multi-valuedness of the solution is a point 
that is returned to later. 

3.1. Other rheologies 

How does this process depend on the details of 
rheology, in particular, the slope of stress/strain-rate 
relationship past the yield point for a ‘steady- 
state’ description? The above analysis will lead to 
the same ‘weak fault’ solution for any negative 
stress/strain-rate slope. For a positive slope, there is 
only one possible strain rate for each stress, leading 
to a unique solution: constant velocity gradient, vis- 
cosity and strain rate. How about a pure visco-plastic 
rheology, where the stress saturates past the yield 
point? Local strain rate can take on any value past the 
critical one, leading to an infinite number of possible 
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solutions. These range from a constant strain rate 
(velocity gradient) across the domain, to strain local- 
ization in one or more narrow ‘faults’ with the rest 
of the domain having a strain rate (velocity gradient) 
which is at the critical value. So, shear localization 
is a possible solution, but: (1) in the visco-plastic 
case, localization is a possible solution, but not the 
preferred solution, whereas the strain-rate-weaken- 
ing rheology naturally results in localization: and (2) 
the stress across the domain is still high (i.e. the yield 
stress) in the visco-plastic case, but goes to zero in 
the strain-rate-weakening case. 

3.2. Underlying mantle 

A simple approximation of the effect of an un- 
derlying mantle layer can be obtained by ‘welding’ 
a weak mantle asthenospheric layer to the 1-D litho- 
sphere, such that stress for strain rates past the 
critical value is now given by: 

o = I$?-’ + q,e (9) 

where Q,, is the viscosity of the mantle, which is 
much less than 1. Increasing the strain rate then only 
decreases stress up to a point, given by 

1 ( 1 
iI2 

emin = - 
%I 

(10) 

beyond which stress increases. If the system acts 
to minimize dissipation and thus stress, the strain 
rate in the WZ will be equal to this value, strain 
rate in ‘plate’ regions will be finite, as will stress 
across the domain. Thus, the asthenospheric layer 
limits the degree of localization that is possible in 
the lithospheric layer. 

4. Two-dimensional model 

The model is now extended to a 2-D cross-sec- 
tion across the lithosphere and upper asthenosphere, 
which are taken to be of equal thickness, nominally 
100 km, and have ‘undamaged’ viscosities of 1 and 
lop4 respectively, plus small random perturbations 
to provide a preferred location for ‘fault’ formation. 
With the cross-section in the (x, z) plane, where z is 
vertical, the momentum equation becomes: 

(V,.,),.Y + (V,.;)., = 0 (11) 

with u, = vz = 0. Side boundaries have a con- 
stant uY of 0 (left) or 1 (right) with top and bottom 
boundaries stress-free. The solution is obtained nu- 
merically, by iterating between the effective viscosity 
field (initialized at the undamaged viscosity), and the 
velocity solution (obtained using a direct solver). 

Fig. 2 shows a comparison of results for New- 
tonian viscosity, and for the strain-rate-weakening 
(SRW) rheology with o$=ld = 0.5. The Newtonian 
case shows, as expected, uniform velocity gradient 
across the domain, and a stress of 1.0 in the litho- 
sphere and 10m4 in the lower layer. In contrast, the 
lithospheric deformation in the SRW case is concen- 
trated into one weak ‘fault’ visible in the viscosity 
field, with velocity nearly uniform on either side of 
the fault but discontinuous across it. In the weak lower 
layer, deformation is more distributed. The maximum 
stress value has dropped 3.5 orders of magnitude com- 
pared to the Newtonian case. Other cases indicate that 
the degree of localization depends on the rate of drop- 
off of stress with strain-rate (faster drop-off results in 
greater focusing), and viscosity contrast between the 
layers (as predicted in 1-D). 

5. Three-dimensional model 

The case of a strong lithosphere underlain by an 
isoviscous mantle is now considered. The lithosphere 
is taken to be a constant-thickness layer approxi- 
mately 100 km thick with an undamaged viscosity of 
104, while the underlying mantle has an undamaged 
viscosity of 1 .O. 

A major conceptual difference exists between 
these cases and the preceding l- and 2-D analy- 
ses in that the system is driven by fixed sources of 
stress (thermal buoyancy) rather than fixed sources 
of strain rate (velocity boundary conditions). If the 
l- and 2-D cases were driven by fixed shear stress 
rather than fixed velocities, solutions would diverge 
to infinity because stress decreases with increasing 
strain rate. However, in 3-D, the bulk of the man- 
tle, which is not in the SRW regime, limits the 
maximum velocities that can be obtained: even if 
the lithosphere tended towards zero strength, flow 
velocities would saturate and not approach infinity. 

The experimental procedure is as follows: (1) 
temperature fields are taken from constant-viscos- 
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Fig. 2. Two-dimensional model of lithospheric and asthenospheric shear, 
Velocity (top), viscosity (2nd row), strain rate (3rd row) and stress (bottom). A standard blue-green-red colorbar is used, scaled to 
minimum and maximum values, respectively. 

ity, 3-D calculations which have reached statisti- 
cally steady-state; and (2) the instantaneous velocity- 
pressure/viscosity solutions for the same systems, 
but with layered, SRW rheology are calculated self- 
consistently for the entire domain. This involves 
(a) initializing the viscosity field to a value of 1.0 
everywhere, then (b) iterating between the velocity- 
pressure solution, calculated from the usual mantle 
convection equations using a finite-volume multigrid 
technique, both fully described elsewhere [37,38], 
and the viscosity solution, calculated from Eq. 1. 
Roughly 30-60 iterations are necessary to achieve 
convergence. The subsequent time evolution of the 
system is not considered here. 

Solutions are not strongly dependent on the exact 
value of yield stress, except that a homogeneous rigid 
lid is obtained if it is too high. Lower values lead to 
broader WZs, but the same basic pattern. Here, we 
choose a value just below that which would cause a 

rigid lid (- 2(+),,, for Newtonian rheology). This 
is different for Case 4 because of the quite different 
Ra and other parameters. 

Numerical resolution is generally 32 cells in the 
vertical direction (the lithosphere constitutes the up- 
per layer of cells), with a proportional number in 
the horizontal directions. Convergence tests indicate 
that numerical resolution does not make very much 
difference provided it is high enough for strain rates 
to extend well into the ‘weak’ branch: with too low 
resolution the solution decays into a homogeneous 
rigid lid. 

Table 1 lists the cases presented. Boussinesq cases 
have constant physical properties except viscosity, 
whereas compressible cases have depth-dependent 
expansivity, diffusivity, and density in a compress- 
ible anelastic approximation described in [38]. The 
quoted Rayleigh number is based on the mantle vis- 
cosity (= 1) and (in the compressible cases), surface 
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Table 1 
The four 3-D cases 

Case Approx. Domain BCs Heating Ra uyield 

I B 1x1.4x1 R Basal 16 16 
2 B 8X8X1 P Basal ld 105 
3 B 2X2X1 P Internal 16, lo6 16 
4 c 4x4x1 R Basal lo6 106 

B = Boussinesq, C = compressible, BCs = side boundary 
conditions, R = reflecting, P = periodic, Ra = Rayleigh number. 

values of thermal expansivity, thermal diffusivity, 
and density. Both temperature-based and heating- 
based Ra are given for Case 3. 

5.1. Small domain 

The temperature field for Case 1 (Fig. 3a) contains 
a down-welling at one comer of the box and an 
up-welling at the opposite comer. The dominant 
features in the viscosity/velocity solution (Fig. 3b) 
are two high-viscosity plate-like regions surrounded 
by WZs. One plate is moving diagonally across the 
box, while the other is stationary, with a weak shear 
zone in-between. The formation of a localized shear 
zone away from any up- and down-wellings is a 
very encouraging feature of this solution. WZs also 
form above up- and down-wellings, as expected. The 
boundary between WZ and ‘plate’ is very sharp, 
with a large viscosity jump occurring over one grid 
cell. This is a characteristic of the SRW rheology, 
occurring because continuity of stress requires that 
the strain rate flip from ‘plate’ branch to ‘weak’ 
branch discontinuously. 

Vertical vorticity and horizontal divergence are 
shown in Fig. 3c. Convergent and divergent regions 
are focused at the down- and up-welling, respec- 
tively. Vertical vorticity, an indicator of strike-slip 
motion, is concentrated in a line following the shear 
plate margin. All quantities are concentrated in the 
lithosphere, with secondary divergence peaks at the 
base of the mantle. 

5.2. Wide domain 

Is the solution in Case 1 simply a result of the 
small domain and reflecting sides? To address this 
concern, Case 2 has the same parameters except in a 

wide (8 x 8 x 1) box with periodic sides. The temper- 
ature field (Fig. 4a) has a pattern of up- and down- 
wellings characteristic of Boussinesq, constant-prop- 
erties, basally heated convection at this Ra. Examina- 
tion of the lithospheric viscosity and velocity fields 
(Fig. 4b) again shows a pattern of strong plates sep- 
arated by narrow WZs. WZs form above the up- and 
down-wellings (as expected from the stress concen- 
tration there), but more importantly, also connect the 
up-/down-wellings together. The WZs above up- and 
down-wellings have a width comparable to the width 
of the convective feature, which is expected because 
the region of high stress associated with the feature 
has this characteristic size. These WZ are associated 
with strong convergence and divergence (Fig. 4b), 
while the interconnecting zones localize down to a 
size which is limited by the viscosity of the underly- 
ing medium (as shown by the l- and 2-D analyses), 
and are associated with high vertical vorticity. Some 
of the plates have strong rotation which also shows 
up in the vorticity. While the plate boundaries appear 
to be well separated into divergent and strike-slip 
in this figure, they generally include both strike-slip 
and convergent/divergent motion. 

A visco-plastic rheology is much less effective in 
producing plate-like behavior (Fig. 4d). WZs occur 
above up- and down-wellings but not in-between. 
Regions of high vorticity now cluster around the 
convergent/divergent regions, i.e. where the lid is 
already weakened, compatible with previous results 
of convection with temperature-dependent viscosity 
[39,40]. 

5.3. Internal heating (Fig. 5) 

Down-wellings in internally heated convection 
(e.g. [41,42]) are point-like, occasionally slightly 
elongated. The plate pattern produced is quite dif- 
ferent from the basally heated cases, being char- 
acterized by small, mobile microplates surround- 
ing the down-wellings, embedded in an otherwise 
stagnant lid. The elongated down-welling at the 
lower left is perhaps the easiest to understand: here, 
two microplates move from passive spreading cen- 
ters (i.e. spreading centers which are not above a 
deep-seated, focused mantle up-welling) towards the 
down-welling, with transform margins at each end. 
The configuration around cylindrical down-wellings 
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Fig. 4. Three-dimensional Case 2. (a) Residual temperature isocontours 0.15 (red) and -0.15 (blue). (b) Lithospheric viscosity and 

velocity vectors for SRW rheology. Maximum velocity in the domain is 780. (c) Isocontours of horizontal divergence (f50, green 

and blue) and vertical vorticity (rt25, yellow and mauve) and for SRW rheology. (d) As (b) for visco-plastic rheology. (e) As (c) for 

visco-plastic rheology. Horizontal divergence (3~40, green and blue) and vertical vorticity (f10, yellow and mauve). 
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is more complex, with typically four microplates. 

The location of these passive spreading centers can 
be understood by examining the stress distribution 
for an isoviscous case: a secondary stress maximum 
(‘halo’) appears at a characteristic distance from the 

down-welling. 
While the overall pattern does not appear par- 

ticularly Earth-like, it is very encouraging that pas- 
sive spreading centers have formed, since mid-ocean 

ridge spreading centers on Earth are believed to be 
passive, i.e. with no strong active up-welling beneath 

them [43]. 

5.4. Compressible formulation, basal heating 
(Fig. 6) 

Here, the temperature field appears the most 
‘Earth-like’ of the cases, with long linear down- 

wellings and a broad ‘megaplume’, similar to 
those observed in global seismic tomographic mod- 
els [44-46]. Again, the pattern is characterized 

by up-/down-welling WZs with width compara- 
ble to the convective features and predominantly 
convergent/divergent motion, interconnected by nar- 

row WZs with high vorticity. Several plates have 

appreciable rotation; probably a consequence of the 
geometrical constraints. 

5.5. Multiple solutions? 

As with the l- and 2-D cases, the possibility of 
multiple solutions arises from the fact that each stress 

has two strain-rate values. For these 3-D results, 
however, the presence of thermal driving sources 

breaks the symmetry of the system, and appears to 
lead to a robust solution, where WZs form along up- 
and down-wellings and along lines of initial stress 

maxima between them. Indeed, the final solution can 
be fairly well predicted by looking at the lithospheric 

stress distribution for an isoviscous solution. 

6. Discussion and conclusions 

A strain-rate-weakening (SRW) rheology, which 
may be a generic, ‘steady-state’ representation of 
strain-weakening mechanisms observed in nature, is 
very effective in producing plate-like behavior in the 

two-dimensional lithosphere of a 3-D mantle convec- 

tion, whereas a simple visco-plastic rheology does 
not produce good plate-like behavior. (Although an 
efasto-plastic rheology does produce shear localiza- 
tion, e.g. [47]). The system forms high viscosity plates 

separated by low-viscosity ‘weak zones’ (WZ), with a 
sharp, well-defined transition between the plates and 
WZs. WZs form above up- and down-wellings, and 

also in lines connecting the up- and down-wellings. 
The up-/down-welling WZs have a width comparable 

to the width of the up- or down-welling, and are asso- 

ciated with predominant convergence or divergence. 
The interconnecting WZs are narrow, localizing to a 
size which is related to the viscosity of the underlying 

medium, and exhibit strong vertical vorticity, imply- 
ing strike-slip motion. However, most WZs display 

a mixture of strike-slip and convergent/divergent be- 

havior. In 100% internally heated cases, ‘microplates’ 
next to the down-wellings are formed in an otherwise 
fairly stagnant lid, involving the formation of passive 

spreading centers. 
The ability to form weak strike-slip margins is 

probably fundamental in producing plates, since 
there are no buoyancy forces which can directly drive 

and localize strike-slip motion. If transform bound- 

aries were strong, as they would be with a purely 
visco-plastic rheology, mantle convection would not 

arrange itself to drive them, but would likely form a 
system of rolls, as far as possible. 

Although these results are very encouraging, the 
‘plates’ are not completely Earth-like. This is not 
surprising considering the simplifications involved 
in the model: lack of elasticity, almost two-dimen- 

sional lithosphere, very simplified rheology, and 
fairly coarse resolution (relative to the size of ‘real’ 

faults). How may these shortcomings may be over- 
come in the future? 

6.1. Size 

The plates are too small, compared to plates on 
Earth. This may improve when the system is allowed 
to evolve in time. Some plates will grow, while oth- 
ers will shrink and eventually disappear. Meanwhile, 
it will be difficult for new plate boundaries to form 
because existing plate boundaries prevent sufficient 
stress from building up. This may result in a pattern 

with fewer, larger plates. 
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6.2. Passive spreading centers 

The Earth’s mantle, to first order, resembles an 
internally heated system, but the internally heated 
cases look un-Earth-like. What is required is pas- 
sive spreading centers far from down-wellings and 

separating them, rather than restricted to the imme- 
diate vicinity of down-wellings. If the lithosphere is 

generated by temperature-dependent viscosity, rather 

than being of constant thickness, passive spreading 
centers are naturally weak due to the thinness of 

the lithosphere, which facilitates their existence. In- 

deed, an SRW rheology is not necessary to generate 
and maintain them: two-dimensional models indicate 

that a simple yield stress is all that is necessary 
(V.S. Solomatov, personal communication; author, 
unpublished results). 

6.3. Plate margins 

Realistic plate margins are not formed, in par- 

ticular, single-sided subduction and pure transform 
boundaries (with no convergence or divergence). The 

inclusion of elasticity may give a more ‘fault-like’ 
character to plate margins. High resolution may, if 

accompanied by greater localization, lead to WZs 
which allow shear, but make convergence or diver- 
gence difficult (since they would involve ‘squishing’ 
material through the narrow channel out of the shear 
zone). However, localization is ultimately limited 

by the parameterization, not by resolution. Clearly, 
a more realistic physical description is necessary. 

For example, at subduction zones, two weakening 

mechanisms may be operating: one to make the slab 
weak enough to bend around the corner, and another 

to generate the shear zone between the slab and 
overlying plate. 

6.4. Memory 

The simple system modeled here has a weak type 
of memory due to the nature of the rheology (2 strain- 
rate values for each stress), which leads, in principle, 
to multiple solutions for the plates. The solution ob- 
tained is thus dependent on the initial conditions of 

the numerical iteration process, which is the previous 
timestep’s solution in a time-dependent calculation. 
This needs to be investigated in detail. 

The next logical step in terms of physical re- 
ality and parameterization is a description where 
the time accumulation of strain-weakening ‘dam- 
age’ (e.g. grain-size reduction, microcracks, voids, 
volatile infiltration) is explicitly tracked, and also 

allowed to heal with time. Such a description has 
memory built-in. The present SRW-rheology corre- 

sponds to a generalized ‘steady-state’ version of the 
damage production + healing process, as discussed 

earlier. 

6.5. Inhomogeneous lithosphere 

A result of ‘memory’ is that the lithosphere is 

not homogeneous, but is riddled with zones of weak- 
ness generated during its history. Another obvious 

source of differences in lithospheric strength is the 
continent-ocean distinction. It is clear that issues of 
lithospheric heterogeneity and memory are impor- 

tant and must be included in future plate generation 
studies. 

6.6. Future directions 

The results presented here show, for the first time, 
that self-consistent plate generation is a realizable 
goal in global mantle convection models. However, 

the present model is far from a realistic Earth and 
many improvements must be made. 

In order for the model presented here to be fully 

self-consistent: (1) the system should be evolved in 
time, so that the thermal field and plates adjust to 

one another; (2) the lithosphere should be gener- 

ated through temperature-dependent rheology, rather 
than being imposed as a constant-thickness layer; 
(3) it will be important to use a physically realis- 
tic material description which tracks the production 

and healing of ‘damage’ instead of using an ideal- 
ized ‘steady-state’ rheology; and finally, (4) elasticity 
should be included due to its importance in the upper 
lithosphere and crust. 
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