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Abstract Because the viscosity of ice is strongly temperature dependent, convection in the ice layers
of icy moons and dwarf planets likely operates in the stagnant lid regime, in which a rigid lid forms at the
top of the fluid and reduces the heat transfer. A detailed modeling of the thermal history and radial
structure of icy moons and dwarf planets thus requires an accurate description of stagnant lid convection.
We performed numerical experiments of stagnant lid convection in 3-D spherical geometries for various
ice shell curvatures f (measured as the ratio between the inner and outer radii), effective Rayleigh number
Ram, and viscosity contrast Δ𝜂. From our results, we derived scaling laws for the average temperature of
the well-mixed interior, 𝜃m, and the heat flux transported through the shell. The nondimensional
temperature difference across the bottom thermal boundary layer is well described by (1 − 𝜃m) = 1.23

𝛾f 1.5 ,
where 𝛾 is a parameter that controls the magnitude of the viscosity contrast. The nondimensional heat flux

at the bottom of the shell, Fbot, scales as Fbot =
1.46Ra0.27

m

𝛾1.21f 1.78 . Our models also show that the development of the
stagnant lid regime depends on f . For given values of Ram and Δ𝜂, the stagnant lid is less developed as the
shell’s curvature increases (i.e., as f decreases), leading to improved heat transfer. Therefore, as the outer ice
shells of icy moons and dwarf planets grow, the effects of a stagnant lid are less pronounced.

1. Introduction

The cooling of icy satellites is controlled by the heat transfer through their outer ice layer [Hussmann
et al., 2007]. The physical (thickness and thermal conductivity) and rheological (viscosity) properties of this
layer allow thermal convection to operate within it and thus to enhance heat transport from the satellite’s
interior toward its surface. The convective flow and the efficiency of the heat transfer may, however, be influ-
enced by several parameters such as the rheology of the fluid, the geometry of the system, and the mode
of heating. For a plane layer isoviscous fluid heated from below, the top and bottom thermal boundary
layers (TBLs) are symmetric. This symmetry can be broken by several parameters, including viscosity varia-
tions throughout the fluid (for instance, due to temperature variations) [Christensen, 1984; Solomatov, 1995],
spherical geometry [Shahnas et al., 2008; Deschamps et al., 2010], and the addition of internal heating [Travis
and Olson, 1994; Sotin and Labrosse, 1999]. Because thermal convection is fundamentally controlled by the
growth of instabilities in TBLs [Howard, 1966], the flow and efficiency of heat transfer are strongly affected
by this symmetry breaking.

The viscosity of ice is strongly temperature dependent. In this case, convection occurs in the stagnant
lid regime: a rigid, thermally conductive lid forms at the top of the fluid, and convection is restricted to
the layer located between the bottom of the lid and the bottom of the system (hereafter referred as the
convective layer) [Davaille and Jaupart, 1993; Grasset and Parmentier, 1998; Solomatov, 1995; Moresi and
Solomatov, 1995]. The presence of the lid considerably reduces the heat transfer to the surface and increases
the average temperature in the convective layer with respect to the isoviscous case. The increase in average
temperature implies that the temperature jump in the bottom TBL is reduced. The lid accommodates most
of the viscosity jump, and the viscosity jump across the sublayer is about a factor of 10 [Davaille and Jaupart,
1993]. Therefore, this convective layer is often considered to be nearly isoviscous [Solomatov, 1995].

The heat transfer may also depend on the geometry. Numerical experiments [Shahnas et al., 2008;
Deschamps et al., 2010] have reported important changes in the flow pattern and in the average properties
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of the fluid in a spherical shell, compared to that in 3-D Cartesian geometry [O’Farrell and Lowman, 2010;
O’Farrell et al., 2013]. For an isoviscous layer heated from below, and a given Rayleigh number, the number
of plumes generated at the bottom of the shell decreases with decreasing core radius relative to convect-
ing layer thickness (i.e., curvature). Furthermore, average temperature decreases with increasing curvature,
and the temperature jump in the bottom TBL is larger than that in the top TBL. This effect is opposite to
that induced by temperature-dependent viscosity. Curvature may therefore influence the appearance of the
stagnant lid regime.

Ratcliff et al. [1995, 1996] performed numerical experiments in spherical shells with moderate (up to 1000)
thermal viscosity contrast. For small viscosity contrast (30 and less) and small enough Rayleigh number,
they observed steady patterns (e.g., tetrahedral or cubic patterns). For larger viscosity contrasts, the flow is
time dependent, and more complex structures are observed. In all cases, however, the interior temperature
increases with increasing viscosity contrast. Note that the viscosity contrasts imposed in these experiments
are too small for convection to operate in the stagnant lid regime. Reese et al. [1999, 2005] conducted exper-
iments for a purely volumetrically heated fluid with viscosity contrast up to 2.0 × 106, i.e., well into the
stagnant lid regime and found that the flow is dominated by cylindrical upwellings surrounded by down-
welling sheets. Their results further suggest that the heat flux can be modeled with scaling laws similar to
those found in 2-D Cartesian geometry for internally heated fluids. For a shell heated from below, Yoshida
and Kageyama [2004] observed that convection operates in different regimes, depending on the viscosity
contrast. The flow is also dominated by an irregular network of cylindrical plumes surrounded by cold down-
wellings, the number of plumes depending on the viscosity contrast, and the Rayleigh number. In all these
studies, however, the ratio between the inner and outer radii of the shell was fixed to 0.55. This curvature is
well suited for the Earth’s mantle but not for the outer ice shell of icy moons.

In the present study, we performed a series of stagnant lid thermal convection experiments in 3-D spherical
shells in order to explore the influence of the Rayleigh number, thermal viscosity contrast, and curvature of
the shell. We then use the results of these experiments to build scaling laws for the average temperature
of the shell and for the surface heat flux as a function of the explored parameters. Additionally, we present
experiments for a few cases that did not reach the stagnant lid regime to constrain the limits of this regime.

2. Physical Model

We performed numerical experiments of thermal convection using StagYY [Tackley, 2008], which solves the
conservation equations of mass, energy and momentum for an incompressible, infinite Prandtl number fluid
in 3-D spherical geometry. Spherical shells are modeled with Yin-Yang grids. The curvature of the shell is
controlled by the ratio f of the core-to-total radius,

f =
Rc

(Rc + D)
, (1)

where Rc is the radius of the core and D is the thickness of the modeled layer. The layer thus becomes thinner
relative to the core radius with increasing f , and small values of f are associated with high degrees of cur-
vature. Note that f varies from 0 for a sphere (the system has no core) to 1 for an infinite slab (3-D Cartesian
case). Here we performed experiments for values of f ranging between 0.3 and 0.92. The system is heated
from below and cooled at the top. The boundaries at Rc and Rc + D are both free slip and isothermal.

The viscosity 𝜂 varies with the temperature T according to the Frank-Kamenetskii approximation of an
Arrhenius law

𝜂(T) = 𝜂0 exp
[
−𝛾

(T − T0)
ΔT

]
, (2)

where 𝜂0 and T0 are the viscosity and temperature values at the surface, ΔT is the superadiabatic tem-
perature difference between the bottom and the top of the fluid, and 𝛾 is a parameter that controls the
magnitude of the viscosity contrast. Note that the nomenclature is different from that of Solomatov [1995]
but stays consistent with previous similar studies [Grasset and Parmentier, 1998; Deschamps and Lin, 2014].
For clarity, we list the correspondance between the two nomenclatures in Table 1.
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Table 1. Nomenclature Used in This Studya

Symbol Description Solomatov [1995]

𝛼 thermal expansion coefficient
𝛾 viscosity coefficient p
D thickness of layer d
dlid nondimensional thickness of the stagnant lid
Ea activation energy E
𝜂 viscosity
𝜂ref reference viscosity
f curvature parameter
fCL ratio between the core radius and the radius at the base of the stagnant lid
F nondimensional heat flux
F time-averaged conductive heat flux
Φcond dimensional conductive heat flux in spherical geometry
Φ dimensional heat flux F
g gravitational acceleration
k thermal conductivity
𝜅 thermal diffusivity
Nu average Nusselt number
 gas constant
R total radius
Rc core radius
Ra Rayleigh number
Ra1∕2 median Rayleigh number
Ra0 surface Rayleigh number
Rabot bottom Rayleigh number
Ram effective Rayleigh number Rai
𝜌 reference density
t time
T0 dimensional surface temperature
T1∕2 median temperature
Tbot bottom temperature
Tm temperature of the well-mixed interior
Tref reference temperature
ΔT dimensional temperature difference between the surface and the bottom
ΔTc dimensional temperature jump across the conductive domain
ΔTv viscous temperature scale
𝛿T0 nondimensional temperature jump across the layer formed by the stagnant lid

and the top TBL
𝛿Tbot nondimensional temperature jump across the bottom TBL
𝜃m nondimensional temperature of the well-mixed interior Ti
𝜃lid nondimensional temperature at the bottom of the stagnant lid
𝜃CL nondimensional temperature of the well-mixed interior rescaled

to the convective layer

aA correspondance with Solomatov [1995] nomenclature is shown, if different. Note that nondimensional tempera-
tures are expressed by 𝜃 and dimensional temperatures by T .

The viscosity contrast is defined by the ratio between the highest and the lowest viscosity (which are located
at the outer and inner radii of the shell, respectively)

Δ𝜂 =
𝜂(T0)

𝜂(T0 + ΔT)
= exp(𝛾). (3)

The vigor of convection is controlled by the Rayleigh number

Ra =
𝛼𝜌gΔTD3

𝜂𝜅
, (4)

where 𝛼, 𝜌, and 𝜅 are the fluid’s thermal expansion coefficient, reference density, and thermal diffusivity,
g is the acceleration due to gravity, and D is the thickness of the layer. Because viscosity depends on tem-
perature, the definition of the Rayleigh number is not unique. We define a reference Rayleigh number Ra0

calculated at the surface temperature T0, which is common to all calculations. Other definitions of reference
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Rayleigh number often used are the median Rayleigh number Ra1∕2 calculated from the median tempera-
ture T1∕2 = T0 + ΔT∕2 and the bottom Rayleigh number Rabot calculated at temperature Tbot = T0 + ΔT .
Following our viscosity law (equation (2)), these Rayleigh numbers are related to the surface Rayleigh
number by

Ra1∕2 = Ra0 exp(𝛾∕2) (5)

Rabot = Ra0 exp(𝛾) (6)

It is also useful to define a Rayleigh number for the well-mixed interior, Ram (hereafter referred to as the
effective Rayleigh number), calculated with the average temperature Tm of the well-mixed interior. This
effective Rayleigh number takes into account the effect of viscosity variations. In our experiments, we
prescribe the surface Rayleigh number Ra0 and calculate the effective Rayleigh number Ram with

Ram = Ra0 exp(𝛾𝜃m), (7)

where 𝜃m = (Tm − T0)∕ΔT is the nondimensional temperature of the well-mixed interior. The temperature
𝜃m is computed from the isothermal part of the horizontally averaged profile of temperature of the layer.
Another important parameter is the Nusselt number Nu, measuring the efficiency of the convective heat
transfer compared to the conductive heat transfer. Nu is defined by the ratio of the laterally averaged heat
flux normalized by the conductive heat flux Φcond found in the absence of convection. This varies with the
radius r, such that

Φcond = f
(1 − f )2

kΔT
D
r2
, (8)

where k is the thermal conductivity.

With this characteristic heat flux, energy conservation implies that Nu is constant throughout the shell thick-
ness. Alternatively, heat flux may be nondimensionalized with the Cartesian conductive heat flux, kΔT∕D.
With this definition, the conservation of energy requires that the surface and bottom nondimensional heat
flux, Ftop and Fbot, satisfy

Ftop = f 2Fbot. (9)

Dividing the laterally averaged heat flux by the conductive heat flux Φcond with r = Rc at the bottom of the
shell, and r = Rc + D = R at its top, the Nusselt number at the top and at the bottom become

Nutop = Ftop
(1 − f )2

f
R2

D2
, (10)

Nubot = Fbot
(1 − f )2

f

R2
c

D2
,

where R is the total radius. Noting that R∕D = 1∕(1 − f ) and Rc∕D = f∕(1 − f ), equation (10) leads to

Nutop =
Ftop

f
, (11)

Nubot = Fbotf .

Using equation (9), one can easily check that Nutop = Nubot.

The grid resolution for each of the two Yin-Yang blocks, npx × npy × npz, is adjusted according to the cur-
vature and the effective Rayleigh number. For effective Rayleigh number lower than 107 and f lower than
0.9, we use a grid resolution of 128 × 384 × 64. For higher values of f , we increase the lateral grid size to
256 × 768 to properly resolve the large number of small plumes generated for such curvatures. For higher
effective Rayleigh number, we increase the vertical resolution to 128 points in order to better resolve the
thermal boundary layers. The initial condition for the temperature consists of an adiabatic profile with thin
superadiabatic boundary layers at the top and bottom of the shell, to which small random perturbations are
added. Calculations are carried on until a quasi-stationary state is reached, i.e., when the average temper-
ature < T > and the nondimensional heat flux oscillate around constant values. For each calculation, we
determine these values by averaging over several oscillations. An additional criterion of convergence is to
check that the conservation of energy is verified (equation (9)).

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1898



Journal of Geophysical Research: Planets 10.1002/2014JE004653

Table 2. Thermal Convection Experiments in 3-D Spherical Geometrya

f Ra0 Δ𝜂 Grid Size 𝜃m Ftop Fbot Nu dlid Ram Regime

0.3 31.62 1.00 × 105 128*384*64 0.2510 0.458 5.082 1.526 - 5.69 × 102 Marginally critical
0.3 17.68 3.20 × 105 128*384*64 0.2593 0.427 4.757 1.4245 - 4.73 × 102 Marginally critical
0.3 10.00 1.00 × 106 128*384*64 0.2664 0.408 4.459 1.3485 - 3.97 × 102 Marginally critical
0.3 5.59 3.20 × 106 128*384*64 0.2676 0.395 4.407 1.3195 - 3.08 × 102 Marginally critical
0.3 320.00 1.00 × 104 128*384*64 0.1817 0.825 9.203 2.7563 1.71 × 103 Weak
0.3 32.00 1.00 × 106 128*384*64 0.2829 0.638 7.053 2.127 - 1.59 × 103 Marginally critical
0.3 100.00 1.00 × 106 128*384*64 0.2727 0.942 10.364 3.141 - 4.33 × 103 Weak

0.4 100.00 1.00 × 104 128*384*64 0.2725 0.760 4.734 1.897 - 1.23 × 103 Weak
0.4 55.90 3.20 × 104 128*384*64 0.3452 0.815 5.090 2.037 - 2.01 × 103 Weak
0.4 31.62 1.00 × 105 128*384*64 0.3722 0.795 4.965 1.987 - 2.30 × 103 Weak
0.4 17.68 3.20 × 105 128*384*64 0.3954 0.783 4.896 1.958 - 2.66 × 103 Weak
0.4 10.00 1.00 × 106 128*384*64 0.4240 0.799 5.001 2.000 - 3.50 × 103 Weak
0.4 101.19 1.00 × 105 256*768*128 0.3850 1.241 7.773 3.107 - 8.51 × 103 Weak

0.5 100.00 1.00 × 104 128*384*64 0.3761 1.122 4.497 2.247 - 3.19 × 103 Weak
0.5 55.90 3.20 × 104 128*384*64 0.4672 1.203 4.813 2.407 - 7.12 × 103 Weak
0.5 31.62 1.00 × 105 128*384*64 0.5477 1.290 5.157 2.580 - 1.73 × 104 Weak
0.5 17.68 3.20 × 105 128*384*64 0.7312 1.599 6.400 3.199 0.325 1.87 × 105 Stagnant lid
0.5 10.00 1.00 × 106 256*768*128 0.7550 1.711 6.844 3.423 0.315 3.39 × 105 Stagnant lid
0.5 101.19 1.00 × 105 256*768*128 0.6800 2.166 8.649 4.329 0.217 2.54 × 105 Stagnant lid

0.6 55.90 3.20 × 104 128*384*64 0.7142 1.845 5.124 3.075 0.289 9.23 × 104 Stagnant lid
0.6 31.62 1.00 × 105 128*384*64 0.7596 1.925 5.341 3.207 0.295 1.99 × 105 Stagnant lid
0.6 17.68 3.20 × 105 128*384*64 0.7911 1.982 5.502 3.302 0.296 4.00 × 105 Stagnant lid
0.6 10.00 1.00 × 106 128*384*64 0.8120 2.098 5.829 3.497 0.292 7.45 × 105 Stagnant lid

0.7 55.90 3.20 × 104 128*384*64 0.7760 2.194 4.484 3.137 0.275 1.75 × 105 Stagnant lid
0.7 31.62 1.00 × 105 128*384*64 0.8122 2.241 4.579 3.204 0.284 3.64 × 105 Stagnant lid
0.7 17.68 3.20 × 105 128*384*64 0.8360 2.363 4.824 3.376 0.281 7.08 × 105 Stagnant lid
0.7 10.00 1.00 × 106 128*384*64 0.8535 2.505 5.117 3.581 0.274 1.32 × 106 Stagnant lid
0.7 20.00 1.00 × 106 128*384*64 0.8502 3.067 6.261 4.382 0.225 2.53 × 106 Stagnant lid

0.8 100.00 1.00 × 104 128*384*64 0.7941 2.469 3.841 3.08 0.260 1.50 × 105 Stagnant lid
0.8 55.90 3.20 × 104 128*384*64 0.8254 2.498 3.895 3.119 0.269 2.92 × 105 Stagnant lid
0.8 31.62 1.00 × 105 128*384*64 0.8512 2.587 4.035 3.231 0.265 5.70 × 105 Stagnant lid
0.8 17.68 3.20 × 105 128*384*64 0.8692 2.714 4.236 3.390 0.267 1.08 × 106 Stagnant lid
0.8 14.00 1.00 × 106 192*576*128 0.8794 3.18 4.972 3.976 0.238 2.65 × 106 Stagnant lid
0.8 10.00 1.00 × 106 256*768*64 0.8793 2.871 4.485 3.588 0.258 1.89 × 106 Stagnant lid
0.8 101.19 1.00 × 105 256*768*64 0.8520 3.636 5.681 4.545 0.198 1.84 × 106 Stagnant lid
0.8 32.00 1.00 × 106 256*768*64 0.8740 3.941 6.158 4.926 0.191 5.62 × 106 Stagnant lid
0.8 5.60 1.00 × 108 192*576*128 0.8919 6.372 9.965 7.965 0.121 7.65 × 107 Stagnant lid
0.8 316.23 1.00 × 105 192*576*128 0.8496 5.003 7.824 6.256 0.148 5.60 × 106 Stagnant lid
0.8 176.78 3.20 × 105 192*576*128 0.8637 5.186 8.100 6.480 0.148 1.01 × 107 Stagnant lid

0.867 100.00 1.00 × 104 128*384*64 0.8256 2.634 3.495 3.035 0.258 2.01 × 105 Stagnant lid
0.867 101.19 1.00 × 105 128*384*64 0.8676 4.031 5.367 4.651 0.182 2.20 × 106 Stagnant lid

0.9 100.00 1.00 × 104 256*768*64 0.8305 2.726 3.359 3.026 0.254 2.10 × 105 Stagnant lid
0.9 55.90 3.20 × 104 256*768*64 0.8585 2.773 3.424 3.081 0.262 4.12 × 105 Stagnant lid
0.9 31.62 1.00 × 105 256*768*64 0.8763 2.866 3.540 3.186 0.262 7.61 × 105 Stagnant lid
0.9 17.68 3.20 × 105 256*768*64 0.8886 3.054 3.768 3.393 0.253 1.38 × 106 Stagnant lid
0.9 10.00 1.00 × 106 256*768*64 0.8980 3.217 3.972 3.574 0.244 2.44 × 106 Stagnant lid

0.92 100.00 1.00 × 104 256*768*64 0.8369 2.762 3.263 3.002 0.254 2.23 × 105 Stagnant lid
0.92 101.19 1.00 × 105 256*768*64 0.8719 4.151 4.905 4.513 0.183 2.32 × 106 Stagnant lid

aThe temperature of the well-mixed interior, 𝜃m, depends on the convective regime: it represents the temperature of the well-mixed interior, when such
regions exist (stagnant lid regime), or the middepth temperature in other cases (marginally critical and weak regimes).

3. Flow Pattern and Time Variations

We conducted a series of experiments featuring stagnant lid thermal convection in 3-D spherical shells
heated from below, with values of f in the range 0.3–0.92, viscosity contrasts varying between 104 and 108,
and surface Rayleigh numbers from 5 to 300. The results are listed in Table 2.
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Figure 1. Isosurface and slice of temperature for four selected cases with
various curvatures.

Figure 1 shows temperature isosur-
faces and polar slices for selected cases
with different curvature. For cases in
the stagnant lid regime (correspond-
ing to f ≥ 0.5), the convective flow is
confined in the layer below the con-
ductive lid. It consists of hot upwelling
plumes surrounded by interconnected
downwelling sheets. The number of
plumes depends on the curvature of
the shell, the viscosity contrast, and the
Rayleigh number. All cases presented
here are time dependent, reaching a
quasi-stationary state at the end of
the calculation. The mean values for
temperature and heat flux are tem-
poral averages determined once the
model has reached a quasi-stationary
state. The distribution of plumes thus
varies with time, but the overall pattern
remains unchanged. Oscillation of the
average temperature and the nondi-
mensional heat flux around constant
values (Figure 2) are associated with
these variations.

Figure 2 shows that the amplitude and
the frequency of the heat flux oscilla-
tions increase with increasing effective
Rayleigh number, Ram, and for a sim-
ilar Rayleigh number, the amplitude
and frequency increases with decreas-
ing viscosity contrast (Figures 2c and
2d). For all cases, the time averaged
heat flux at the top and at the bottom
of the system are equal, as required
by conservation of energy. However,
the details of the oscillations are sig-
nificantly different. The amplitude of
the oscillations at the base is slightly
higher than those at the surface of the
fluid. More noticeably, the frequency of
the oscillations at the surface is much
lower than at the base. The depen-
dence of the oscillation frequency on

Ram and Δ𝜂, as well as the difference between the basal and surface characteristics, may be explained by
the time required for instabilities to grow in the top and bottom boundary layers. When the quasi-stationary
state is reached, the time-averaged conductive heat flux is equal to heat flux predicted by the half-space
cooling model,

F =
2kΔTc√
𝜋𝜅tc

, (12)

where k is the thermal conductivity, ΔTc the temperature jump across the conductive domain (either the
bottom TBL or the top TBL plus stagnant lid), 𝜅 the thermal diffusivity, and tc the time for the growth of
instabilities. Using the diffusion time D2∕𝜅 as the characteristic time and the total temperature jump ΔT as
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Figure 2. Time evolution of the nondimensional surface and basal
heat flux for five selected cases with decreasing Rayleigh number
from top to bottom: (a) f = 0.8, Ram = 7.65 × 107, Δ𝜂 = 108; (b)
f = 0.8, Ram = 5.51×106, Δ𝜂 = 105; (c) f = 0.867, Ram = 2.2×106,
Δ𝜂 = 105; (d) f = 0.9, Ram = 2.44 × 106, Δ𝜂 = 106; and (e) f = 0.7,
Ram = 1.32 × 106, Δ𝜂 = 106.

the characteristic temperature difference,
the nondimensional times for the growth of
instabilities in the bottom and top conductive
layers are

tbot =
4f 2

𝜋

(
𝛿Tbot

Nu

)2

, (13)

ttop = 4
𝜋f 2

(
𝛿T0

Nu

)2

,

where Nu is the time-averaged Nusselt num-
ber (also equivalent to the nondimensional
heat flux) while 𝛿Tbot and 𝛿T0 are the nondi-
mensional temperature jumps across the
bottom TBL and the layer formed by the top
TBL and the stagnant lid, respectively. To a
good approximation, 𝛿Tbot = (1 − 𝜃m) and
𝛿T0 = 𝜃m, with 𝜃m the time-averaged tem-
perature of the well-mixed interior. Table 2
shows that Nu increases with increasing Ram

and, for a given value of Ram, decreases with
Δ𝜂. Therefore, both ttop and tbot decrease with
increasing Ram and decreasing Δ𝜂. Because
f < 1, and because for all cases in the stagnant
lid regime 𝛿T0 is larger than 𝛿Tbot (Table 2),
ttop is larger that tbot. In summary, instabilities
grow faster with increasing Ram and decreas-
ing Δ𝜂 and faster in the bottom TBL than in
the top conductive layer. The high-frequency
variations in the heat flux observed in the
bottom TBL (Figure 2) may be explained
by the short time required for instabilities
to grow.

For a given curvature, the effective Rayleigh
number, Ram, has an influence on the
thickness of the stagnant lid and the convec-
tive pattern (Figure 3). When the effective
Rayleigh number increases, the total number
of plumes increases and the thickness of the
stagnant lid decreases.

The horizontally averaged profile of verti-
cally advected heat, UzT , and temperature
provides further information about the
structure of the shell (Figures 4 and 5). The
vertically advected heat vanishes at the top
of the system where the heat transfer is
purely conductive. Following Davaille and
Jaupart [1993], we determined the thick-
ness of the stagnant lid from the depth at
which the tangent at the inflection point
in the uzT profiles intersects the vertical
axis. In Figures 4 and 5, these depths are

denoted with horizontal dashed lines. Figure 4b shows that for fixed viscosity contrast, the tempera-
ture of the well-mixed interior, 𝜃m, decreases with increasing curvature (decreasing f ). Figure 5b further
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Figure 3. Polar slices of temperature field for f = 0.8 and various Ram .

shows that for a fixed value of f , 𝜃m increases with increasing viscosity contrast but does not depend on

the Rayleigh number. For a given viscosity contrast and surface Rayleigh number, the thickness of the lid

increases with decreasing f (Figure 4a). Nevertheless, it is important to note that the effective Rayleigh num-

ber is not the same for all these cases, but decreases with f (Table 2), due to the fact that 𝜃m decreases with

f . Additional cases with same Ram and viscosity contrast but different f show that the thickness of the lid

decreases with decreasing f (as indicated in Table 2 by cases Ram = 2.4 × 106 and Δ𝜂 = 106 for f = 0.9,

f = 0.8, and f = 0.7). Figure 5a shows that the lid thickness strongly decreases with increasing effective

Rayleigh number. Overall, for fixed values of viscosity contrast and effective Rayleigh number, the thickness

of the lid decreases with decreasing f .
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4. Scaling Laws

Numerical studies for a bottom-heated fluid with strong temperature-dependent viscosities have already
been performed in 2-D and 3-D Cartesian geometry from which scaling laws have been determined [Moresi
and Solomatov, 1995; Deschamps and Sotin, 2000; Deschamps and Lin, 2014]. Reese et al. [2005] inferred scal-
ings from experiments in spherical shells, but these experiments considered volumetrically heated fluids
and one shell curvature (f = 0.55) only. Even though a Cartesian geometry is suitable to model a thin ice
layer (low curvature), a spherical geometry is required to provide more realistic models for shells that are
thicker relative to the core radius (high curvatures). Likewise, 2-D models are not sufficient to model 3-D flow
patterns. 3-D spherical geometry provides more realistic models and therefore more accurate scaling laws.

4.1. Internal Temperature
Assuming that in the stagnant lid regime, and for a fluid heated from below, the convective layer (shell
below conductive lid) nearly behaves like an isoviscous fluid [Moresi and Solomatov, 1995], and the mean
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Figure 5. Horizontally averaged profiles of vertical heat flow and temperature for f = 0.8 and various Ra0 and Δ𝜂.
Horizontal dashed lines represent the thickness of the conductive lid.
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nondimensional temperature rescaled to the convective layer, 𝜃CL, obeys

𝛿T0 = 𝜃CL, (14)

𝛿Tbot = (1 − 𝜃CL), (15)

where 𝛿T0 and 𝛿Tbot are the temperature jumps across the top and bottom TBL. Using the temperature scal-
ing for a spherical shell from Deschamps et al. [2010], the temperature rescaled to the convective layer is
given by

𝜃CL =
f 2
CL

1 + f 2
CL

, (16)

where fCL is the ratio between the radius of the core and the radius at the base of the stagnant lid. Dividing
equation (15) by equation (14) and inserting equation (16), we obtain

𝛿Tbot =
1

f 2
CL

𝛿T0. (17)

The curvature of the convective layer can also be expressed as a function of the curvature of the whole
layer through

fCL =
f

1 − (1 − f )dlid
, (18)

where dlid is the nondimensional stagnant lid thickness.

We then assume that the temperature jump across the top thermal boundary layer scales as a viscous
temperature scale ΔTv , as suggested by Davaille and Jaupart [1993]

𝛿T0 = a

(
ΔTv

ΔT

)
, (19)

where ΔTv = − 𝜂(Tm)
d𝜂
dT
||T=Tm

with Tm the temperature of the well-mixed interior. According to equation (2), the

viscous temperature scale depends on the logarithmic viscosity contrast through the relation ΔTv = ΔT∕𝛾 .

Combining equation (17) to equation (19), and using the temperature difference across the convective layer,
we obtain

𝛿Tbot = a
[1 − (1 − f )dlid]2

f 2

(
ΔTv

ΔT

)
, (20)

with ΔT the temperature difference across the system.

The nondimensional form of the conductive temperature profile in a spherical shell of unit depth with
isothermal boundaries is

𝜃(r) = RFtop

(R
r
− 1

)
, (21)

where r is the radius and R is the outer radius of the spherical shell. Noting that rlid = (R − dlid), the
nondimensional temperature at the base of the conductive lid can be written as

𝜃lid =
dlid

1 − (1 − f )dlid
Ftop, (22)

and dlid can be expressed as a function of the nondimensional heat flux at the surface Ftop and the
temperature at the bottom of the lid 𝜃lid so that

dlid =
𝜃lid

Ftop + (1 − f )𝜃lid
. (23)

Replacing dlid by its expression (equation (23)), equation (20) becomes

𝛿Tbot =
a
f 2

F2
top

[Ftop + (1 − f )𝜃lid]2

(
ΔTv

ΔT

)
. (24)
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Figure 6. Nondimensional temperature jump across the lower thermal
boundary layer as a function of the parameter 𝛾 . The black line corre-
sponds to the inverted scaling law, and the dashed lines give the error
around the fit. Only cases with f > 0.5 were used to invert the data.

For large values of f (f > 0.5), it can be
assumed that (1 − f )𝜃lid∕Ftop ≪ 1. Using
this approximation, equation (24) can be
simplified to

𝛿Tbot =
a
f 2

(
ΔTv

ΔT

)
. (25)

This analysis provides a power law rela-
tionship between the nondimensional
temperature jump across the bottom TBL
and the inverse of the curvature with an
exponent of 2, which can be tested with
our data (Table 2).

We thus invert the results of our numer-
ical experiments to determine scaling
laws for the temperature jump across
the bottom TBL (Figure 6). The param-
eters are determined by a least squares
fit of the data in Table 2. The nondimen-

sional temperature difference across the bottom thermal boundary layer is well related to curvature and the
viscosity contrast by

(1 − 𝜃m) =
𝛼T

𝛾f 𝛽
. (26)

To invert data in Table 2, we used a nonlinear generalized inverse method [Tarantola and Valette,
1982], which allows estimation of error bars in the output parameters. Inversion of our results leads to
𝛼T = 1.23 ± 0.15 and 𝛽 = 1.5 ± 0.22. Note that only cases in the stagnant lid regime were used in the inver-
sion. The uncertainties are computed assuming a relative uncertainty on the average temperature of 0.5%,
which corresponds to the average amplitude of the oscillation around its mean value during the quasi-
stationary phase.

Figure 6 shows that cases at f ≥ 0.6 fit better in the error bars than cases with low f . When f is low, the stag-
nant lid regime requires a larger viscosity contrast (section 5) to operate. Again, these cases were not used
for the inversion. We also note that cases with 1∕𝛾 ≤ 0.1 do not fit the scaling law. Those cases correspond
to lower values of the thermal viscosity contrast, and thus, the conductive lid may not be well developed.

Our scaling provides the internal temperature in the ice shell for a given curvature (layer thickness relative
to core radius) and viscosity contrast and indicates that the temperature increases with increasing viscosity
contrast and decreases with increasing shell’s curvature (decreasing f ).

4.2. Heat Flux
The efficiency of the heat transfer is determined by the Nusselt number, which results from the compe-
tition between two effects. With increasing viscosity contrast, the temperature of the well-mixed interior
increases and the bulk viscosity calculated with this temperature decreases. This in turn increases the effec-
tive Rayleigh number. In contrast, the presence of the stagnant lid insulates the convective layer and thus
decreases the heat transfer to the surface. Another effect is that the ΔT that participates in convection
decreases, reducing the vigor of convection in the convective layer. Previous studies using 2-D Cartesian
numerical experiments [Moresi and Solomatov, 1995; Deschamps and Sotin, 2000] showed that the second
effect is dominant, and the Nusselt number strongly decreases with increasing viscosity contrast. For an
isoviscous fluid, the nondimensional heat flux across a TBL scales as

q = a′Rab′𝛿TTBL
c′ (27)

where 𝛿TTBL is the temperature across the TBL [Sotin and Labrosse, 1999; Shahnas et al., 2008] and a′, b′, c′ are
constant values. For fluids including viscosity contrast, the temperature across the bottom boundary layer
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is given by equation (26). Replacing Ra
by the effective Rayleigh number Ram,
equation (27) can be used to parameter-
ize the heat flux, Fbot, at the bottom of
the system with

Fbot =
aF Rab

m

𝛾cf d
(28)

The nondimensional heat flux at the
top of the fluid may be obtained from
equation (9). Furthermore, according
to equation (11), the Nusselt number
is simply

Nu =
aF Rab

m

𝛾cf (d−1) . (29)

Using the stagnant lid regime cases listed
in Table 2, we find that the best fit solution corresponds to aF = 2.01± 0.26, b = 0.30± 0.01, c = 1.50± 0.01,
and d = 1.91 ± 0.03. However, the trade-off between parameters is significant (the covariance between
aF and c is up to 0.8); thus, we decided to calculate a specific solution that fits 3-D Cartesian geometry results
(i.e., for f = 1.0). The values of aF and b are prescribed to be consistent with the law obtained by Deschamps
and Lin [2014]. Accordingly, the parameters become aF = 1.46, b = 0.27, c = 1.21±0.01, and d = 1.78±0.02.
This scaling law (Figure 7) fits our data points very well. For comparison with scalings obtained in 3-D
Cartesian geometry, it is convenient to use the Nusselt number, which, following equation (29), scales as
Nu ∝ f−0.78. Both scaling laws are compared to 2-D Cartesian, 3-D Cartesian, and 2-D spherical parame-
terization in Table 3. Our 3-D spherical scalings use the 3-D Cartesian scalings of Deschamps and Lin [2014]
as boundary conditions for f = 1 and are therefore fully consistent with these scalings. The compari-
son between 2-D Cartesian and 3-D Cartesian scalings shows substantial differences (see Deschamps and
Lin [2014] for a detailed comparison), with the 3-D Cartesian scalings predicting larger heat flux by up to
20–40% compared to those resulting from 2-D Cartesian scalings. The determined scaling relationship gives
an important constraint on the heat loss and thus on the cooling rate of the satellite for a given curvature,
Rayleigh number, and viscosity contrast. Interestingly, equation (29), together with the inverted value of d,
indicates that the Nusselt number (and thus the efficiency of heat transfer) increases with increasing cur-
vature (decreasing f ), all other parameters being equal. For a given thermal viscosity contrast, the effect of
the conductive lid is therefore less strong as the shell’s curvature increases (section 5). Strictly speaking, our
scalings are valid only for values of f larger than or equal to 0.4. Because none of our experiments with
f ≤ 0.4 operate in the stagnant lid regime, we did not take them into account to invert the scaling law
parameters. If, as discussed in section 5, the development of the stagnant lid regime depends on curvature

Table 3. Comparison Between Parameterized Laws in Different Geometries

References Geometry 𝜃m Nu

Moresi and Solomatov [1995] 2-D Cartesian (1 − 𝜃m) = 1.1Ra−0.04
m

𝛾0.73 Nu = 1.89Ra0.2
m

𝛾1.02

Deschamps and Sotin [2000] 2-D Cartesian (1 − 𝜃m) = 1.43
𝛾

− 0.03 Nu = 3.8Ra0.258
m

𝛾1.63

Dumoulin et al. [1999] 2-D Cartesian Nu = 0.52Ra1∕3
m

𝛾4∕3

Reese et al. [2005] 2-D Spherical Nu = 0.67Ra1∕3
m

𝛾4∕3

Deschamps and Lin [2014] 3-D Cartesian (1 − 𝜃m) = 1.23
𝛾

Nu = 1.46Ra0.27
m

𝛾1.21

This study 3-D Spherical (1 − 𝜃m) = 1.23
𝛾f 1.5 Nu = 1.46Ra0.27

m
𝛾1.21f 0.78
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and is obtained for larger values of Δ𝜂 as curvature increases, our scaling may be used for f ≤ 0.4, provided
that the viscosity contrast is large enough. On the other hand, one cannot exclude the possibility that con-
vection does not operate in the stagnant lid regime for low values of f . Additional calculations are needed to
clarify this point and map in detail the boundary between the stagnant lid and weak regimes as a function
of f and Δ𝜂.

5. Influence of Curvature on Stagnant Lid Convection

A decrease in average temperature with increasing curvature (i.e., decreasing f ) is well documented for iso-
viscous shells [Jarvis et al., 1995; Shahnas et al., 2008; Deschamps et al., 2010]. Our calculations indicate that
this decrease also holds for strongly temperature-dependent viscosity shells (equation (26)). Interestingly,
our results further show that this decrease influences the development of the stagnant lid. The cooling of
the convecting shell induced by decreasing f is accompanied by attrition of the thermal gradient across the
upper thermal boundary layer. Consequently, the viscosity contrast between the surface and the under-
lying fluid is reduced so that the stagnant lid is weaker or, if f is small enough, cannot form, as it would
in a case with a warmer interior. Stagnant lid convection is therefore more likely to operate in shells with
small curvature (i.e., corresponding to a large core radius compared to the mantle or ice shell thickness),
rather than in shells with large curvature and will be easiest to obtain in plane layer convection (f = 1)
[O’Farrell et al., 2013].

For cases operating in the stagnant lid regime, and for fixed viscosity contrast and Rayleigh number, the lid
thins with increasing curvature, and its effect on the heat transfer is weaker. The transported heat flux, mea-
sured by the Nusselt number, Nu = f × Fbot, increases with increasing curvature (decreasing f ), as indicated
by equation (29). For example, compared to the 3-D Cartesian case (f = 1), with d = 1.78 in equation (29), the
convective heat flux is larger by 20% for f = 0.8 and 70% for f = 0.5.

As f decreases, and for a given viscosity contrast, transition to the stagnant lid regime requires greater refer-
ence Ra (e.g., Ra0 or Rabot). Increasing the Rayleigh number for a fixed f value increases the thermal gradient
and therefore the viscosity gradient between the surface and interior, more readily enabling decoupling of
the surface and interior flow.

Different regime characteristics are indicated by the time-averaged temperature profile, as shown in
Figure 8a. In the marginally critical convection regime, the temperature profile is almost conductive and
the isosurface shows only one plume (for f = 0.3). In order to identify the transition region where stagnant
lid convection appears at low curvatures, we investigated a number of cases featuring f < 0.5 values. The
results are included in Table 2.

Figure 8b shows that depending on the curvature f , the stagnant lid regime does not appear for the same
values of Rabot and Δ𝜂. For Rabot equal to 3.16 × 106 and Δ𝜂 equal to 105, the f = 0.3 case is only weakly
convecting, whereas the cases at f = 0.4 and f = 0.5 develop clearly identifiable thermal boundary layers
separated by a nearly isothermal region and the cases with f ≥ 0.6 are in the stagnant lid regime. The case
with f = 0.3 is typical of convection with small f values found for isoviscous fluids, which show only one or
two plumes being able to form on the relatively small surface area core [Jarvis et al., 1995]. We find that for
f ≤ 0.5, as viscosity contrast is decreased a transition occurs from marginally critical convection to weak
convection in which an isothermal interior appears and finally stagnant lid regime convection, in which
plume number increases. The latter observation is consistent with the effective f increasing, as determined
by the thicknesses of the vigorously convecting layer below the surface layer, relative to the core radius.

Our finding that an increase in viscosity contrast can increase surface mobility appears contrary to the fact
that a strong viscosity contrast is the key requirement of the stagnant lid regime. In fact, our findings sug-
gest that for small f stagnant lid convection occurs for a range of viscosity contrasts bounded by lower and
upper threshold values. For small values of f , the cold temperatures through a great extent of the fluid layer
keep the viscosity at high values to such depth that a distinct high-viscosity lid cannot form (see Figure 4).
Instead, the majority of the spherical shell remains cold and viscously coupled, convecting at very low vigor.
However, as noted above, an increase in Rayleigh number carries more heat radially, warming the interior
and allows a sharper viscosity contrast to develop between the outer layer of the sphere and the interior. For
example, when Rabot increases to 3.2×106 and Δ𝜂 is 104, the previous f = 0.5 case shown in Figure 8b enters
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Figure 8. (a) Typical temperature vertical profile and isosurface for marginally critical (f = 0.30, Ra0 = 31.62,Δ𝜂 = 105),
weak (f = 0.50, Ra0 = 31.62,Δ𝜂 = 105), and stagnant lid (f = 0.60, Ra0 = 31.62,Δ𝜂 = 105) convecting cases. (b) Location
of the different convective regimes. Green squares correspond to stagnant lid regime, orange dots to weak convection,
and red triangles to marginally critical convection. Rabot is the Rayleigh number at the bottom of the box and can be
written as Rabot = Ra1∕2 exp(𝛾∕2).

the stagnant lid regime. Thus, stagnant lid convection can be obtained with small f but requires a higher
Rayleigh number.

6. Application to the Outer Ice Shell of Pluto and Europa

The scalings we obtained from our numerical experiments (section 4) can be used to model the structure
and evolution of dwarf planets and icy satellites. Here we only outline a method to calculate the average
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Figure 9. Temperature of the well-mixed interior as a function of the temperature at the bottom.

temperature of the outer ice I layer and the heat flux through this layer at a given time, but we do not
attempt to reconstruct its thermal and radial evolution.

A possible internal structure for both icy satellites and dwarf planets consists of a large silicate core, sur-
rounded by a high-pressure ice layer, a liquid ocean, and an ice I shell [Lewis, 1971]. If the heat transfer
though this outer layer is efficient enough, the liquid layer may fully crystallize forming a continuous ice
layer. Therefore, the heat transfer plays a fundamental role in the thermal and structural evolution of the
body. Another important parameter is the initial chemical composition of the subsurface ocean. In particu-
lar, the presence of an antifreeze compound (ammonia, for instance) lowers the crystallization temperature
of the ocean. Combined with phase diagrams of the water or water + volatile systems, the scaling laws
inferred in section 4 can be used to model the heat transfer through the outer ice shell of icy bodies.

The viscosity of ice I depends strongly on temperature and is well described by an Arrhenius law

𝜂(T) = 𝜂ref exp
[

Ea

Tref

(
Tref

T
− 1

)]
, (30)

where Ea is the activation energy of ice I,  is the ideal gas constant, and 𝜂ref is the viscosity at a reference
temperature Tref . Here we used 𝜂ref = 5.0 × 1013 Pa ⋅ s [Deschamps and Sotin, 2001], a value deduced from
stress/strain curves measured for alpine glaciers [Gerrard et al., 1952].

The scalings obtained in section 4 are relating nondimensional properties of the system and should be
rescaled according to the planet or body properties. The scaling law for internal temperature (equation(26))
can be rescaled as a function of the temperature at the bottom of the ice layer

Tm = Tbot −
1.23
f 1.5

ΔTv , (31)

where Tbot is the temperature at the bottom of the ice I layer. According to equation (30), the viscous
temperature scale can be expressed as

ΔTv =
T 2

m

Ea
. (32)

The temperature of the well-mixed interior, Tm, can be computed by inserting equation (32) in equation (31).
Tm is then the positive solution of the resulting second order polynomial. Figures 9 shows the tempera-
ture of the well-mixed interior as a function of the temperature at the bottom of the shell, Tbot, for several
values of the activation energy Ea. For a given value of Tbot, the temperature of the well-mixed
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Table 4. Properties of Pluto and Europaa

Parameter Symbol Europa Pluto Unit

Total radius R 1560 1153 km
Core radius Rc 1400 920 km
Average density 𝜌 3000 2000 kg/m3

Gravity acceleration g 1.31 0.66 m/s2

Surface temperature T0 100 44 K

aThe core radius is estimated from the average density and a
core mean density of 3800 and 3000 kg/m3 for Europa and
Pluto, respectively.

interior increases with increasing activa-
tion energy. According to equation (30),
a high activation energy value increases
the temperature dependence of vis-
cosity and reduces the heat transfer
through the shell. Activation energy
can be evaluated from laboratory flow
experiments. Durham et al. [2010] deter-
mined that dislocation creep laws apply
to a temperature range of roughly
150–250 K at planetary strain rates

(∼3.5× 10−14 s−1), yielding an activation energy of Ea = 60 kJ/mol. This value will thus be used in the
subsequent calculations.

One may point out that the rheology of ice I is non-Newtonian [Goodman et al., 1981], but in our numerical
experiments and applications, we assume a Newtonian rheology. Nevertheless, Dumoulin et al. [1999] have
shown that the effect of non-Newtonian rheology can be reproduced with Newtonian scaling by prescribing
smaller (by about a factor 2) activation energy. Figure 9 further shows that the influence of activation energy
on the internal temperature is moderate. Decreasing the value of this parameter from 60 to 20 KJ/mol
induces a small (< 10 K) change in Tm. In comparison, the presence of antifreeze compounds in the ocean
has a much stronger influence, by imposing the value of Tbot.

Both Tbot and f depend on the thickness of the ice layer. Tbot is by definition the temperature of the liquidus
of water (or of the water + volatile mixture) and can be computed from the phase diagram of water at the
pressure Pbot. Here we performed calculations for a pure water ocean only.

We parameterized the liquidus of water with the relation from Chizhov [1993]

Tbot = 273.2
(

1 −
Pbot

0.395

)1∕9

(33)

with Pbot = 𝜌icegD and 𝜌ice = 917 kg/m3. This equation corresponds to the interface between ice I and water.

The effective Rayleigh number of the ice I shell depends on the viscosity at Tm

Ram =
𝛼I𝜌IgΔTD3

𝜂(Tm)𝜅I
, (34)

where 𝛼I, 𝜌I, and 𝜅I are the thermal expansion, the density and the thermal diffusivity of ice I, respectively.
ΔT = (Tbot − T0) is the temperature difference across the ice I layer.

The scaling law for the convective heat flux at the bottom of the ice layer described by equation (28) can
be rescaled as

Φbot =
1.46Ra0.27

m

f 1.78

(
ΔTv

ΔT

)1.21

Φc (35)

where Φc is the conductive heat flux at the bottom. In spherical geometry Φc = kI
Tbot−T0

Df
, where kI is the

thermal conductivity of ice I.

Table 5. Properties of Ice I

Parameter Symbol Value Unit

Activation energy Ea 60 kJ/mol
Reference viscosity 𝜂ref 5 × 1013 Pa s
Density 𝜌I 917 kg/m3

Thermal conductivity kI 2.6 W/m/K
Thermal expansion 𝛼I 1.56 × 10−4 K − 1
Thermal diffusivity 𝜅I 1.47 × 10−4 m2∕s

To illustrate the effect of the curvature on
the temperature and heat flux, we apply
equations (31)–(35) to Europa and Pluto.
The maximum ice I thickness, given by the
difference between the total and core radii,
is 160 km for Europa and 230 km for Pluto,
corresponding to values of f around 0.9 and
0.8, respectively. The properties of Pluto and
Europa and the properties of ice I are listed
in Tables 4 and 5. Note that in the case of
Europa, internal heating resulting from tidal
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Figure 10. (a) Temperature of the well-mixed interior, (b) effective
Rayleigh number, and (c) heat flux at the bottom for Europa and Pluto
as a function of the thickness of the ice I layer for a variable f (solid line)
and for f = 1 (dashed line). The vertical thick lines denote the maximum
thickness of ice I layer, i.e., R − Rc .

dissipation in the ice I layer may have
played an important role in the evolu-
tion of its radial structure [Tobie et al.,
2003]. We do not account for this effect
in the calculations below.

The phase diagram of water [Chizhov,
1993] shows a transition from ice I
to ice III at a pressure of 0.207 GPa.
For large bodies (e.g., Ganymede and
Titan), this transition leads to a more
complex radial structure, since a layer
of high-pressure ice may be present
between the residual ocean and the
core. However, such high-pressure ice
layers are unlikely to exist in Europa
and Pluto, since in both cases the tran-
sition pressure from ice I to ice III would
be within the core.

Figure 10 shows the temperature of
the well-mixed interior (equations (31)
and (32)), the effective Rayleigh num-
ber (equation (34)) and the convective
heat flux at the bottom of the outer
ice shell (equation (35)) as a func-
tion of the thickness D of this shell.
The curvature increases (f decreases)
with the thickening of the ice I shell.
For comparison, we also plotted the
heat flux predicted by 3-D Cartesian
scalings, i.e., by setting f = 1 inde-
pendently of D in equations (31) and
(35). The decrease in temperature as

the ice I layer thickens is related to the fact that Tbot (equal to the temperature of the liquidus) decreases
with increasing depth. However, the increase in curvature induces a small additional drop in tempera-
ture, as indicated by the difference between the 3-D Cartesian (dashed curves) and 3-D spherical (solid
curves) scalings, which increases with D (thus with decreasing f ) (Figure 10a). The effective Rayleigh num-
ber naturally increases with the layer thickness (equation (34)). It further increases due to the drop in the
bottom temperature, which leads to larger ΔT . The decrease in the temperature of the well-mixed inte-
rior, which increases the viscosity, partially compensates these effects. As a result of the temperature drop
increasing with f , taking into account the variation of the shell curvature leads to smaller Rayleigh number
(Figure 10b). Moreover, because it depends on the conductive heat flux (equation (35)), the convective heat
flux decreases as the ice I layer thickens. As discussed in section 5, the stagnant lid is less developed as the
curvature increases, i.e. as the ice layer thickens, all other parameters being equal. As a result, the heat trans-
fer is more efficient if the curvature is taken into account (Figure 10c). The difference reaches about 20% in
the case of Europa and 50% in the case of Pluto. Interestingly, in the case of Pluto, the heat flux decrease is
fully compensated by the curvature effect if the ice layer is thick enough (150 km and more). Variations in
the curvature of the outer ice shell of Europa and Pluto, as these shells crystallize, may thus have nonneg-
ligible effects on the thermal evolution of the icy moons and dwarf planet and should therefore be taken
into account.

7. Concluding Discussion

The numerical experiments of convection in spherical shells we performed indicate that the curva-
ture (or, equivalently, the relative size of the shell compared to the underlying core measured by the

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1911



Journal of Geophysical Research: Planets 10.1002/2014JE004653

ratio f ) strongly influences the mode in which convection operates. Depending on the Rayleigh number, cur-
vature, and thermal viscosity contrast, we identify three different regimes. Our results show that for a thick
shell relative to the core radius (i.e., low f ), the stagnant lid regime is more difficult to obtain and appears
only if the Rayleigh number is large enough. Moreover, a stagnant lid requires a large viscosity contrast, but
if it is too high, the shell does not convect at all. For cases in the stagnant lid regime, our results show that
the thickness of the lid decreases with increasing curvature (decreasing f ), all other properties being similar.
Accordingly, the efficiency of heat transfer increases with increasing curvature.

Our numerical experiments allow us to build scaling laws for the average temperature of the well-mixed
interior (i.e., excluding the stagnant lid) and for the convective heat flux. The average temperature of the
well-mixed interior depends only on the viscosity contrast and curvature, decreasing with increasing curva-
ture. The heat flux further depends on the vigor of convection and, as already pointed out, increases with
increasing curvature. Combined with experimentally determined melting curves, these scaling laws can be
used to investigate the thermal histories and radial structures of icy moons and dwarf planets.

The outer ice I layers of icy moons and dwarf planets result from the crystallization of their primordial ocean
[e.g., Hussmann et al., 2007]. These layers first transfer heat by conduction, but when they are thick enough,
typically a few tens of kilometers, they become unstable and are animated by convection. Crystallization
stops if convection in the ice I layer is not efficient enough to transfer to the surface the heat available at
its base. Today, the thickness of the outer ice I shell should not exceed a few hundreds of kilometers, lead-
ing to values of f around 0.8 or larger. Thus, convection in the ice I layers of icy moons has likely operated
in the stagnant lid regime throughout the histories of these bodies. As the ice I layer thickens its curvature
increases, which, according to our results, reduces the thickness of the stagnant lid (relatively to the total
thickness of the ice I layer) and significantly improves the heat transfer by convection. This partially compen-
sates the reduction of the heat flux induced by the presence of antifreeze compounds and may thus slightly
delay the crystallization shut-off.

Our numerical experiments, and the derived scaling laws, assume a number of simplifications, which should
be kept in mind when applying them to icy layers. As discussed in section 6, at the condition of stress and
pressure of the icy moons, the rheology of ice I is non-Newtonian [Goodman et al., 1981], whereas our exper-
iments assume a Newtonian rheology. This difficulty can be addressed by prescribing lower values of the
activation energy, as suggested by Dumoulin et al. [1999]. Because compared to other parameters, par-
ticularly the presence of antifreeze compounds in the primordial ocean, activation energy has a limited
influence on convection in the ice I layer [Deschamps and Sotin, 2001] (this study, Figure 9), uncertainty on
its value is not a crucial issue. Similarly, our experiments do not account for pressure dependence of the
viscosity. This approximation, however, is certainly valid in the case of the ice I layer of icy bodies, where
the pressure remains small, 0.21 GPa at most. More importantly, in our experiments shells are heated from
their base only. In isoviscous fluids, the addition of internal heating has strong effects on the flow, by weak-
ening the bottom thermal boundary layer and thus the growth of hot plumes [e.g., Travis and Olson, 1994;
Sotin and Labrosse, 1999; Shahnas et al., 2008; Deschamps et al., 2010]. As the amount of internal heating
increases, convection is dominated by downwellings. In the case of icy moons, internal heating resulting
from tidal dissipation may be important for bodies that have not reached a synchronous spin. The results
from Tobie et al. [2005] show that the average value of tidal heating in the ice I shell is typically around
10−10 W/kg (corresponding to nondimensional rate of internal heating around 5). Numerical experiments
for an isoviscous fluid in various geometries [Travis and Olson, 1994; Sotin and Labrosse, 1999; Shahnas et al.,
2008; Deschamps et al., 2010] indicate that such amount of internal heating has a moderate effect on the
convection pattern. The average temperature and the bottom heat flux (i.e., the flux that can be extracted
from the underlying core) are also affected by internal heating, leading to different scaling laws than those
obtained for bottom-heated fluid. For stagnant lid convection, however, temperature and heat flux scaling
for mixed heating are still to be determined.

References
Chizhov, V. (1993), Thermodynamic properties and thermal equations of the state of high-pressure ice phases, J. Appl. Mech. Tech. Phys.,

34(2), 253–262, doi:10.1007/BF00852521.
Christensen, U. (1984), Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution, Phys. Earth

Planet. Inter., 35(4), 264–282, doi:10.1016/0031-9201(84)90021-9.
Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal-convection with large viscosity variations, J. Fluid Mech.,

253, 141–166, doi:10.1017/S0022112093001740.

Acknowledgments
We are grateful to the two anonymous
colleagues and to the Associate Editor
for their constructive reviews and com-
ments, which where useful to improve
a first version of this manuscript.
This project was supported by grant
ETH-03 10-1 from the ETH Research
Commission, grant AS-102-CDA-M02
from Academia Sinica (Taiwan), and
grant 101-2116-M-001-001-MY3
from National Science Council of
Taiwan (NSC). JPL is grateful for fund-
ing from the Natural Sciences and
Engineering Research Council of
Canada (DG-327084-10). Data sup-
porting this article are available
in Table 2.

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1912

http://dx.doi.org/10.1007/BF00852521
http://dx.doi.org/10.1016/0031-9201(84)90021-9
http://dx.doi.org/10.1017/S0022112093001740


Journal of Geophysical Research: Planets 10.1002/2014JE004653

Deschamps, F., and J.-R. Lin (2014), Stagnant lid convection in 3D-Cartesian geometry: Scaling laws and applications to icy moons and
dwarf planets, Phys. Earth Planet. Inter., 229, 40–54, doi:10.1016/j.pepi.2014.01.002.

Deschamps, F., and C. Sotin (2000), Inversion of two-dimensional numerical convection experiments for a fluid with a strongly
temperature-dependent viscosity, Geophys. J. Int., 143(1), 204–218, doi:10.1046/j.1365-246x.2000.00228.x.

Deschamps, F., and C. Sotin (2001), Thermal convection in the outer shell of large icy satellites, J. Geophys. Res., 106(E3), 5107–5121,
doi:10.1029/2000JE001253.

Deschamps, F., P. J. Tackley, and T. Nakagawa (2010), Temperature and heat flux scalings for isoviscous thermal convection in spherical
geometry, Geophys. J. Int., 182(1), 137–154, doi:10.1111/j.1365-246X.2010.04637.x.

Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent
Newtonian or non-Newtonian rheology, J. Geophys. Res., 104(B6), 12,759–12,777, doi:10.1029/1999JB900110.

Durham, W. B., O. Prieto-Ballesteros, D. L. Goldsby, and J. S. Kargel (2010), Rheological and thermal properties of icy materials, Space Sci.
Rev., 153(1-4), 273–298, doi:10.1007/s11214-009-9619-1.

Gerrard, J. A. F., M. F. Perutz, and A. Roch (1952), Measurement of the velocity distribution along a vertical line through a glacier, Proc. R.
Soc. London A, 213(1115), 546–558.

Goodman, D. J., H. J. Frost, and M. F. Ashby (1981), The plasticity of polycrystalline ice, Philos. Mag. A, 43(3), 665–695,
doi:10.1080/01418618108240401.

Grasset, O., and E. M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly
temperature-dependent viscosity: Implications for planetary thermal evolution, J. Geophys. Res., 103(B8), 18,171–18,181,
doi:10.1029/98JB01492.

Howard, L. (1966), Convection at High Rayleigh Number, Springer, Berlin Heidelberg, pp. 1109–1115, doi:10.1007/978-3-662-29364-5-147.
Hussmann, H., C. Sotin, and J. Lunine (2007), 10.15—Interiors and evolution of icy satellites, in Treatise on Geophysics, pp. 509–539,

Elsevier, Amsterdam, doi:10.1016/B978-044452748-6.00168-1.
Jarvis, G. T., G. A. Glatzmaier, and V. I. Vangelov (1995), Effects of curvature, aspect ratio and plan form in two- and three-dimensional

spherical models of thermal convection, Geophys. Astrophys. Fluid Dyn., 79(1-4), 147–171, doi:10.1080/03091929508228995.
Lewis, J. S. (1971), Satellites of outer planets—Their physical and chemical nature, Icarus, 15 (2), 174–185,

doi:10.1016/0019-1035(71)90072-8.
Moresi, L. N., and V. S. Solomatov (1995), Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluids,

7(9), 2154–2162, doi:10.1063/1.868465.
O’Farrell, K. A., and J. P. Lowman (2010), Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle

convection models, Phys. Earth Planet. Inter., 182(1-2), 73–84, doi:10.1016/j.pepi.2010.06.010.
O’Farrell, K. A., J. P. Lowman, and H.-P. Bunge (2013), Comparison of spherical-shell and plane-layer mantle convection thermal structure

in viscously stratified models with mixed-mode heating: Implications for the incorporation of temperature-dependent parameters,
Geophys. J. Int., 192(2), 456–472, doi:10.1093/gji/ggs053.

Ratcliff, J. T., G. Schubert, and A. Zebib (1995), Three-dimensional variable viscosity convection of an infinite Prandtl Number Boussinesq
fluid in a spherical shell, Geophys. Res. Lett., 22(16), 2227–2230, doi:10.1029/95GL00784.

Ratcliff, J. T., G. Schubert, and A. Zebib (1996), Effects of temperature-dependent viscosity on thermal convection in a spherical shell,
Physica D, 97(13), 242–252, doi:10.1016/0167-2789(96)00150-9.

Reese, C. C., V. S. Solomatov, J. R. Baumgardner, and W. S. Yang (1999), Stagnant lid convection in a spherical shell, Phys. Earth Planet.
Inter., 116(1-4), 1–7, doi:10.1016/S0031-9201(99)00115-6.

Reese, C. C., V. S. Solomatov, and J. R. Baumgardner (2005), Scaling laws for time-dependent stagnant lid convection in a spherical shell,
Phys. Earth Planet. Inter., 149(3-4), 361–370, doi:10.1016/j.pepi.2004.11.004.

Shahnas, M. H., J. P. Lowman, G. T. Jarvis, and H.-P. Bunge (2008), Convection in a spherical shell heated by an isothermal
core and internal sources: Implications for the thermal state of planetary mantles, Phys. Earth Planet. Inter., 168(1-2), 6–15,
doi:10.1016/j.pepi.2008.04.007.

Solomatov, V. S. (1995), Scaling of temperature-dependent and stress-dependent viscosity convection, Phys. Fluids, 7(2), 266–274,
doi:10.1063/1.868624.

Sotin, C., and S. Labrosse (1999), Three-dimensional thermal convection in an isoviscous, infinite Prandtl number fluid heated from
within and from below: Applications to the transfer of heat through planetary mantles, Phys. Earth Planet. Inter., 112, 171–190,
doi:10.1016/S0031-9201(99)00004-7.

Tackley, P. J. (2008), Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using
the Yin-Yang grid, Phys. Earth Planet. Inter., 171(1-4), 7–18, doi:10.1016/j.pepi.2008.08.005.

Tarantola, A., and B. Valette (1982), Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys., 20(2),
219–232, doi:10.1029/RG020i002p00219.

Tobie, G., G. Choblet, and C. Sotin (2003), Tidally heated convection: Constraints on Europa’s ice shell thickness, J. Geophys. Res., 108(E11),
5124, doi:10.1029/2003JE002099.

Tobie, G., O. Grasset, J. I. Lunine, A. Mocquet, and C. Sotin (2005), Titan’s internal structure inferred from a coupled thermal-orbital model,
Icarus, 175(2), 496–502, doi:10.1016/j.icarus.2004.12.007.

Travis, B., and P. Olson (1994), Convection with internal heat sources and thermal turbulence in the Earth’s mantle, Geophys. J. Int., 118(1),
1–19, doi:10.1111/j.1365-246X.1994.tb04671.x.

Yoshida, M., and A. Kageyama (2004), Application of the Yin-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl
number in a three-dimensional spherical shell, Geophys. Res. Lett., 31, L12609, doi:10.1029/2004GL019970.

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1913

http://dx.doi.org/10.1016/j.pepi.2014.01.002
http://dx.doi.org/10.1046/j.1365-246x.2000.00228.x
http://dx.doi.org/10.1029/2000JE001253
http://dx.doi.org/10.1111/j.1365-246X.2010.04637.x
http://dx.doi.org/10.1029/1999JB900110
http://dx.doi.org/10.1007/s11214-009-9619-1
http://dx.doi.org/10.1080/01418618108240401
http://dx.doi.org/10.1029/98JB01492
http://dx.doi.org/10.1007/978-3-662-29364-5-147
http://dx.doi.org/10.1016/B978-044452748-6.00168-1
http://dx.doi.org/10.1080/03091929508228995
http://dx.doi.org/10.1016/0019-1035(71)90072-8
http://dx.doi.org/10.1063/1.868465
http://dx.doi.org/10.1016/j.pepi.2010.06.010
http://dx.doi.org/10.1093/gji/ggs053
http://dx.doi.org/10.1029/95GL00784
http://dx.doi.org/10.1016/0167-2789(96)00150-9
http://dx.doi.org/10.1016/S0031-9201(99)00115-6
http://dx.doi.org/10.1016/j.pepi.2004.11.004
http://dx.doi.org/10.1016/j.pepi.2008.04.007
http://dx.doi.org/10.1063/1.868624
http://dx.doi.org/10.1016/S0031-9201(99)00004-7
http://dx.doi.org/10.1016/j.pepi.2008.08.005
http://dx.doi.org/10.1029/RG020i002p00219
http://dx.doi.org/10.1029/2003JE002099
http://dx.doi.org/10.1016/j.icarus.2004.12.007
http://dx.doi.org/10.1111/j.1365-246X.1994.tb04671.x
http://dx.doi.org/10.1029/2004GL019970

	Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons
	Abstract
	Introduction
	Physical Model
	Flow Pattern and Time Variations
	Scaling Laws
	Internal Temperature
	Heat Flux

	Influence of Curvature on Stagnant Lid Convection
	Application to the Outer Ice Shell of Pluto and Europa
	Concluding Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


