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a b s t r a c t

Here it is documented how an existing code for modelling mantle convection in a cartesian domain,
Stag3D, has been converted to model a 3D spherical shell by using the recently introduced yin-yang
grid. StagYY is thus the latest evolution of a code that has been in continuous use and development
for about 15 years so incorporates much physics and several features including compressibility, phase
transitions, compositional variations, non-linear rheology, parallelisation, tracers to track composition,
partial melting and melt migration, and the ability to also model spherical patches, cartesian boxes,
and various 2D geometries by changing one input switch. StagYY uses a multigrid solver to obtain a
velocity–pressure solution at each timestep on a staggered grid, a finite-volume scheme for advection
of temperature and tracers to track composition. Convergence of multigrid solvers in the presence of
realistically large viscosity variations has always been a problem; here a new pressure interpolation
scheme is presented that can dramatically improve the robustness of the iterations to large viscos-
ity variations, with up to 19 orders of magnitude variation in presented tests. Benchmark tests show
that StagYY produces results that are consistent with those produced by other codes. Performance tests
show reasonable scaling on a parallel Beowulf cluster up to 64 CPUs, with up to 1.2 billion unknowns

solved for in a few minutes. StagYY is designed to be a stand-alone application with no libraries
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. Introduction

Mantle convection calculations in 3D spherical shell geometry
ave often used a spectral method (e.g., Bercovici et al., 1989a;
latzmaier, 1988; Harder and Christensen, 1996; Machetel et al.,
995; Monnereau and Quere, 2001; Tackley et al., 1994; Young,
974; Zhang and Christensen, 1993; Zhang and Yuen, 1996). Due,
owever, to limitations in the lateral viscosity contrasts that can
e handled with a spectral method (Balachandar et al., 1996;
hristensen and Harder, 1991; Zhang and Christensen, 1993), recent
ears have seen a surge of interest in developing grid-based

ethods using finite-element, finite-difference or finite-volume

pproximations. While a simple (longitude, latitude) grid has been
sed (Ratcliff et al., 1995; Yoshida et al., 1999), it has the disad-
antage that the grid lines converge at the poles, causing uneven
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it can be run in parallel. Technical issues and goals for the future are

© 2008 Elsevier B.V. All rights reserved.

esolution, limiting the timestep and possibly causing convergence
roblems for iterative solvers. Various grids have been proposed to
vercome this “pole problem” and give a more uniform grid spacing
r element size. The first such grid to be used for mantle convection
as the isocahedral grid (Baumgardner, 1985, 1988), in which the

zimuthal discretization uses triangles suitable for a finite-element
olver. A different finite-element discretization using several non-
rthogonal rhombahedral patches was implemented by Zhong et
l. (2000). The “cubed sphere” grid (Ronchi et al., 1996), on the other
and, is suitable for either finite-difference or finite-element dis-
retizations, and consists of dividing the sphere into six patches by
rojecting a cube onto a sphere. In its simplest form as implemented
or mantle convection by Choblet (2005), Hernlund and Tackley
2003) the grid lines are non-orthogonal, requiring many addi-
ional terms in the resulting finite-difference equations. A modified,

early orthogonal version has however been found by Harder and
ansen (2005), Stemmer et al. (2006).

The so-called “yin-yang” grid proposed by Kageyama and Sato
2004) and first applied to the mantle convection problem by
oshida and Kageyama (2004, 2006) has the advantage that it is

http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:ptackley@ethz.ch
dx.doi.org/10.1016/j.pepi.2008.08.005
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aturally orthogonal. This grid consists of two (longitude, latitude)
rids each stretching ±45◦ in latitude by 270◦ in longitude that
re combined like the two patches of a tennis ball or baseball
o make a sphere. The main advantage of this grid over alter-
atives is that the grid lines remain orthogonal and therefore a
imple discretization such as finite-differences can be used, sim-
lifying the implementation and, for example, allowing one to take
dvantage of various advection techniques that have been devel-
ped in the atmospheric community on orthogonal grids. The grid
pacing various by cosine(45◦), i.e.,

√
2. A disadvantage is that

he two subgrids do not mesh neatly, unlike the cubed sphere
r the isocahedral grid, requiring a more complex interpolation
t the edge. Additionally, the two subgrids overlap—by 6% if the
imple rectangular subgrids are used (Kageyama and Sato, 2004),
hich gives the possibility of developing somewhat different solu-

ions in the overlapping areas. This can, however, be minimized by
sing a minimum overlap version of the grid, two different ver-
ion of which are shown in Figs. 5 and 6 of Kageyama and Sato
2004).

In this paper, an implementation of the yin-yang grid for man-
le convection is described that advances on that of Yoshida and
ageyama (2004) in several ways. One way is to use a “minimum
verlap” version of the yin-yang grid, namely the version shown
n Fig. 5 of Kageyama and Sato (2004), in which any cells at the
orners of each subgrid that are completely contained within the
ther subgrid are removed to produce what they refer to as a
baseball-like” border curve. Other improvements are the imple-
entation of more complex physics, including the compressible

nelastic equations, phase transitions, compositional variations,
nd non-linear rheology, and technical advances including paral-
elisation, tracers to track composition, and a pressure interpolation
cheme that gives enhanced robustness to large viscosity varia-
ions. The code is a development of Stag3D, initially developed
n 1992 (Tackley, 1993) and steadily developed since then (e.g.,
ackley, 1996, 1998b, 2002; Tackley and Xie, 2003), and thus inher-
ts most of the features of that code. The new version of the code
eported here retains the ability to model a 3D or 2D cartesian
omain, and in addition to a full “yin-yang” spherical shell can also
odel a regional spherical block, or the two-dimensional spherical

eometries of axisymmetric or spherical annulus (Hernlund and
ackley, 2008). Results in these alternative geometries are illus-
rated in Fig. 1a–c, and have the same parameters as the case in
ig. 1g. The code is written in Fortran 95 and takes advantages
f features such as dynamic array allocation and derived variable
ypes.

. Physical model

.1. Approximations and equations

As usual for the solid Earth, the infinite Prandtl number approx-
mation is made. Additionally, compressibility is included by
ssuming the anelastic approximation, in which the continuity
quation uses a reference state density rather than the full pressure-
ependent density, in order to avoid acoustic waves (e.g., Schubert
t al., 2000). In the present version, the “truncated” version of the
nelastic approximation is used, which means that the effect of
ynamic pressure on temperature is neglected. A quick calculation
uggests that this term is unimportant but this should be rigor-

usly tested in the future. Implementing the full anelastic equations
ould not add significant complexity and the author has worked
ith them in the past (Tackley et al., 1993, 1994), but in this appli-

ation using the truncated version allows dynamic pressure to be
sed as a variable rather than total pressure, allowing the use of
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2-bit rather than 64-bit precision for the pressure field. That is, as
ynamic pressure is small compared to total pressure in the deep
antle, treating pressure variations accurately enough to enforce

he continuity equation would require 64-bit precision if using total
ressure.

These assumptions lead to the following set of equations, non-
imensionalised to thermal diffusion scales. Conservation of mass:

· (�v) = 0 (1)

omentum

· � − ∇p = Ra. r̂.�(C, r, T)
��thermal

(2)

nd energy

Cp
DT

Dt
= −Dis˛�Tvr + ∇ • (k∇T) + �H + Dis

Ra
� : ε̇ (3)

n cases where bulk chemistry is treated the following must also be
atisfied:

DC

Dt
= 0 (4)

he (non-dimensional) variables are total temperature T, composi-
ion C, velocity v and pressure p. � is the deviatoric stress tensor and
˙ is the strain rate tensor. The governing parameters are Rayleigh
umber Ra, internal heating rate H, and surface dissipation num-
er Dis. Material properties are density �, thermal expansivity ˛,
hermal conductivity k, and specific heat capacity Cp. ��thermal
s the fractional density variation with temperature (=˛dimensional

Tdimensional) and r is the radius. Viscosity � can vary with temper-
ture, depth, strain rate or stress, composition, phase, melt fraction,
tc.

.2. Variation of physical properties

The above equations are written and implemented in a gen-
ral way such that different dependencies of physical properties
n temperature, pressure and composition can be used. In the
lassical anelastic approximation, density, expansivity, diffusivity
nd heat capacity are functions of depth (radius) only, whereas
n the Boussinesq approximation they are 1, except in the buoy-
ncy term in the momentum equation. To progress to more
ealistic models, in StagYY these can alternatively be arbitrary func-
ions of temperature, depth, and composition. For example phase
hanges can cause density jumps of up to 10% so in the conti-
uity equation it can be chosen to use the total density instead
f a reference density—as long as the density being used is not
ependent on dynamic pressure there is no problem with sound
aves.

Phase changes are implicitly included in the density (thereby
ontributing to buoyancy) and their latent heat is included in the
nergy equation by using “effective” values of heat capacity and
hermal expansivity (Christensen and Yuen, 1985). Density, expan-
ivity, conductivity and viscosity are implemented as functions, so
hat different forms can be easily substituted without changing the

ain code.
The “standard” method of calculating the temperature and

ressure dependence of these in the context of a multi-phase, two-
omponent system has been described in a number of papers over
he years (e.g., Nakagawa and Tackley, 2005; Tackley, 1996; Xie

nd Tackley, 2004), so the reader is referred to these for details.
ecently, physical properties calculated from self-consistent mini-
ization of free energy to determine stable minerals, coupled to a

hermodynamic database, have been implemented using the PER-
LEX package (Connolly, 2005), along the lines of Gerya et al. (2006).
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Fig. 1. Various results obtained with StagYY. The top row illustrates alternative geometries that can be modelled by changing one input switch, all for basal heated convection at
Ra = 105: (a) cartesian, (b) spherical patch, and (c) 2D spherical annulus, spherical axisymmetric, or cartesian. (d) Isoviscous or (e) viscosity contrast 20 tetrahedral benchmark
cases with Ra = 7000; isosurface of T = 0.4 is shown. (f) Compressible convection with an endothermic phase change at 670 km depth and parameters as in Tackley et al.
(1993). (g–i) Basally heated convection at Ra = 105: isoviscous, viscosity contrast 103 or 106, respectively. (j) Residual temperature isosurfaces (k) composition isosurfaces
and (l) post-perovskite for compressible thermo-chemical multi-phase convection discussed in (Nakagawa and Tackley, 2008), (m and n) viscosity in the outer layer and
(o) temperature isosurface for internally heated convection with visco-plastic temperature-dependent viscosity, showing self-consistent generation of tectonic plates with
parameters similar to Tackley (2000a,b) and van Heck and Tackley (in press).
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etails of this treatment will be elaborated in a future publica-
ion.

.3. Geometry and boundaries

While the focus here is on treating a full 3D spherical
hell using the yin-yang grid, a single spherical region or arbi-
rary size can also be modelled, and 3D cartesian geometry
s maintained as an option. Various related 2D geometries can
lso be modelled, including cartesian 2D, spherical axisymmet-
ic, and spherical annulus (see Hernlund and Tackley (2008)
or details on this). Top and bottom boundary condition are
ypically isothermal or insulating, and free slip or rigid. Side
oundaries can be periodic, reflecting, or permeable, or are

nterpolated from the other block in the case of the yin-yang
rid.

. Numerical implementation

.1. Grid

As is usual (e.g., Brandt (1982), Patankar (1980) and used for
antle convection since Ogawa et al. (1991)), velocity components

nd pressure are defined on a staggered grid on which the pressure
s defined in the center of each cell and velocity components are
efined at cell boundaries perpendicular to their direction. This has
he advantages that all derivatives in the momentum and continuity
quations involve adjacent points and are second-order accurate in
he case of even grid spacing. Additionally, checkerboard pressure
elds are avoided.

As mentioned earlier, StagYY uses the minimum overlap yin-
ang grid shown in Fig. 5 of Kageyama and Sato (2004), in which
ny cells at the corners of each subgrid that are completely con-
ained within the other subgrid are removed to produce what
hey refer to as a “baseball-like” border curve. Any loops that
oop over all grid cells must take into account the removed cells
n the corners. Each subgrid acts as the boundary condition to
he other subgrid, with “ghost points” holding velocity and pres-
ure values that are linearly interpolated from the interiors of
he other subgrid. Even for a regular (fully overlapping) yin-yang
rid, the locations of these ghost points are different at differ-
nt grid levels due to the different grid spacing: for coarser grids
hey are further inside the other subgrid. For the minimum over-
ap grid it is more complicated to determine the locations of the
host points, and the fact that they are different at each grid level
oes not change. For this minimum overlap grid, the boundary

s also different in detail at different grid levels, but this does
ot matter because the solution is still defined everywhere—there
re no “gaps”. For computational efficiency, the interpolation
eights and the points to be used are pre-calculated once and

tored.

.2. Finite-difference discretization

The equations are expressed in spherical polar coordinates. The
orm of the stress and strain rate tensors and their divergences
n spherical polar coordinates is well known (e.g., Schubert et al.,
000) so the full set is not repeated here. It is, however, noted that
hey can be written in different ways, which although mathemati-

ally identical lead to a different finite-difference expansion hence
slightly different numerical solution. The form of stress diver-

ences used here is slightly rearranged from that given on page
81 of Schubert et al. (2000) in order to best reflect the phys-

cal meaning of the different terms, as shown in the following
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quations.

∇ • �)
r

= −∂p

∂r
+ 1

r2

∂

∂r
(r2�rr) + 1

r sin 	

∂

∂	
(�r	 sin 	)

+ 1
r sin 	

∂�r


∂

− �		 + �



r
(5)

∇ • �)
	

= −1
r

∂p

∂	
+ 1

r2

∂

∂r
(r2�r	) + 1

r sin 	

∂

∂	
(�		 sin 	)

+ 1
r sin 	

∂�
	

∂

+ 1

r
(�r	 − �

 cot 	) (6)

∇ • �)



= − 1
r sin 	

∂p

∂

+ 1

r2

∂

∂r
(r2�r
) + 1

r sin 	

∂

∂	
(�	
 sin 	)

+ 1
r sin 	

∂�



∂

+ 1

r
(�r
 + �	
 cot 	) (7)

These stress divergences are expanded in terms of velocities
hen a straightforward finite-difference expansion is applied. The
nite-difference stencil for the equation at each of the staggered
elocity or pressure points is pre-calculated and the stencil weights
re stored. Thus, calculating the residue at that point simply
equires multiplying nearby velocity and pressure values by the
ppropriate weights and summing. This has the advantage that
nce the stencil weights are calculated, the solution routines are
he same for spherical or cartesian geometry.

A subtlety occurs in the treatment of normal strain rates (hence
ormal stresses) when density is spatially varying, i.e., for com-
ressible cases. The divergence of velocity is then non-zero and
he expressions for normal strain rate contain a −1/3∇ · v. If this is
alculated literally from the velocities, then instabilities can occur
n an iterative solution procedure, because ∇ · v can be incorrectly
ery high or low during early iterations. Thus, it is better to recog-
ise that:

· (�v) = 0 = �∇ · v + v · ∇� ⇒ ∇ · v = −v · ∇�

�
(8)

nd use v · ∇�/� in the strain rate expressions instead of ∇ · v,
ecause velocities are more reliable than gradients of velocity. This
imply appears as an extra term in the calculation of the finite-
ifference stencils.

Viscosity is initially calculated at cell centers where temperature
s defined. Calculation of normal stresses requires it at that location,
ut viscosity must be interpolated to the centers of cell edges for the
hear stress terms. The appropriate type of interpolation (e.g., arith-
etic, harmonic, geometric or more complex (Ogawa et al., 1991))

epends on the conceptualization of how the viscosity varies phys-
cally (e.g., stepwise, linear, geometric). Recently, Deubelbeiss and
aus (2008) compared numerical results with analytic solutions

o determine the accuracy obtained with different interpolation
ethods, and found that harmonic interpolation gave the most

ccurate results, followed by geometric, with linear (arithmetic)
eing much worse. Similar findings were also becoming apparent
rom the subduction benchmark (Schmeling et al., 2008). Thus, lin-
ar (arithmetic) interpolation should certainly be avoided. In the
resent code, geometric interpolation is generally used because it
ives much better convergence than with linear interpolation, and
lightly better than with harmonic interpolation.
.3. Velocity–pressure iterations

The velocity–pressure solution that satisfies the continuity
nd momentum equations is obtained by iterations, which are
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ncapsulated into a multigrid cycle as described later. The energy
quation is treated explicitly as also discussed later. Here the basic
elocity–pressure iteration scheme is described, which has some
imilarities and differences to the well-known SIMPLER scheme
Patankar, 1980).

1. Improve velocity field according to the momentum equations
a. Radial velocity field according to the radial momentum equa-

tions.
b. Theta velocity field according to the theta momentum equa-

tions.
c. Phi velocity field according to the phi momentum equations.

. Update pressure field to reduce divergence in the continuity
equation.
a. Calculate pressure correction.
b. Calculate velocity correction caused by pressure correction.

n each velocity update (e.g., step 1a), the residue is calculated over
he entire grid, then the correction is calculated and finally added
o the solution, i.e., Jacobi iterations. This has the advantage that the
rocedure can be parallelised without affecting the result, whereas

f Gauss–Seidel iterations are used then a different result will be
btained when the problem is split between different numbers of
PUs. The disadvantage is that convergence is slower. However, this
an be overcome by using “red–black” iterations, in which two sub-
weeps are performed on alternating grid points, like the colouring
f squares on a checkerboard. Red–black iterations give better con-
ergence than point-by-point iterations of either Gauss–Seidel or
acobi varieties (Press et al., 1992).

The correction to each velocity component depends on the sten-
il weight and a relaxation parameter ˛m, for example for the
heta-velocity:

v	
i−.5jk = −˛mR	 mom

i−.5jk /

(
∂R	 mom

i−.5jk

∂v	
i−.5jk

)
(9)

here v	
i−.5jk

is the theta-velocity at point (i−0.5,j,k) and R	 mom
i−.5jk

is
he residue (error) of the theta-momentum equation at the same
oint. The 0.5 in the indices arises because (i,j,k) is the center of
cell, at which pressure is defined; the velocity components are
efined at staggered points half a grid spacing from this cell cen-
er. For multigrid purposes, ˛ should be less than unity in order
o obtain optimal smoothing (Brandt, 1982; Wesseling, 1992), so is
ypically set to 0.7. In the absence of multigrid, over-relaxation is
ptimal, i.e., ˛ > 1.

The pressure correction (step 2a) is calculated using a coefficient
hat describes how much changing the pressure at a point changes
he continuity residue (i.e., divergence of density times velocity) at
hat point:

Pijk = −˛cRcont
ijk /

(
∂Rcont

ijk

∂Pijk

)
(10)

here the symbols have similar meanings to those in Eq. (9) and ˛c

s a relaxation parameter generally taken to be 1.0. (∂Rcont/∂P) is not
stencil weight because the continuity equation does not include
ressure, but it is related to the stencil weights of the momentum
nd continuity equations. An important question is how to calcu-
ate this, because in principle changing the pressure at one point
ffects velocities and pressures in the entire domain, requiring a

lobal solution. It has been found, however, that the lowest order
pproximation is sufficient. This means that the effect of pressure
n the six neighbouring velocity points is taken into account, but its
ffect on more distant velocity points is not considered, and neither
s the effect of a change in the velocity at one point on the veloci-

H
a
d
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ies at other points. Specifically, stencil weights of the momentum
quations at the six surrounding velocity points give the amount by
hich velocities at those points are changed when Pijk is changed,

hen combining these with the stencil weights for the continuity
quation leads to the desired approximation to the derivative.(

∂Rcont
ijk

∂Pijk

)
≈
(

∂Rcont
ijk

∂v	
i+.5jk

)(
∂R	 mom

i+.5jk

∂Pijk

)
/

(
∂R	 mom

i+.5jk

∂v	
i+.5jk

)

+
(

∂Rcont
ijk

∂v	
i−.5jk

)(
∂R	 mom

i−.5jk

∂Pijk

)
/

(
∂R	 mom

i−.5jk

∂v	
i−.5jk

)

+
(

∂Rcont
ijk

∂v

ij+.5k

)(
∂R
 mom

ij+.5k

∂Pijk

)
/

(
∂R
 mom

ij+.5k

∂v

ij+.5k

)

+
(

∂Rcont
ijk

∂v

ij−.5k

)(
∂R
 mom

ij−.5k

∂Pijk

)
/

(
∂R
 mom

ij−.5k

∂v

ij−.5k

)

+
(

∂Rcont
ijk

∂vr
ijk+.5

)(
∂Rr mom

ijk+.5

∂Pijk

)
/

(
∂Rr mom

ijk+.5

∂vr
ijk+.5

)

+
(

∂Rcont
ijk

∂vr
ijk−.5

)(
∂Rr mom

ijk−.5

∂Pijk

)
/

(
∂Rr mom

ijk−.5

∂vr
ijk−.5

)

(11)

here the derivatives in parentheses are the stencil weights of the
nite-difference approximations of the equations.

A quick examination of (ıRcont/ıR) reveals that it scales as 1/vis-
osity, as follows. If h represents grid spacing, then (ıRcont/ıv) ≈ 1/h,
ıRmom/ıv) ≈ 1/h, and (ıRmom/ıv) ≈ �/h2. Thus, the pressure correc-
ion in a cell can be approximated as −�∇ · (�v), which was what
as used in the original cartesian version of this code (e.g., Tackley,

996), although the latest version calculates the coefficient accord-
ng to the above equation. Kameyama et al. (2005) also derived a
ressure correction proportional to viscosity using a quite different
rain of logic based on pseudo-compressibility. Thus it can be seen
hat the pressure correction derived using pseudo-compressibility
s the same as that derived by directly considering satisfying the
nite-difference approximation of the equations. Another approach

s to derive an “effective” Poisson-like pressure equation, which also
nds up deriving a similar pressure correction.

Step 2b, in which velocities are adjusted according to the pres-
ure correction, was found to improve convergence compared to
oing directly to the next full momentum equation iteration. In this
tep, each velocity component is adjusted based on the pressure
orrection at the two adjacent pressure points (half a grid spac-
ng either side) multiplied by the appropriate stencil weight, for
xample:

v	
i−.5jk =

ıPi−1jk(∂R	 mom
i−.5jk

/∂Pi−1jk) + ıPijk(∂R	 mom
i−.5jk

/∂Pijk)

∂R	 mom
i−.5jk

/∂v	
i−.5jk

(12)

The SIMPLER scheme (Patankar, 1980) has an additional step
hat is left out here. This involves calculating the new pressure
rom a Poisson-like equation derived from the divergence of the

omentum equation. This step is not necessary: the role of pres-
ure is to enforce continuity, so using the residue of the continuity
quation to determine pressure corrections is sufficient. SIMPLER
lso iterates on the temperature equation, which would allow it
o be treated implicitly as done by (Albers, 2000; Trompert and

ansen, 1996) but implicit advection tends to be diffusive; modern
dvection schemes designed to minimize numerical diffusion and
ispersion are generally explicit.

As an alternative to the sequential scheme described in the
bove steps, a “cell relaxation” or “pressure-coupled” scheme is
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lso implemented, in which corrections to the pressure and six sur-
ounding velocities are calculated simultaneously using a matrix
olution method, which involves a 7×7 matrix in three dimensions
Tackley, 2000a). Using this scheme, the solution converges in fewer
terations, but it takes several times as much CPU time per iteration.
hus, the overall solution time is longer. Both the point-wise and
he cell-wise schemes appear to be similar in their robustness (or
on-robustness) to large viscosity variations, therefore the faster
oint-wise scheme is favoured at present. Auth and Harder (1999)

mplemented a similar scheme in a 2D code except using a diag-
nalised version of the matrix instead of the full matrix, based on
anka (1986).

.4. Multigrid cycles

The multigrid method, in which the residue (error) to the
quations is relaxed on a heirarchy of nested grids with differ-
nt grid spacing, can dramatically accelerate the convergence rate
f iterative solvers because in principle it relaxes all wavelengths
f the residue simultaneously, resulting in a solution time that
cales in proportion to the number of unknows (Brandt, 1982;

esseling, 1992). For mantle convection this was applied to a stag-
ered velocity–pressure grid by Tackley (1993). A key problem with
pplying the multigrid method to mantle convection is a lack of
obustness to large viscosity variations, i.e., the iterations converge
ery slowly or diverge (e.g., that initial study only reached viscos-
ty contrasts of 103). Broadly speaking this is because the coarse
rids do not “see” correctly the fine-grid problem, so corrections
alculated at coarse levels may actually degrade the solution at
ner levels rather than improving it. Thus, over the years, several
esearchers have proposed improvements to staggered grid multi-
rid algorithm to address this problem.

In the general multigrid literature, the accepted approach to
eriving coarse-grid operators, particularly in the case of strongly
arying coefficients, is to use matrix-dependent prolongation
nd restriction operators combined with the Galerkin coarse-
rid approximation (GCGA) (e.g., Wesseling, 1992). To explain the
erminology: the prolongation operator P is used to interpolate
oarse-grid corrections to the next finest grid, while the restriction
perator R is used to restrict fine-grid residue to the next coarsest
evel. “Matrix-dependent” means that these operators are derived
rom the stencil (matrix) of the discretized equations at the finer
evel, e.g., A. In the Galerkin coarse-grid approximation, the coarse-
rid operator is based on the fine grid operator and the prolongation
nd restriction operators as: Ac = RAfP, the interpretation of which
s that is has the same effect as prolongating the fields to the finer
evel, applying the fine-grid operator then restricting the result to
he coarser level.

Matrix-dependent operators and the Galerkin coarse grid were
mplemented in a 2D finite-element mantle convection code by
Yang and Baumgardner, 2000) with apparently astonishing results,
asily handling viscosity contrasts of 1010 between adjacent points.
nfortunately, similar robustness was not obtained when the
ethod was implemented in the related 3D spherical shell finite-

lement code TERRA (J. R. Baumgardner, personal communication),
he reason for which is uncertain. The method has not yet been
uccessfully applied to a staggered grid mantle convection code
ecause of the complexity in this case, although they have been
pplied to the constant viscosity incompressible Navier–Stokes
quations (Zeng and Wesseling, 1992a,b).
So far, mantle convection implementations of staggered grid
ultigrid have instead re-discretized the equations on the coarse

rid using a viscosity field that is averaged from the fine grid.
everal authors have proposed improvements to the scheme of
ackley (1993). Firstly, Trompert and Hansen (1996) introduced

l

C
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new averaging scheme for the coarse-grid viscosities, in which
nisotropic viscosities are used to calculate the coarse-grid shear
tresses. They also found that taking additional iterations on the
ressure term helped overall convergence. Auth and Harder (1999)

ntroduced pressure-coupled relaxations, found that convergence
an be greatly improved by using F-cycles instead of V-cycles, and
lso found that arithmetic averaging of viscosities to the coarse
rid gives greater robustness than harmonic averaging and a simi-
ar performance to the Trompert and Hansen (1996) scheme. Albers
2000) introduced mesh refinement, and also found that robustness
s greatly improved by using multigrid cycles that conduct more
terations on the coarse grids such F-cycles, W-cycles and V-cycles

ith more coarse iterations. Kameyama et al. (2005) introduced a
ew way of conceptualising the iteration process, namely “pseudo-
ompressibility, and again found that taking additional coarse-grid
terations greatly improves robustness to large viscosity variations.

Most of these improvements have been tried in Stag3D, with
he result that viscosity contrasts in the range 105 to 106 could be
outinely handled (e.g., Ratcliff et al., 1997; Tackley, 1998a, 2000a),
ut this is still much lower than Earth-like. An additional scheme
as been implemented in the new version, as described below.

.5. Pressure interpolation scheme

The “standard” transfer operators used in this code are lin-
ar interpolation for prolongation and restriction, which includes
rithmetic averaging of the viscosity field to the coarse grids, cho-
en solely for the reason that it generally gives better convergence
or large viscosity contrasts, as also noted by Auth and Harder
1999). Here, it is also not attempted to implement the full matrix-
ependent transfers plus GCGA, but rather the philosophy behind
atrix-dependent operators is used to propose an improvement to

ressure interpolation.
Based on experimentation, it has been found that the main cause

f non-convergence with large viscosity variations in Stag3D is
ressure corrections passed from coarse to fine grids. The pressure
orrection is roughly proportional to local viscosity, as discussed
arlier. If a fine grid cell has a much lower viscosity than the coarse-
rid cell that contains it, then the prolongated pressure correction
an be much too large, making the fine grid solution worse. Indeed,
his is probably why Trompert and Hansen (1996) found that taking
dditional pressure iterations is so helpful: the additional iterations
re needed to repair the damage done by the “correction” from the
oarser grid. A simple remedy would thus seem to be to adjust the
ressure corrections by the ratio of fine grid to coarse-grid viscosity.
his was found to give improvement in some cases, but not robustly.
nstead, it is chosen to adjust the prolongated pressure according
o the term (∂Rcont/∂P) ≡ (∂(∇ · (�v))/∂P) introduced earlier, which
an be regarded as containing a sort of weighted average of local
iscosity values rather than the viscosity at an individual point.
pecifically:

Pfine = CıPcoarse

(∂Rcont/∂P)fine
(13)

here C is a constant. Noting that in 3D one coarse-grid cell maps
o eight fine-grid cells, C is computed using the criterion that the
verage pressure must be conserved, i.e.,

1
8

∑
ıPfine = ıPcourse (14)
eading to

= 8

(∑ 1
(dRcont/dP)fine

)−1

(15)
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his reduces to simple injection in the case of constant viscos-
ty (i.e., eight fine grid pressures are set equal to the coarse-grid
ressure). This scheme is something like a matrix-dependent pro-

ongation operator for pressure. In matrix-dependent operator
heory, the restriction operator should be the transpose of the pro-
ongation operator. Curiously, this was not found to be helpful in
his application. Similar operators have been tried for the velocity
omponents, but again did not seem to help significantly. Con-
ergence tests comparing the performance of this scheme to the
tandard linear interpolation are given later.

It is emphasised that pressure and velocity are treated (iterated
n) together at every multigrid level, and thus a velocity–pressure
olution is obtained in a single set of multigrid cycles. This is differ-
nt from the common practice in finite-element codes (e.g., Moresi
nd Solomatov, 1995; Zhong et al., 2000), in which multigrid cycles
elax only the velocity and separate, outer iterations must be done
or pressure. In that case, several sets of multigrid cycles on velocity
lternating with some type of iterations on pressure are required,
ith the result that it can take as much as 10 times more CPU time to

btain a velocity–pressure solution, compared with treating them
imultaneously as is normally done in codes like StagYY (J. van
unen, personal communication, 2006), although recent imple-
entations of the finite-element multigrid method may be more

fficient (S. Zhong, personal communication, 2008).

.6. Advection and energy equation

The energy equation is advanced in time using an explicit
ethod. Viscous dissipation, diffusion, and adiabatic heat-

ng/cooling are calculated using finite-differences. Latent heat
ffects due to phase transitions are included in the form of an
ffective heat capacity and thermal expansivity, as introduced by
hristensen and Yuen (1985) (in previous versions these terms were
reated by advecting potential temperature, but this has now been
hanged).

Thermal advection is performed using the finite-volume
PDATA scheme of (Smolarkiewicz, 1984), which uses a correction

cheme to subtract the numerical diffusion of the upwind donor
ell method. This scheme is written for a cartesian domain, so to
se it without modification in spherical geometry the velocities are
ransformed into face mass fluxes and a correction is made for cell
olume. This scheme can also be used for a non-diffusive composi-
ional field in conjunction with the “Lenardic filter” (Lenardic and
aula, 1993), a combination that works quite well for stable layers
ith sharp interfaces (e.g., as tested in Tackley and King (2003)).

racers are advecting using a standard second-order or fourth-
rder Runge–Kutta, taking care to include the correction terms for
pherical geometry.

.7. Parallelisation

A simple domain decomposition is applied in all three spherical
oordinate directions and the yin and yang blocks. Each subdo-
ain contains an extra sheet of “ghost” cells that contain copies

f the cells on the outer part of adjacent subdomains and act as
he boundary condition for the local subdomain, a commonly used
pproach. After a field is updated, these ghost values are communi-
ated. Simple-mindedly, it would seem necessary to communicate
ith up to 26 other nodes in order that edge and corner ghost
oints are correctly transferred; this can, however, be accomplished

hrough communication with only six other nodes by using three
onsecutive communication steps in the three orthogonal direc-
ions, each with the two nodes that contain adjacent subdomains
n the relevant direction. Tracer particles are held in the subdomains
n which they are present, and are communicated with other sub-

g
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omains when they cross the boundaries. If a tracer is present in
he overlapping region of the yin-yang grid, then a copy is held in
ach subgrid.

If a single grid block is being used (cartesian or regional spher-
cal) then the communication patterns remain simple regardless
f the number of nodes being used, but this is not the case for
ommunication between the “yin” grid and the “yang” subgrid. If
ach of these subgrids is split more than four ways (i.e., bisected in
oth the theta and phi directions), then communication along the
oundary requires each node to communicate with two or more
odes on the other grid. Thus, for simplicity the decomposition is
resently limited to a maximum of four ways, resulting in an eight-
ay azimuthal decomposition. The grid is also split in the radial
irection, typically eight ways so that cases can be run on 64 CPUs.

The multigrid algorithm involves going to very coarse grids, on
hich calculations are not efficient in parallel (or there might even

e fewer points than CPUs). Thus, at some point in the coarsen-
ng process the calculation is moved to a single CPU (or actually,
uplicated on all CPUs), and then split again during the coarse-to-
ne process. With a relatively small number of CPUs like 64, this

s done only for the very coarsest grid. A future expansion to more
PUs might require introducing intermediate steps in this process.

The code is parallelised for distributed memory computers using
he MPI message-passing library, although it may also be run on

machine without MPI installed by linking to a file containing
ummy MPI calls. The code is written as a stand-alone code that
an be run on any computer with a Fortran 95 compiler, with no
ibraries required.

.8. Rigid body rotation

In a spherical shell with free slip upper and lower bound-
ries, the solution is undetermined to an arbitrary net (rigid body)
otation. Although this has not been found to be a problem for short-
erm calculations, over many timesteps net rotation can built up
nd create problems. Thus, at every timestep the code calculates the
et rotation relative to three orthogonal axes and subtracts it from
he solution. This net rotation calculation can be done either for the
ntire volume, or for just the outermost layer. These do not neces-
arily produce the same answer because there are good reasons for
he interior to display net rotation relative to the lithosphere (e.g.,
icard et al., 1991). In order to make it easier to analyse rigid lids
nd plate tectonics, the usual choice is to subtract the net rotation
f the outermost layer.

In a cartesian domain, such a concern also applies in the case of
eriodic side boundaries. In this case, the mean horizontal flow is
alculated and subtracted at every timestep.

. Results

.1. Parallel performance

The performance and scaling of StagYY on up to 64 CPUs of
Beowulf cluster with resolutions from 25 million to more than
billion unknowns is shown in Fig. 2. The number of unknowns

s four times the number of grid points. For this test, the Gonza-
es cluster at ETH was used, which consists of nodes containing
ual AMD Opteron 250 CPUs connected with a Quadrics QsNet

I interconnect. Fig. 2 (top row) shows the time taken per multi-

rid F-cycle. In Fig. 2a, perfect scaling would be a line of slope −1.
n Fig. 2b, perfect scaling would be a straight line with a slope of
1. These graphs indicate that the time is roughly proportional to
he number of unknowns and inversely proportional to the num-
er of CPUs, as hoped for. One F-cycle with 1.2 billion unknowns
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ig. 2. Various tests of code performance. (Top row) scaling of time for a multigrid
dvect 20 million tracer particles as a function of number of CPUs, and the parallel e
f convergence as function of temperature-dependent viscosity contrast with eithe

akes about 68 s on 64 CPUs (i.e., 32 dual-CPU nodes), allowing
velocity–pressure solution to be obtained from scratch in less

han 10 min. It is encouraging that over 1 billion unknowns can be
olved for in relatively few CPUs compared to the number available
n many modern supercomputers. The grid in that case is 256 in

adius by 1532×512 azimuthally for each of the two blocks.

The middle two parts of Fig. 2 show the time required to advect
0 million tracer particles on different numbers of CPUs, and the
arallel efficiency of the process. The efficiency remains about 90%
n up to 64 CPUs.

p
t
a
m
c

le with number of CPUs and number of unknowns. (Middle row) time required to
cy. (Bottom row) number of multigrid F-cycles required for 3 orders of magnitude

id lid temperature field or an isoviscous convection temperature field.

In general, the speed of this new, Fortran 95 version of the
ode is almost a factor of 2 slower than the original version writ-
en in Fortran 77, even for cartesian geometry, and even though
he number of floating point operations has been reduced by pre-
alculating and storing the finite-difference stencils rather than

utting finite-difference operators directly in the residue calcula-
ions. One possible explanation for this is the much greater memory
ccess required to retrieve these finite-difference weights from the
emory, i.e., retrieving them from memory might take longer than

alculating them on the fly. Another possible explanation is the
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se of Fortran 95 dynamically allocated arrays and defined types,
hereas the original version was written in Fortran 77 with much

impler data structures such as compiled-in array sizes. More work
s needed to determine this and optimise the single-CPU floating-
oint performance of the latest version.

.2. Multigrid convergence

In general, the multigrid convergence obtained with the yin-
ang grid is not as good as that obtained in a single spherical block or
n cartesian geometry. Plotting the location of the residue indicates
hat this is due to the interface between the two subgrids. Further
ork is needed to understand and improve this situation, but the
resent convergence is certainly rapid enough for the code to be a
seful scientific tool. As with previous studies discussed earlier, it

s found that F-cycles give better convergence than V-cycles, and
hat additional iterations at coarse levels further enhance perfor-

ance. Thus, the standard iteration parameters are F-cycles with
our times as many iterations at the coarse levels as at the finest
evel, plus various points discussed earlier: red–black iterations

ith ˛m = 0.7 and ˛c = 1.0, geometrical interpolation of viscosity
o the shear stress points and arithmetic averaging of viscosity
o coarse grids. Note that it is fine to use a different average for
oarse-grid viscosity because coarse-grid corrections do not affect
he accuracy of the final solution, only the convergence rate towards
hat solution. All averaging or interplation is thus done using a lin-
ar (arithmetic) method, except for the interpolation of viscosity on
he same grid level, which is geometric. Another point is that when
alculating the rms. residue, residues are normalised by the local
iscosity as represented by the stencil weight. The effect of this
s to measure the error in absolute velocity, otherwise in regions
f high viscosity small velocity variations give enormous residues.
n the case of non-convergence, the code includes an automated
rocess that reduces the fraction of the prolongated coarse-grid
orrection that is applied to the fine grid, which often helps but
ndicates the need for optimal prolongation and restriction opera-
ors.

Fig. 2 (bottom row) shows the number of F-cycles needed
o reduce the residue to 10−3 of its initial value, as a func-
ion of viscosity contrast and the iteration parameters such as
umber of iterations at each level. Two initial conditions are
sed: rigid lid convection with a viscosity contrast of 106, and
onstant-viscosity convection. Of particular interest is the effect
f the “matrix-dependent” pressure-interpolation (MDPI) scheme
escribed above. Similar plots were made by Albers (2000) and
ameyama et al. (2005) to show the effect of various smoothers
nd multigrid cycles.

Using the rigid lid T field, F-cycles with four smoothing iter-
tions at each step and no MDPI are able to handle a maximum
f 6 orders of magnitude viscosity contrast, with the number of F-
ycles increasing rapidly above 4 orders of magnitude. Switching on
he MDPI scheme increases the maximum viscosity contrast to 15
rders of magnitude, with the required number of cycles increasing
ignificantly only above about 10 orders of magnitude. Additional
obustness can be obtained by increasing the number of smoothing
terations at each level, for example with 15 iterations the maxi-

um viscosity contrast increases to 19 orders of magnitude.
With this rigid lid T field, most of the viscosity contrast occurs

radually over the conductive lid, such that the maximum contrast
etween adjacent points is a factor 54,000 with 19 orders of mag-

itude global contrast. Starting from an isoviscous T field is more
hallenging because the large temperature hence viscosity con-
rasts occur over very short lengthscales; this is an “unrealistic”
iscosity field but useful for testing purposes. Thus, it was found
ecessary to increase the number of smoothing iterations to eight at
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ach level to get reasonable convergence (Fig. 2 bottom right), and
ith this up to 8 orders of magnitude were possible without MDPI.
ith MDPI this increases to 12 orders of magnitude but a large

umber of F-cycles is necessary. In that case the contrast between
djacent points is as much as 196,000.

The main conclusion is thus that MDPI can dramatically improve
he robustness to large viscosity variations. Of course, this refers to
he convergence of the numerical scheme to the discretized solu-
ion, not the accuracy of the discretized solution, which needs to
e tested separately. At low viscosity contrasts MDPI sometimes

ncreases the needed number of F-cycles: this is probably because
he interpolation scheme is lower order, i.e., injection rather than
inear.

.3. Benchmark tests

Extensive testing and benchmarking of Stag3D in carte-
ian geometry has been performed and reported in previous
ublications. For thermal convection with constant or temperature-
ependent viscosity, Stag3D can successfully reproduce the
wo-dimensional benchmark cases in Blankenbach et al. (1989)
nd three-dimensional benchmark cases in Busse et al. (1994),
s detailed in Tackley (1994) and summarized in Tackley (1996).
or cases with self-consistently generated plate tectonics, in which
arge viscosity contrasts occur over very short lengthscales, a con-
ergence test was presented in the Appendix of Tackley (2000b).
his test showed the effect of resolution, varying in factors of
from 16 × 16 × 4 to 256 × 256 × 64, on the outcome of a case
ith self-consistent plates. Remarkably, plate-like behaviour was

btained with all resolutions above 32 × 32 × 8, but at lower res-
lutions the weak zones (“plate boundaries”) tend to follow grid
ines. For thermo-chemical convection, Tackley and King (2003)
resented benchmark tests and convergence tests for both Stag3D
nd the finite-element code ConMan (King et al., 1990). These
emonstrated that Stag3D can reproduce the earlier benchmark
ests of van Keken et al. (1997), and compared convergence tests for
racer-based and grid-based methods of representing composition
n thermo-chemical convection, determining the needed resolution
nd number of tracers.

Here some tests are presented to benchmark StagYY against
esults obtained by other codes. For steady-state basal-heated
oussinesq convection with Ra1/2 = 7000 and a tetrahedral arrange-
ent of upwelling plumes, Stemmer et al. (2006) compiled Nusselt

umbers and rms velocities for eight different codes including their
wn, namely those by Bercovici et al. (1989b), Harder (1998), Iwase
1996), Ratcliff et al. (1996b), Tabata and Suzuki (2000), Yoshida
nd Kageyama (2004), Zhong et al. (2000), so this provides an ideal
est case. Table 1 gives results for StagYY compared to the Romberg
xtrapolated results from Stemmer et al. (2006) (Table 5, see also
able 1 and Fig. 4 for other codes). Temperature isosurfaces for these
wo cases are shown in Fig. 1d and e.

For the most accurate case (196,600 cells, second-order advec-
ion) the results are very consistent with those summarised in
temmer et al. (2006). The order of the advection scheme makes
ore difference than the number of cells—of course the first-order

cheme is hopeless for real applications but it is interesting to see
he difference that advection makes. This suggests that an even

ore accurate advection scheme could yield even better results.
he MPDATA scheme is known to have a significant amount of
umerical diffusion (e.g., Muller, 1992) so it is planned to imple-

ent a modern, less diffusive scheme in StagYY.
For higher viscosity contrasts and Rayleigh number, cases at

a = 105 and viscosity contrast up to 106 are presented for com-
arison with Stemmer et al. (2006) and Ratcliff et al. (1996a, 1997).
hese cases are slightly time-dependent and do not have a par-
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Table 1
StagYY results for the tetrahedral pattern at Ra = 7000, isoviscous or viscosity contrast 20

nr, nt, np, nb # Cells Adv. order �� = 1:Nu v �� = 20:Nu v

16 × 16 × 48 × 2 24,576 1 3.62 32.87 3.26 25.61
2 3.49 32.40 3.13 25.51

32 × 32 × 96 × 2 196,608 1 3.57 32.98 3.22 25.85
2 3.

Stemmer et al. Extrapolated 3.

The last row lists the results from Stemmer et al. (2006) Table 5 which use a Romberg ext

Table 2
Basally heated cases with Ra1/2 = 105 and viscosity contrast up to 106

�� Nu v

1 7.27 160.2
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hese are with 196,608 cells as listed above and second order advection.

icular symmetry. They are started from a conductive profile with
andom perturbations. Due to the random nature, the resulting pat-
ern is not expected to exactly match previously published cases,
ut the results are within the range of previous results, as illustrated

n Fig. 1g–i and Table 2.
For a more complex scenario including compressibility and a

hase transition, an attempt is made to reproduce the result of
ackley et al. (1993). The present reference state uses a different
arameterisation but is tuned to match depth profiles of phys-

cal properties as closely as possible. The results (Fig. 1f) show
good resemblance, with the upper mantle containing linear,

ime-dependent downwellings and the lower mantle containing
ylindrical “avalanches”. It is reassuring that two codes using
ompletely different numerical methods (spectral versus finite-
ifference) are able to obtain similar results with relatively complex
hysics.

.4. Other example results

Scientific findings using StagYY are being detailed in other
apers; here a few sample results are included for illustration.
ig. 1j–l shows a thermo-chemical, multiple phase transition case
eported fully in Nakagawa and Tackley (2008). This case uses trac-
rs to represent the compositional field, using the ratio method
Tackley and King, 2003). Chemically dense material is swept into
iles in upwelling regions, and the locations where the post-
erovskite phase are present (Fig. 1l) are anticorrelated with these
iles.

Self-consistent generation of plate tectonics has been a major
nterest in the field, so Fig. 1m–o reproduces a case similar to those
n Tackley (2000a,b) except in spherical rather than cartesian geom-
try. In these cases, plastic yielding breaks the rigid lid. For this
articular parameter combination a novel platform is found con-
isting of an approximately great circle downwelling (Fig. 1o) (van
eck and Tackley, in press).

. Discussion and future directions

This paper documents how the use of the yin-yang grid has
llowed an existing cartesian code, Stag3D (Tackley, 1993), to be
traightforwardly converted to model a 3D spherical shell. Although

here are now two other mantle convection codes that use the yin-
ang grid (those of Yoshida and Kageyama (2004) and Kameyama
t al., 2008), the one reported here is the latest evolution of a
ode that has been in continuous use and development for over
4 years so has more features and implemented physics. Compared

B

B

48 32.57 3.15 25.71
4949 32.6234 3.1526 25.76

rapolation of results at increasing resolutions.

o the code of Yoshida and Kageyama (2004) these include com-
ressibility, phase transitions, compositional variations, non-linear
heology, parallelisation, tracers to track composition, and the abil-
ty to model spherical patches, cartesian boxes, and various 2D
eometries by changing one input switch. Tests presented show
hat StagYY produces results that are consistent with previously
ublished results, and so it is being used to perform new scientific
tudies. StagYY is designed to be a stand-alone application with no
ibraries required, but if MPI is present it can be run in parallel.

Convergence of a multigrid solver in the presence of realisti-
ally large viscosity variations has always been a problem with
uch codes, as discussed earlier. In this paper a new pressure inter-
olation scheme is presented that can dramatically improve the
obustness of the iterations to large viscosity variations, with up to
9 orders of magnitude variation in the presented tests. One goal for
he future is to further investigate such prolongation and restric-
ion schemes in an attempt to arrive at a perfectly robust solution
cheme. Use of the Galerkin coarse-grid approximation may be an
ngredient to such a scheme. A related promising technology is the
se of algebraic multigrid, which is designed to overcome several

imitations of geometric multigrid as used here.
Another goal for the future is to implement grid refinement,

hich is straightforwardly treated in multigrid schemes by going
o finer grid levels in some areas than in others, as illustrated for

antle convection by Albers (2000). This could be fixed, e.g., with
he upper mantle being better resolved than the lower mantle and
he lithosphere being better resolved still, or adaptive.

Some technical issues remain regarding code performance.
irstly, StagYY is around a factor of two slower than the old ver-
ion (Stag3D) even in cartesian geometry, which could be due
o the higher memory bandwidth required due to the storage of
nite-difference weights in memory, or due to more complex data
tructures made possible by Fortran 95. Investigation and remedy
f this should allow substantial performance gains to be realized.
econdly, multigrid cycles converge more slowly with the yin-yang
rid than with a single spherical or cartesian block, with the edges
omehow slowing things down. Nevertheless, the code is already a
seful tool for investigating mantle processes.
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