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[1] In the past decade, several studies have documented
the effectiveness of plastic yielding in causing a basic
approximation of plate tectonic behavior in mantle
convection models with strongly temperature dependent
viscosity, strong enough to form a rigid lid in the absence of
yielding. The vast majority of such research to date has been
in either two-dimensional, or three-dimensional cartesian
geometry. In the present study, mantle convection
calculations are performed to investigate the planform of
self-consistent tectonic plates in three-dimensional spherical
geometry. The results are compared to those of similar
calculations where a three dimensional cartesian geometry
is used. We found that when yield stress of the lithosphere is
low (�20 MPa) a ‘‘great circle’’-subduction zone forms. At
low-intermediate yield stresses (�100 MPa) plates,
spreading centers and subduction zones formed and were
destroyed over time. At high-intermediate yield stresses
(�200 MPa) two plates form, separated by a great circle
boundary that is a spreading centre on one side and a
subduction zone on the other side. At high yield stresses
(�400 MPa) a rigid lid was observed. The great circle
subduction zone and the rigid lid are stable over time while
at intermediate yield stresses some episodic behavior is
observed. The spherical cases showed a higher, more Earth-
like, toroidal-poloidal ratio of the surface velocity field than
the cartesian cases. Citation: van Heck, H. J., and P. J.

Tackley (2008), Planforms of self-consistently generated plates in

3D spherical geometry, Geophys. Res. Lett., 35, L19312,

doi:10.1029/2008GL035190.

1. Introduction

[2] As oceanic plates act as the upper thermal boundary
layer of mantle convection, and continents are formed from
the mantle, it is desirable to treat mantle and plates as a
single, integrated system rather than two separate entities.
The physics of the formation and destruction of tectonic
plates out of a convecting mantle is, however, not well
understood.
[3] Although in recent years progress has been made in

both the comprehensiveness and clarity of numerical mod-
els (see Bercovici [2003] for a review) basic questions about
why the Earth is currently the only terrestrial planet with
active plate tectonics, which parameters control the forma-
tion of plates, and which processes are responsible for the

creation of subduction zones and spreading centers, remain
largely unanswered.
[4] Convection with temperature dependent viscosity

displays three different regimes, none of which is plate like.
Solomatov [1995] and Moresi and Solomatov [1995] con-
ducted numerical experiments of convection with large
viscosity contrasts. They found distinct different regimes
in which the top part did or did not participate in convec-
tion, separating a rigid lid regime from a mobile and a
sluggish lid regime. Models got much closer to modeling
plate-like behavior when Moresi and Solomatov [1998]
introduced a lithospheric yield stress. When stresses exceed
a certain critical stress, the lithospere is weakened by
yielding, modeling faults and shear zones. This approached
was used in 3D cartesian geometry by Trompert and
Hansen [1998] and Tackley [2000a]. In general, these
studies found three distinctive convective regimes: mobile
lid, where the lithosphere is constantly yielding, allowing
zones of subduction and spreading centres to be present at
all times, a stagnant lid, where one continuous plate covers
the whole domain, and episodic lid, where the regime keeps
changing from mobile lid to stagnant lid, back to mobile lid
over time. Later some studies included more Earth-like
features such as history dependent weakening [Tackley,
2000b; Ogawa, 2003] and a low viscosity asthenosphere
[Tackley, 2000b; Richards et al., 2001]. Stein et al. [2004]
used a similar but more extensive approach to study, among
others, the influence of temperature, stress and pressure
dependence of the viscosity on plate-like behavior.Muhlhaus
and Regenauer-Lieb [2005] discussed the importance of
elasticity and non-Newtonian rheology. Recently, Loddoch
et al. [2006] argued that a fourth regime exists between the
rigid and episodic lid, where different scalings apply. Not
only the Earth’s dynamics but that of all terrestrial planets
can be studied with these kind of models. For example,
Fowler and O’Brien [2003] used a model similar to the ones
mentioned above to investigate the frequency of resurfacing
events on Venus.
[5] Of these studies, only Richards et al. [2001] showed

results in spherical geometry, while the majority of these
studies were done using cartesian geometry. How the
different tectonic regimes manifest in 3D spherical geome-
try is not yet clear.
[6] Here we present the results of numerical experiments

of mantle convection with self consistent plate tectonics in
3D spherical geometry. The results are compared to the
results of calculations using the same parameter values in
cartesian geometry. Special attention was paid to the effect
of varying values of lithospheric yield stress, leading to
comparable regimes as were observed in cartesian geometry
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[Tackley, 2000a], and the similarities and differences
between cartesian and spherical geometries.

2. Model Description

2.1. Boussinesq Equations

[7] The same model is used as was used by Tackley
[2000a], assuming the Boussinesq approximation. Solving
the equations for conservation of mass, momentum and
continuity;

r � v ¼ 0; ð1Þ

r � sij �rp ¼ RaTẑ; ð2Þ

@T

@t
¼ r2T � v � rT þ H ; ð3Þ

where v is velocity, sij is the deviatoric stress tensor
(= h(vi,j + vj,i) where h is viscosity), p the pressure, T the
temperature, ẑ the vertical unit vector, t the time, and H the
internal heating rate. The Rayleigh number Ra can be
expressed as:

Ra ¼ rga4TD3

h0k
; ð4Þ

where r, g, a, 4T, D, k and h0 aredensity, gravitational
acceleration, temperature scale, depth of themantle, thermal
diffusivity and reference viscosity respectively.

2.2. Rheology

[8] The basic temperature dependent expression for the
viscosity is an Arrhenius-type law:

h Tð Þ ¼ exp
23:03

T þ 1
� 23:03

2

� �
: ð5Þ

This law results in a variation in viscosity of 105 between
the nondimensional temperatures of 0 and 1. The viscosity
is equal to 1 at T = 1.
[9] To account for plastic yielding we followed the

method as described by Tackley [2000b], using a two
component yield stress. One depth dependent component
models brittle failure in the upper crust, and one constant
component models semi-ductile, semi-brittle flow in the
lower crust and mantle lithosphere.

syield zð Þ ¼ min sy�ductile; 1� zð Þs0
y�brittle

h i
; ð6Þ

where syield is the depth dependent yield stress, sy-ductile the
constant yield stress and s0y-brittle the gradient of the brittle
yield stress with depth. The intersection was kept at a
constant depth by using; s0y-brittle = 20 * sy-ductile, meaning
that the upper five percent of the domain experiences the
brittle yield stress while the rest of the domain experiences
the ductile yield stress. These yielding criteria lead to a
‘‘yield viscosity’’, hyield:

hyield ¼
syield zð Þ

2 _�
; ð7Þ

where _� is the second invariant of the strain rate tensor:

_� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
_�ij _�ij

r
: ð8Þ

[10] The effective viscosity was defined as:

heff ¼
1

1
h z;Tð Þ þ

1
hyield

; ð9Þ

resulting in a smooth transition from the basic depth and
temperature dependent viscosity to the yield-viscosity in
regions of high stress. To avoid numerical difficulties the
viscosity was truncated between 0.1 and 10000.
[11] Richards et al. [2001] and Tackley [2000b] showed

that a reduction in viscosity in the asthenosphere enhances
plate formation. Viscosity reduction in the asthenosphere
was here incorporated by reducing the viscosity by a factor
of 10 in regions where the temperature is close to the
solidus, i.e.,

h z;Tð Þ ¼ h Tð Þ if T < Tsol0 þ 2 1� zð Þ; ð10Þ

h z;Tð Þ ¼ 0:1h Tð Þ if T � Tsol0 þ 2 1� zð Þ; ð11Þ

where z, the depth coordinate, is varying from 0 at the core-
mantle boundary (CMB) to 1 at the surface. The surface
solidus temperature Tsol0 was set to 0.6 in the calculations
done, giving low viscosity regions mainly localized under-
neath spreading centers.

2.3. Plate Diagnostics

[12] To analyze how successful each model was at
producing plate tectonics we used three diagnostics; plate-
ness, mobility and the toroidal-poloidal ratio of the surface
velocity field. The same diagnostics were used by Tackley
[2000a, 2000b].
[13] Surface deformation should be localized in plate

boundaries, leaving the plates themselves fairly rigid.
‘‘Plateness’’ (P) is a parameter to indicate how localized
surface deformation is, and can be expressed as:

P ¼ 1� f80

0:6
; ð12Þ

where f80 is the fraction of the surface area where the
highest 80% of the surface deformation takes place.
Deformation is measured by the second invariant of the
strain rate tensor;

_�surface ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2xx þ _�2yy þ 2 _�2xy:

q
ð13Þ

[14] The plateness is scaled to cases with constant vis-
cosity which show a f80 of 0.6 (in both cartesian and
spherical geometry). A plateness of 1 corresponds to perfect
plates, i.e., 80% of the surface deformation is localized in an
infinitesimal small area, while cases with constant viscosity
show a plateness of 0.
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[15] Mobility (M) is defined as the ratio of rms surface
velocity to rms velocity averaged over the entire domain:

M ¼ vrms�surface

vrms�whole
: ð14Þ

For constant viscosity, internally heated convection, M � 1.
[16] The Toroidal-poloidal ratio (RTP) is expressed as:

RTP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2toroidal
v2poloidal

s
; ð15Þ

where vtoroidal is the toroidal component of the surface
velocity field averaged over the entire surface and vpoloidal
the poloidal component averaged over the surface. The
estimated value for the Earth is, without net rotation, 0.3–0.5
(for the past 120 My [Lithgow-Bertelloni and Richards,
1993]). Net rotation of the lithosphere is subtracted from the
surface velocity field at each timestep [Tackley, 2008].

2.4. Parameters and Numerical Method

[17] The Rayleigh number was set to 105 (temperature
based, viscosity for T = 1). The cartesian cases used
periodic boundaries and an aspect ratio of 8. Both on the
surface and CMB free-slip boundary conditions were applied.
The temperature at the surface was kept at 0, at the bottom
zero heat flux was applied, i.e., all cases were completely
heated from within.
[18] The internal heating was 10 in cartesian geometry,

increased to 16.3 when switching to spherical geometry to
compensate for the higher surface:volume ratio that spher-
ical geometry has. With this increase, the surface heat flux is
comparable in both geometries. The ratio surface:volume
changes as:

surface :volume½ �cartesian¼ rsurfð Þ � rcmbð Þ; ð16Þ

surface :volume½ �spherical¼
3* rsurfð Þ2

rsurfð Þ3� rcmbð Þ3
h i ; ð17Þ

where rsurf is the radius of the Earth and rcmb the radius of
the Earth’s core. Using rsurf = 2.2 and rcmb = 1.2 gives
[surface:volume]cartesian = 1 and [surface:volume]spherical �
1.63.
[19] The initial condition used for each calculation was a

stable rigid lid. From there, all calculations were ran for a
time corresponding to several billion years.
[20] The latest version of the code Stag3d is used

[Tackley, 1993, 2000a]. This code has recently been con-
verted to spherical geometry using a yin-yang grid [Tackley,
2008]. The number of grid points was 128 � 128 � 32 for
cartesian cases and 64 � 192 � 32 � 2 for spherical cases.
Resolution tests for the cartesian cases were published by
Tackley [2000b]. We expect similar behavior for the spher-
ical cases since the same code is used. One spherical test
case was run with double resolution (128 � 384 � 64 � 2),
which didn’t show any significant changes. To check that
the solutions were not influenced by the underlying grid we
rotated the solution arbitrarily and continued the calculation

for one of the calculations done. A snapshot is shown in
Figure 1.

3. Results

3.1. Varying Yield Stress

[21] Two sets of six calculations each are presented; one
in cartesian geometry, the other in spherical geometry. In
both sets the yield stress (both the brittle part and the ductile
part) was varied over a range wide enough to create a rigid
lid at the high end and a stable mobile lid at the low end.
[22] To convert non-dimensional stress values to dimen-

sional values we use the expression;

sdimensional ¼
h0k
D2

snon�dimensional: ð18Þ

[23] When using the values shown in Table 1 it follows
that a non-dimensional stress of 1 corresponds to a dimen-
sional value of 1.2 � 104 Pa (or 104 to 120 MPa).
[24] Figure 1 shows snapshots of the surface viscosity,

surface velocity fields and an isosurface of the temperature
field for all calculations. The yield stress increases from top
to bottom from 1.4 * 103 to 3.5 * 104, or 17 to 420 MPa.
The observed planforms can be divided into four groups. 1)
low yield stress. These planforms are dominated by two
perpendicular downwellings in cartesian geometry and one
‘‘great circle downwelling’’ in spherical geometry (Figure 1,
top row). The rest of the surface is filled by several higher
viscosity ‘‘oceanic plates’’.
[25] 2) Low-intermediate yield stress. Spreading centers,

subduction zones and oceanic plates form and are destroyed
over time. A single planform can not be identified for this
group (Figure 1, first through fourth rows).
[26] 3) High-intermediate yield stress. In cartesian geom-

etry one upwelling and one downwelling form. Convection
has the longest wavelength possible in the domain. In
spherical geometry one elongated upwelling and one elon-
gated downwelling form roughly opposite each other. Two
hemispherical ‘‘oceanic plates’’ are formed (Figure 1, fifth
row).
[27] 4) High yield stress. In both cartesian and spherical

geometry a rigid lid forms in this group (Figure 1, bottom
row.)

3.2. Plate Diagnostics

[28] In Figure 2 the plate diagnostics are plotted versus
yield stress. Mobility holds a stable value with varying yield
stress until it drops to almost zero when a rigid lid is
formed. The value for the spherical cases (�1.25) is slightly
lower then the value for the cartesian cases (�1.45).
Plateness increases with yield stress and drops drastically
when a rigid lid is formed, in a very similar way for the
spherical and cartesian cases. The toroidal-poloidal ratio
increases with yield stress at low yield stresses, then it drops
until a rigid lid is formed. The toroidal-poloidal ratio is
significantly higher for spherical cases than it is for carte-
sian cases, up two a factor of two for most cases.

4. Discussion and Conclusions

[29] The effect of 3D spherical geometry on the plan-
forms of self-consistent plate tectonics is investigated. The
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results presented here give a crude approximation of plate
tectonic regimes on terrestrial planets.
[30] Two new planforms are found. At the lowest litho-

spheric yield stresses (�17 MPa) one great circle downwel-
ling forms. This separates the domain in two hemispheres

Figure 1. (left) The viscosity at the surface (z = 0.97), arrows indicate the velocity field. The narrow blue/purple zones
represent weak zones, i.e., plate boundaries. Orange/red zones indicate rigid zones, i.e., plates. (right) The temperature
where it is 17% lower than the horizontal average. For the spherical cases both sides of the sphere are printed next to each
other. Yield stress increases from top to bottom as; 1.4 * 103, 5.7 * 103,8.5 * 103, 9.9 * 103, 2.0 * 104, 3.5 * 104. The images
show snapshots taken from each run. In the box at the top a snapshot similar to first calculation is shown but rotated
arbitrarily.

Table 1. Parameters for Dimensional Scaling

Quantity Non-D Value Dimensional Value

h0 1 1023 Pa s
k 1 10�6 m2/s
D 1 2.89 � 106 m
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which each show several oceanic plates, separated by
spreading centers. At high-intermediate lithospheric yield
stresses (�240 MPa) two hemispherical plates form, sepa-
rated by one elongated downwelling and one elongated
upwelling.
[31] A major effect of spherical geometry is that the

toroidal-poloidal ratio of the surface velocity field increases
significantly compared to cartesian geometry. A wide range
of lithospheric yield stresses give Earth like values.
[32] One distinction between the different observed

regimes is the characteristic wavelength of convection. With
increasing yield stress the convective wavelength changes
from low (regime one) to high (regime two), to the highest
possible (regime three) to very low in a rigid lid.
[33] This has several important implications for the

planet. One is the cooling rate. As Grigné et al. [2005]
showed, the surface heat flux depends on the wavelength of
convection (in the mobile lid regime).
[34] Another implication will be in the efficiency of

mixing. Since both the mixing time and the spatial scale
of heterogeneities depends on the length scale of convection
[Schmalzl and Hansen, 1994], the spatial scale of hetero-
geneities in the mantle is dictated by the present planform,
as well as past planforms.
[35] Clearly, there are differences between real planets

and models like these. Most notable are the absence of
purely toroidal surface motion (strike-slip faults) and the
formation of only double-sided subduction zones. The
absence of purely toroidal surface motion is probably due
to the way in which the yielding is implemented, i.e., via the
(isotropic) second order invariant of the strain rate tensor.
Tagawa et al. [2007] succeeded in producing single-sided
subduction in a dynamical model by using a strongly history
dependent rheology at the lubrication of plate boundaries.
They did however, use a pre-set initial weak zone which
evolved into the plate boundary. Gerya et al. [2008] showed

that dehydration and migration of water in regions of
subduction stabilizes single-sided subduction, mainly
through the formation of weak hydrated interplate shear
zones.
[36] In order to get out of the rigid lid regime, we need

yield stresses lower than �420 MPa. The estimated strength
of oceanic lithosphere on Earth, based on laboratory experi-
ments, is about 700 MPa [Kohlstedt et al., 1995]; for
lithosphere of 25 My old). All numerical studies on self
consistent plate tectonics published to date show a similar
discrepancy with the laboratory experiments. Only when
pre-set weak zones are implemented (as by, for example,
Tagawa et al. [2007]) numerical studies can match the
values found by Kohlstedt et al. [1995]. One explanation
might be found in the weakening effect of thermal cracking
and hydration of oceanic lithosphere, as recently suggested
by Korenaga [2007].
[37] There are several important things that need to be

kept in mind when comparing the model to real planets. We
modelled an incompressible, non-elastic fluid with no
bottom heating and constant internal heat production, using
the Boussinesq approximation and free slip boundary con-
ditions on a fixed surface. Furthermore, the model does not
incorporate continents. The effect of continents on tectonic
planforms in spherical geometry is not known but the work
of Grigné et al. [2007] and Zhong et al. [2007] suggest that
it is significant. The Rayleigh number for the Earth is higher
then the one used in the model. Higher Rayleigh number
will lead to more vigorous convection. Preliminary results
of calculations with Ra = 106 (not shown) suggest that the
basic planforms observed in the present study still form.
Phase changes have an important effect on the convective
patterns [e.g., Tackley et al., 1993] but are not incorporated
here. Their effect on tectonic planforms is unknown.
[38] In the present study we presented the different plan-

forms possible on terrestrial planets. Future work will
address questions such as the effect of different Ra, internal
and bottom heating rate, surface heat flux scaling and
coupled thermal and tectonic evolution of terrestrial planets.
Grigné et al. [2005] showed the effect of convective
wavelength on Nu � Ra scalings. As can be seen in Figure 1,
the convective wavelength changes quite drastically
between different planforms. This suggests that also the
Nu � Ra scalings, and thus the cooling rate of the terrestrial
planets, depend on the tectonic planform. A description of
the tectonic planforms in 3D spherical geometry is a
necessity to explain thermal evolution of terrestrial planets
as well as to find criteria for (extrasolar) planets to have
active plate tectonics.
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