
revised for JGR March 14 2001

Convection in Io's Asthenosphere: Redistribution of Non-uniform
Tidal Heating by Mean Flows

Paul J. Tackley
Department of Earth and Space Sciences, University of California, Los Angeles

Abstract. Numerical simulations of convection in a wide domain with spatially-varying internal heating intended to mimic
tidal dissipation in Io's proposed asthenosphere are performed in order to better understand the convective dynamics, and
in particular to quantify the relationship between surface observables (particularly the distribution of heat flux) and tidal
dissipation. Two-dimensional calculations at high internal heating Rayleigh number RaQ of up to 1010 indicate a mean,
domain-wide flow with superimposed small-scale instabilities. The mean flow spreads out the tidally-dissipated heat,
resulting in long-wavelength surface heat flux variations that decrease in proportion to RaQ

-0.21. This scaling is shown to
apply to different domain widths and also to three-dimensional geometry. Power-law scalings are also obtained for
velocities and temperatures. These mean flow scalings are also derived analytically. Scaling to Io's asthenosphere, long-
wavelength heat flux variations of order several percent are predicted, with temperature variations of order 10s K and
mean flow velocities of 50-5600 meters/year.

Introduction

Jupiter's moon Io is the most volcanically-active body in
the solar system [Lopes-Gautier et al. , 1999] and is expected
to be undergoing vigorous convection in its silicate mantle.
This vigorous activity is thought to be driven by tidal
dissipation associated with its slightly eccentric orbit around
Jupiter forced by a tidal resonance with the moon Europa
[Cassen et al., 1982; Peale et al., 1979; Ross and Schubert,
1986; Ross and Schubert, 1985; Schubert et al., 1986;
Schubert et al., 1981; Segatz et al., 1988; Yoder, 1979; Yoder
and Peale, 1981].

The distribution of tidal dissipation within Io is certainly
non-uniform but its details depend strongly on internal
structure. The best-developed models of Io's internal structure
and associated tidal dissipation were developed by [Ross and
Schubert, 1985; Ross et al., 1990; Segatz et al., 1988]. They
proposed two end-member models: dissipation in a
homogeneous mantle, which would require a viscosity of
~1017 Pa.s and would be maximum at the poles and minimum
at the equator, or dissipation in a 50-100 km thick
asthenosphere, which would require a viscosity in the range
108-1012 Pa.s and would be maximum at the equator
particularly in two lobes facing towards and away from
Jupiter, and minimum at the poles. While other possibilities
have been proposed (particularly [Keszthelyi et al., 1999]),
the associated tidal dissipation has not been calculated.

The key to determining which of these models is more
realistic is the development of links between interior
dissipation and surface features such as topography,
mountains and volcanoes. [Ross et al., 1990] tried to match
the Voyager-derived topography assuming that heat delivery
to the surface occurs vertically above heat input by
dissipation, and obtained a preferred model of 2/3
asthenosphere and 1/3 mantle heating. However, the
assumption of vertical heat delivery is questionable because
convection is expected to spread out the heat somewhat (a
process that is the major focus of this paper.) Observational
constraints have been greatly enhanced by the Galileo
mission [Carr et al., 1998; Lopes-Gautier et al., 1999;
McEwen et al., 1998a; McEwen et al., 1998b]. These
observations indicate that while the distribution of volcanoes
and mountains does not display a strong distribution on first

analysis [Lopes-Gautier et al., 1999], distribution functions
obtained by spatial averaging display strong patterns, with the
volcano distribution resembling the asthenospheric heating
function, and a mountain distribution that is similar but phase
shifted by 90° in longitude [Schenk and Hargitai, 1998;
Schenk et al., 2000; Tackley et al., 2001].

The first numerical simulations of mantle convection in Io
were performed in three-dimensional (3-D) spherical
geometry by [Tackley et al., 2001] at internal heating
Rayleigh number RaQ of up to O(107). These confirmed the
expectation that increased vigor of convection results in
increased spreading out of the tidally-dissipated heat.
However, the convective vigor in those calculations was
many orders of magnitude below that thought to be
appropriate for Io. The goal of this paper is to use 2-D
calculations to reach a higher Rayleigh number regime
(although still not as high as Io) and to develop scalings that
allow extrapolation to Io's convective regime. The present
paper focuses purely on convection in a 50-100 km thick
asthenosphere, neglecting the rest of the mantle, except that
the results could be scaled to whole mantle convection. The
results and scalings obtained here are also applicable to any
situation in which infinite-Prandtl number convection is
driven by horizontally-varying heat sources.

Model and Method

A Cartesian domain with reflecting side boundaries is
assumed. The upper and lower boundaries correspond to the
base of a crust/lithosphere, and the top of a relatively high-
viscosity, chemically-denser mantle, respectively, and are
thus assumed to be rigid, and isothermal (top) or zero flux
(bottom). Due to variations in surface temperature and likely
variations in crust/lithosphere thickness the upper
(isothermal) boundary condition is only an approximation,
but is thought to be reasonable because in rigid lid convection
the top of the convecting region is defined by a particular
viscosity hence isotherm [Moresi and Solomatov, 1995;
Solomatov, 1995]; furthemore the effects of the huge
horizontal variation in internal heating rate is likely to swamp
any effects due to horizontal variation in thermal boundary
condition An aspect ratio of 15 is chosen for most of the
cases, which for an asthenosphere depth of 100 km
approximately corresponds to 1/8 the distance around Io,
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which is the smallest distance between minima and maxima
of the asthenosphere tidal dissipation function [Segatz et al.,
1988]. The actual effective aspect ratio could be much higher
than this if the asthenosphere is thinner, so larger aspect
ratios are also considered.

TABLE 1: Physical Properties for Io's asthenosphere

Parameter Symbol Value Units
Density ρ 3270 kg/m3

Surface heat flux F 2.4 W/m2

Mean tidal dissipation* <Q> 7.34x10-9 W/kg
Asthenosphere thickness D 50-100 km
Gravitational acceleration g 1.8 m/s2

Heat capacity CP 1200 J kg-1 K-1

Thermal diffusivity κ 1.0x10-6 m2/s
Thermal expansivity α 3x10-5 K-1

Asthenosphere viscosity‡ ηasth 108 - 1012 Pa s
*assuming a 100 km thick asthenosphere. For 50 km thick, <Q> is
twice this.
‡For a 50 km thick asthenosphere. If 100 km thick, the range is 109-
1012 Pa s.

Table 1 lists likely physical parameters for Io's
asthenosphere, based on the model of [Segatz et al., 1988].
Constant viscosity is assumed in this study, both to allow
higher Rayleigh number to be reached with available
computational resources, and because according to stagnant
lid convection theory, convection is confined to a layer with
viscosity variations less than one order of magnitude [Moresi
and Solomatov, 1995] (the small temperature variations
obtained in this study are compatible with this.) The melt-
solid system is treated as a single one-phase system,
consistent with findings from magma ocean modeling that
crystal settling velocity (for separated crystals) is much
smaller than convective velocities [Solomatov and Stevenson,
1993b]. Because the Prandtl number of rocks is effectively
infinite even for a viscosity as low as 108 Pa.s, the usual
equations for Boussinesq, infinite-Prandtl number, internally-
heated convection, using the standard thermal non-
dimensionalization (e.g., [Parmentier et al., 1994; Travis et
al., 1990]), are used:
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Where   
r 
v  is velocity, p is pressure, T is temperature, t is

time,  
r ˆ z  is a unit vector in the vertical (up) direction, and Q is

the (nondimensional) spatially-varying internal heating
function that has a  mean (nondimensional) value of 1.0
(defined later). Note that due to the absence of a fixed
temperature scale, T is nondimensionalized using a heating-
derived scale:

Tscale =
D2 < Q >

C p
                                   (4)

The key parameter in this scaling study is RaQ, the Rayleigh
number for internal heating, given by:

RaQ =
g <Q > D5

2C p

                                (5)

where the meaning of the symbols and representative values
are given in Table 1. These representative values can be used
to calculate bounds on RaQ. The minimum possible RaQ of
6.75x1011 occurs for D=50 km and =1012 Pa s, while the
maximum value of 1.1x1016 occurs for D=100 km and =109

Pa s). A 'typical' value is thus RaQ~1014. It is worth
emphasizing that these heating-based values of the Rayleigh
number are much higher than the more conventional
temperature-based values for equivalent convective vigor.

The key complexity in Io's asthenosphere is the non-
uniform distribution of tidal heating Q, which is here
decomposed into orthogonal azimuthal (x,y) and radial (z)
components:

Q(x,y,z )= Ξ(x,y)ℜ(z)                              (6)

A sinusoid is chosen to mimic the horizontal tidal heating
variation going from a maximum to a minimum. In two-
dimensional calculations this is:
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where Lx is the length of the box in the x-direction (the height
is 1.0), while in three-dimensions it is:
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where Ly is the length of the domain the y-direction, which
for the single 3-D case presented here, is equal to Lx. The
focusing of dissipation near the upper and lower boundaries
[Segatz et al., 1988] is approximated by exponentials:

ℜ(z )=
3

1−exp(−6)
exp(−6z) +exp(−6(1− z))[ ]          (9)

In some cases heating is assumed to be uniform with z (i.e.,
=1). Note that the volume-averaged heating rate given by

equations (6)-(9) is equal to 1.0.
Time-dependent solutions are obtained using the finite-

volume multigrid code STAG3D described elsewhere
[Tackley, 1993; Tackley, 1996a], run on a Beowulf cluster of
PCs at UCLA. Cases were run until a statistically steady-state
was obtained, i.e., until diagnostics like mean temperature
and rms. velocity stopped displaying a secular trend and the
mean surface heat flow fluctuated around the volume-
averaged internal heating rate of 1.0. This often required
hundreds of thousands of time steps, particularly at high
Rayleigh number and resolution. In order to speed the
process up, cases were started at fairly course resolution then
stepped up by a factor of 2 in resolution whenever they
reached secular equilibrium. This was repeated until
diagnostics did not change significantly at the next
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resolution. The final resolution depended on RaQ, as listed in
Table 2.

TABLE 2: Cases and numerical resolution
RaQ Aspect Ratio nx,nz
104 15 256,32
105 15 256,32
106 15 512,64
107 15 1024,64
108 15 2048,128
108 30 2048,64
108 60 4096,64
109 15 4096,256
1010 15 4096,256

Results

Temperature fields

Figure 1a.-g. shows snapshots from a sequence of cases
with Rayleigh number increasing from 104 to 1010. At the
lowest RaQ (Figure 1a.) the flow is steady-state and has a
cellular structure. The highest temperature anomalies are at
the left hand side of the domain where the highest internal
heating rates occur while the right of the domain is cold. As
RaQ is increased this cellular structure breaks down into a
domain-wide mean flow with superimposed small-scale
instabilities, a pattern that is established by Ra=107 (Figure
1d.). It is possible that with free-slip instead of rigid
boundaries, the mean flow would get established at lower
RaQ. The small-scale instabilities are most vigorous from the
upper boundary layer although some do arise from the lower
part of box despite the insulating lower boundary, because of
the concentrated heating there. Their spacing decreases with
RaQ, as studied by [Tackley, 1996b]. The descending
instabilities are tilted towards the right by the mean flow. As
RaQ is increased further, this mean flow distributes the
heating across the domain, so that the temperature difference
between the right- and left-hand sides of the domain
decreases. The right side becomes relatively warm despite the
absence of internal heating there.

Similar cases but with vertically-uniform heating are
shown in Figure 1h.-n. They look similar to the previous
cases but the middle of the asthenosphere is generally
somewhat warmer. The similarity of these slices to Figure
1a.-g. indicates that the vertical non-uniformity in heating has
only a small effect.

A curious feature of this mean-flow convection is that a
temperature stratification develops, with hot, rightward-
traveling material overlaying colder, leftward-traveling
material. This is particularly visible at intermediate RaQ of
around 107-109 (Figure 1e.-f.). Figure 2 shows horizontally-
averaged temperature profiles for the cases with boundary-
focused (Equation 9) heating. The raw temperature profiles
(Figure 2a.) show mainly that temperatures decrease with
increasing RaQ and fixed total heat input, which is well
known from previous studies of internally-heated convection
(e.g., [Parmentier et al., 1994]). However, it is useful to
quantify this for extrapolation to Io. Taking the maximum
temperature in each iotherm and performing a  least-squares
fit to a power-law dependence on RaQ yields:

T
max

= 1.9152RaQ
−0.2147                        (10)

where <> denotes horizontal averaging.
Most interesting is the degree of subadiabaticity or

superadiabaticity, which is clearly visible in Figure 2b., in
which temperature profiles have been normalized to have a
maximum of 1.0. This shows that a superadiabatic internal
temperature profile at low RaQ of 104, becomes increasingly
subadiabatic between RaQ of 105 and 107, then decreasingly
subadiabatic for RaQ above 108. The dotten line joining the
temperature minima in Figure 2b brings out this trend more
clearly. Regular internally-heated convection displays
decreasing subadiabaticity with increasing RaQ throughout
the range [Parmentier et al., 1994]. Therefore the subrange
RaQ=105-107 in the present calculations is unusual, which can
be attributed to the development of a mean flow causing
temperature stratification.

Heat flux

The surface heat flux distribution for the cases with
boundary-focused heating are plotted in Figure 3a., while
those for vertically-uniform heating are plotted in Figure 3b.
The heat flux is averaged over 20-50 snapshots taken from
the last part of each run. Note that the average heat flux is
always 1.0.

The steady cellular pattern at low RaQ results in large (~
factor 2) spatial fluctuations in the surface heat flux near the
left of the domain, and almost zero heat flux at the right of
the domain. Increasing RaQ results in smaller (both in
amplitude and scale) fluctuations in the surface heat flux and
associated warming of the right side of the box, particularly
for RaQ> 106). The heat flux becomes more uniform (more
horizontal on the graph) with  increasing RaQ. At RaQ=1010

the heat flux varies from ~1.25 (left side) to ~0.75 (right
side), whereas the heat input is always 2.0 (left side) to 0
(right side).

A goal of this paper is to develop a scaling for this
smearing out of the surface heat flow by convection. Of most
interest is the long-wavelength variation in heat flux. This is
quantified using the average heat flux gradient, measured
from the curves in Figure 3a.-b. by least-squares fitting of a
straight line. The resulting heat flux gradients are plotted as a
function of RaQ in Figure 4a.-b. Two regimes are visible from
the plot: the constant heat-flux gradient regime at RaQ<106,
and the decreasing heat flux gradient regime at RaQ>106.
Physically, the transition between the two regimes
corresponds to the breakdown of the cellular convection into
a mean flow with small-scale instabilities.

The five points in the mean-flow regime are well fit by a
power-law (i.e., a straight line in log-log space as Figure 4),
and the resulting fit is plotted as a dashed line. The results
are:

dF
dx

= 2.869 RaQ
−0.2105                          (11)

for boundary-focused heating and

dF
dx

= 4.413 RaQ
−0.2448                          (12)
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for vertically-uniform heating. Note that these apply to long-
wavelength variations, not variations associated with small-
scale instabilities. The physical cause of these scalings is
discussed later. In a previous study in 3-D spherical geometry
and at lower RaQ [Tackley et al., 2001], somewhat lower
exponents averaging -0.189 were obtained. Those exponents
were, however, for rms. or peak-to-peak heat flux variation,
which are affected by small-scale features, unlike the long-
wavelength variation considered here.

Width of domain

Given the uncertainties in the actual effective aspect ratio
of Io's asthenosphere, it is important to determine whether
these heat flux gradient scalings are valid for any domain
width. This has been investigated by running two additional
cases at RaQ=108 with aspect ratios twice and four times the
standard aspect ratio (i.e., Lx=30 and 60 respectively).
Temperature field snapshots (Figure 1o.-p.) show similar
behavior to the Lx=15 case (Figure 1e.) but with an
increasingly larger variation in temperature across the box.
Surface heat flux is plotted in Figure 5 for the three different
aspect ratios. For Lx=30 there is a nearly linear heat flux
variation across the domain, with a gradient that is very
similar to the gradient in the standard, Lx=15 case. For Lx=60
the heat flux flattens out at each end of the box (to ~2 and ~0
respectively, the value of the heating rate), but has a
maximum gradient near the center of the box that is almost as
large as the gradient in the smaller aspect ratio cases. Thus, it
appears that the maximum heat flux gradient criterion applies
to any domain width, unless the domain is wide enough that
the maximum possible heat flux variation (i.e., Lx∂F/∂x) is
larger than the variation of tidal heating (2 in these 2-D
cases).

Three dimensions

Can the above scaling, derived from two-dimensional
simulations, be applied to the real, three-dimensional
situation in Io? To investigate this, the RaQ=107 case was run
in 3-D geometry. The temperature field in plan view (Figure
6a.) shows a dramatic pattern of linear, flow-aligned small-
scale instabilities radiating from the region of maximum
heating to the region of minimum heating. The planform is
consistent with that observed in a full 3-D spherical shell
[Tackley et al., 2001], giving confidence in the applicability
of Cartesian geometry to investigate the basic dynamics. The
small-scale instabilities prefer to be aligned with the flow
direction, which is not possible in 2-D. In cross-section
(Figure 6b.) the overall structure looks similar to the 2-D
version (Figure 1d.) but the small-scale instabilities are less
clearly visible because they prefer to be aligned with the flow
direction.

The surface heat flux distribution, plotted in Figure 7a.,
resembles the near-surface temperature distribution plotted in
Figure 6a. When averaged in the y-direction, this closely
overlies the heat flux profile obtained in the 2-D case (Figure
7b.), giving confidence in the use of 2-D scalings in 3-D
geometry. However, when the heat flux along the region near
y=0 is plotted (i.e., from (x,y)=(0,0) to (15,0), averaged over
10 cells in y), the heat flux is substantially higher, and has a
steeper gradient, than in the 2-D case. This is not surprising

because the scalings were obtained for a situation in which
the mean heating rate is 1.0, whereas for this profile the mean
heating rate is 2.0 (equation 8). Thus, it might be expected
that the heat flux along this profile should be twice as high,
multiplied by a correction of factor 2-0.2105 to account for the
doubling in profile Rayleigh number, a net expected increase
of factor 1.73. This appears to be consistent with curve in
Figure 7b. In conclusion, the two-dimensional scalings
appear to work for 3-D cases provided adjustments are made
for the average heating in the chosen profile.

Velocities

Profiles of horizontal averages of the x-velocity and |z-
velocity| are plotted for RaQ=104, 106 and 1010 in Figure 8a.-c.
For the cellular convection at RaQ=104 (Figure 8a.), vertical
velocities are larger than horizontal velocities, but by
RaQ=106 (Figure 8b.) the development of a mean flow has
generated horizontal velocities that are substantially larger
than the vertical velocities. This difference in horizontal and
vertical velocities increases as RaQ is further increased, until
by RaQ=1010 (Figure 8c.), horizontal motion is many times
faster than vertical motion. A scaling is obtained by taking
the maximum horizontally-averaged velocity for each RaQ

(plotted in Figure 8d. ) and obtaining a (power-law) least-
squares fit to its variation with RaQ in the range 107 to 1010 is
obtained (plotted as dashed lines). These fits are:

< v x >max= 0.1413RaQ
0.4857                        (13)

<| v z |>max= 0.0971RaQ
0.4301                       (14)

where <> here denotes horizontal averaging.

Discussion

Comparison with previous theory

It is useful to review how vertical heat transport
efficiency, as measured by the Nusselt number Nu, scales
with RaQ. For simple internally-heated convection with an
isothermal upper boundary driven by uniform internal
heating, simple boundary layer theory (e.g., [Turcotte and
Schubert, 1982]) gives a theoretical scaling of:

Nu ∝ RaQ
1 / 4                                     (15)

The exponent of 0.2448 obtained in this study for horizontal
transportation of heat by the mean flow for vertically-uniform
heating is remarkably close to this exponent of 1/4, implying
that vertical and horizontal transport of heat scale
proportionally. In the cases with boundary-focused heating
the exponent is slightly lower at 0.2105, but it is not
uncommon for actual exponents to be lower than the
idealized scalings.

In the simulations presented here, heating rate is kept
fixed (with a mean of 1.0) while RaQ is varied, so changes in
RaQ may physically correspond to (inverse) changes in
viscosity. F in the above scalings should thus be thought of as
normalized heat flux, and to apply to situations where the
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mean heat flux is not 1.0, the mean heat flux should be
incorporated as follows:

1
F

dF
dx

= 4.413RaQ
−0.2448                         (16)

Applying to another commonly-modeled scenario: If changes
in RaQ were accommodated in such a manner as to keep the
mean internal temperature roughly constant, then <Q> and
hence <F> would increase roughly as RaQ

1/4 and dF/dx would
be constant with RaQ.

The power-law exponent of -0.2147 for temperature
(Equation 10) is very similar in magnitude to the exponent of
0.2105 for heat flux gradient, again implying the similarity of
horizontal and vertical heat transfer scalings (since internal
temperature is expected to scale as the inverse of Nusselt
number).

The theoretical scaling for velocities (e.g., [Turcotte and
Schubert, 1982]) is:

v∝ RaQ
1 / 2                                       (17)

The experimental exponent for horizontal velocity (0.4857) is
close to this, but for vertical velocity the exponent is
somewhat lower (0.4301).

Analytical derivation of mean flow scalings

The above scalings for mean flow convection can be
straightforwardly derived by assuming that packets of
material become hot at the left side of the box then move
across the upper half of the domain with uniform horizontal
velocity u, losing heat as they do so by small-scale
convection obeying the standard internally-heated convection
scalings given above. If it is further assumed that the
temperature difference across the domain is small, as is the
case at asymptotically high Rayleigh number, then rate of
temperature decrease and hence heat loss (flux) can be
assumed to be constant across the domain, with heat flux
F=1. A reasonable starting point is to assume that local heat
flux is related to the local interior temperature Tu such that:

1
F

F
x

=
F
x

=
1

Tu

Tu

x
                             (18)

where the internally-heated convection theory referenced
above predicts that Tu decreases with increasing RaQ as:

Tu ∝ RaQ
−1 / 4                                     (19)

and the horizontal temperature gradient is related to the heat
flux and velocity by:

Tu

x
∝

F
u

≈
1
u

                                    (20)

Combining these, one obtains:

F
x

∝
RaQ

1 / 4

u
.                                     (21)

To determine u, it is reasonable to assume that the total force
required to drive the viscous  flow (proportional to u, the
length of the domain Lx and the viscosity), is equal to the
long-wavelength gravitational force available to drive the
flow (proportional to the horizontal temperature difference
across the box Lx T / x ), hence:

uLx

RaQ
∝ Lx

Tu

x
                                     (22)

which, using (20), leads to:

u ∝ RaQ
1 / 2                                           (23)

and a heat flux gradient (from (21)) of

F
x

∝ RaQ
−1 / 4                                       (24)

Equations (23) and (24) are consistent with the scalings
obtained in the numerical experiments presented in this
paper.

Scaling to Io

For a two-phase system such as Io’s asthenosphere, it may
be more appropriate to use “effective” values of
thermodynamic parameters such as thermal expansivity and
heat capacity rather than the values given in Table 1. These
“effective” or “apparent” values take into account the
changes in solid fraction that accompany changes in
temperature. [Solomatov and Stevenson, 1993a] derived these
for peridotite with a pyroxene solid solution in the context of
an early terrestrial magma ocean, finding that, depending on
temperature and ratio of components, the effective thermal
expansivity and heat capacity exceed phase-fraction averaged
versions by factors of 10-60 and 2.5-15 respectively. Taking
“typical” values of 12 and 3 times the Table 1 values leads to
a reduction in temperature scale (Equation (4)) by a factor of
3  and an increase in Rayleigh number (Equation (5)) by a
factor of 4. The scalings below start by using Table 1 values
then give the values for effective thermodynamics
parameters.

Heat flux variations. Using equation (11), the expected
heat flux variations for Io's asthenosphere can be estimated.
For the "typical" RaQ of 1014, the normalized heat flux
gradient is 3.2x10 -3, which, for an aspect ratio of between 15
and 30, gives 4.9 to 9.7% variation in heat flux. The
minimum RaQ (6.75x1011) gives 27% variation over an aspect
ratio of 30, while the maximum RaQ (1.1x1016) gives 1.8%
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variation over an aspect ratio of 15. Using the slightly higher
RaQ that results from “effective” (two-phase) thermodynamic
coefficients reduces these estimates by 25%.

Temperature fluctuations. Although the obtained
equation for temperature (Equation 10) refers to maximum
horizontally-averaged temperature (relative to the
temperature at the upper boundary), it gives a rough bound on
the size of temperature fluctuations associated with
convection. For dimensionalization, the temperature scale
(Equation 4) is 30583, 45875, or 61167 K for asthenosphere
thicknesses of 50, 75, or 100 km respectively and the Table 1
heat capacity. At RaQ=1014, the nondimensional Tmax=1.9x10-

3, corresponding to a dimensional temperature of 86 K. For
the extreme RaQ, Tmax ranges from 169 K to 42 K.  For the
effective (two-phase) expansivity and heat capacity these
estimates are reduced by 75% to between 41 K and 10 K
with a “typical” value of 21 K.

Velocities. Nondimensional velocities are scaled to /D,
which is, for example, 10-11 m/s for a 100 km thick
asthenosphere. Using Equation (13) with RaQ=1014, a
maximum mean horizontal velocity of 8.9x105 is obtained,
corresponding to 281 m/year. Extreme values of RaQ  give a
range of 25 m/year to 2800 m/year. Using effective properties
these estimates are increased by a factor of ~2, giving 50 to
560 to 5600 m/year. These velocities give an upper bound on
the speed at which surface volcanism might move, if surface
volcanoes are related to individual convective features. An
interesting question is: How much might the system have
changed between Voyager observations and Galileo
observations, an approximately 20 year time interval? The
above velocities would give motion of between 1 km and 112
km over this time period, which may be rather small to detect
observationally.

Conclusions and Future Directions

High Rayleigh number convection driven by horizontally-
varying volumetric heating is characterized by a mean flow
with superimposed small-scale instabilities. The effect of the
mean flow is to progressively even out the surface heat flux
as Rayleigh number is increased. Quantities such as long-
wavelength horizontal heat flux gradient, interior
temperature, and vertical and horizontal velocities have
powerlaw scalings with RaQ, at least in the RaQ range 107 -
1010, and this can be used to extrapolate to expected
conditions in Io's asthenosphere. Such an extrapolation leads
to predicted surface heat flux variations of several percent,
temperature variations of order 10s of K, and mean flow
velocities of 50-5600 m/yr.

This small variation in surface heat flux may (as discussed
in [Tackley et al., 2001]) be consistent with the observed
subtle distributions of volcanoes and mountains, which to
first order occur everywhere [Lopes-Gautier et al., 1999], but
display clear patterns after being converted to a continuous
distribution using a sliding window [Schenk and Hargitai,
1998; Schenk et al. , 2000; Tackley et al. , 2001]. The volcano
distribution resembles the asthenosphere heating function,
supporting asthenospheric heating as the dominant tidal
dissipation mode [Ross et al., 1990], whereas the mountain
distribution is similar but phase shifted by 90° in longitude,
consistent with mountains preferentially occurring in regions

of crustal compression and convergence associated with
convective downwellings. The fairly small temperature
variations indicate that the peak temperature of silicate
volcanism is not expected to vary substantially from place to
place, whereas the estimated flow velocities suggest that any
changes due to asthenospheric advection may be too small to
detect over the Voyager to Galileo timescale.

There are some possible problems with applying this
analysis directly to Io.  Firstly, the validity of treating a melt-
solid mush as a single entity with a single effective viscosity
is not certain- ideally the segregation of melt and solid should
be resolved (e.g., [McKenzie, 1984; Sparks and Parmentier,
1991; Spiegelman, 1993]), a computationally demanding
task. However, analyses of magma ocean dynamics
[Solomatov and Stevenson , 1993a; Solomatov and Stevenson ,
1993b] indicate that this approximation is reasonable if the
crystals are separated because the convective velocities are
much higher than crystal settling velocity, and viscous
dissipation due to crystal settling should be negligible for a
small body like Io. Secondly, Io may not have an
asthenosphere with well-defined upper and lower "rigid"
boundaries, but rather have a gradual increase in viscosity
(due to decreasing melt fraction) with depth, a model recently
favored by [Keszthelyi et al., 1999]. Thirdly, it is possible
that transitions in the convective regime occur at higher
Rayleigh number than has been attained here, which may
alter the scaling relationships. Such changes have been
documented for basal-heated convection by [Hansen et al.,
1990] and [Vincent and Yuen, 2000].

Thus, the present, idealized calculations should perhaps be
viewed as a preliminary estimate of convective processes in
Io's asthenosphere, and endeavors made to determine the
effects of melt:solid segregation, other plausible internal
structure models, and increased convective vigor.
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Figure Captions

Figure 1. Snapshots of the temperature field for various
cases. The color bar is normalized to the maximum
temperature in each snapshot. The left column shows cases
with boundary-focused tidal heating and RaQ of (a) 104, (b)
105, (c) 106, (d) 107, (e) 108, (f) 109, (g) 1010. The right
column shows cases with vertically-uniform tidal heating and
RaQ of (h) 104, (i) 105, (j) 106, (k) 107, (l) 108, (m) 109, (n)
1010. The bottom plots that straddle both columns show cases
with boundary-focused dissipation, RaQ=108 and aspect ratios
of (o) 30 and (p) 60.

Figure 2. Horizontally-averaged temperature profiles
("Iotherms") for cases with boundary-focused heating and
Rayleigh numbers ranging from 104 to 1010 (see legend). (a)
The raw Iotherms, and (b) with each Iotherm normalized to
its maximum value. The dotted line joins together
temperature minima in the lower half of the domain.

Figure 3. Surface heat flux as a function of horizontal
position x for all cases with aspect ratio 15. (a) Boundary-
focused dissipation, (b) vertically-uniform dissipation.

Figure 4. Dependence of dF/dx on RaQ for (a) boundary-
focused heating and (b) vertically-uniform heating. The
dashed lines are least-squares fits to the points for RaQ≥106.

Figure 5. Surface heat flux vs. horizontal position x for cases
with RaQ=108 and aspect ratios (Lx) of 15, 30, and 60.
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Figure 6 . Temperature field for the 3-D case with RaQ=107,
from two different viewpoints.

Figure 7. Surface heat flux distributions for the 3-D case
with RaQ=107. (a) Plotted as a function of horizontal position
(x and y). (b) Plotted vs. x: y-averaged (solid line), along the
line y=0 (dashed line), equivalent 2-D case for reference
(dotted line).

Figure 8. Vertical profiles of horizontally-averaged vx, and
horizontally-averaged |vz|, for (a) RaQ=104, (b) RaQ=106, (c)
RaQ=1010. (d) Maximum velocities in each profile plotted vs.
RaQ, with least-squares fits to the higher-RaQ points. See text
for details.
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