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Abstract

In this work, we present an algorithm that enables computation of inertial modes and their

corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the

inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that

this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form.

Furthermore, these results shed new light onto the question whether the eigenmodes form a com-

plete basis, i.e. whether any arbitrary velocity field can be expanded in a sum of inertial modes.

Finally, we prove that two intriguing integral properties of inertial modes in rotating spheres and

spheroids also extend to triaxial ellipsoids.
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I. INTRODUCTION

One of the most striking features of incompressible, rotating flows is their ability to

sustain wave motion. The restoring force giving birth to these waves is the Coriolis force.

Because this phenomenon only relies on inertia, eigenmodes of wave propagation in bounded

geometries bear the name inertial modes. Numerous studies, both computational and exper-

imental, have shown that these waves can be excited and maintained in different ways, e.g.

by thermal and shear instabilities [1, 2], libration [3], precession [4–6], tides [7] or differential

rotation [8, 9].

The Coriolis force being dominant in the force balance that governs the dynamics of

numerous geo- and astrophysical bodies, it is widely believed that inertial modes are fun-

damental concepts for our understanding of many of these bodies’ properties. For instance,

inertial modes emanate at the onset of small Prandtl number convection in a rapidly rotating

sphere subject to volumetric heating [1], as is the case in astrophysics. Furthermore, several

authors have argued that the ancient lunar dynamo[10] and Io’s magnetic signature [11] are

generated by complex fluid motions that arise as a result of a so-called elliptic instability.

This phenomenon can be understood as the resonant coupling between two inertial modes

and a strain field due to the tidal deformation of the celestial body under consideration [12].

To verify and clarify these mechanisms, a number of studies have been devoted to the

dynamic response of fluid-filled rotating triaxial ellipsoids to harmonic forcings, such as

libration [13–15], precession [16] and tides [17]. However, neither laboratory experiments

nor numerical simulations can reach the extremely low values of viscosity that characterizes

the dynamics of planetary cores. The strength of viscous effects is usually quantified by

means of the Ekman number, a non-dimensional estimate of the ratio between the viscous

force and the Coriolis force. In planetary settings, the value of the Ekman number typically

takes values in the range 10−15 − 10−10. For the laboratory experiments cited, this quantity

has order-of-magnitude 10−6− 10−4. Numerical studies even have to compromise further on

the value of the Ekman number. To compensate for this discrepancy, the aforementioned

studies have been carried out in enclosures whose ellipticity is much larger than that is

encountered on a geo- and astrophysical scale. However, existing theories are built upon the

assumption that the equatorial deformation is small such that the mathematical analysis can

be pursued in terms of spheroidal inertial modes[17, 18]. To bridge the gap between theory
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on the one hand, and simulations and experiments on the other hand, it would be convenient

to deduce an analytical expression for inertial modes in triaxial ellipsoidal geometry. This

is the context in which this work was conceived. Apart from this, the problem of inertial

modes in a rotating triaxial ellipsoid is also an interesting mathematical question in its own

right.

Pioneering work regarding the theory of inertial modes was established by Lord Kelvin

[19], who derived an expression for inertial oscillations in a cylindrical geometry. Shortly

afterwards, Poincaré [20] formulated the generic mathematical theory describing such oscil-

lations. Bryan[21] on the other hand provided a general implicit expression for the inertial

modes in a spheroidal geometry. Note that we use the terminology ‘spheroid’ to signify an

ellipsoid whose two axis perpendicular to the rotation axis are equal. These theories were

rediscovered independently by Bjerknes and co-workers [22], who termed them ‘elastoid-

inertia’ oscillations. Later contributions have focused on the effect of the presence of a finite

but small amount of viscosity. A major tour de force in this context is the expression for

the corrective boundary layer in a spherical and a spheroidal geometry [23–25]. In the same

era, Kudlick also proposed a procedure to calculate explicitly spheroidal inertial modes; this

however involves finding the roots of a polynomial of high-degree, and thus requires nu-

merical work. More recently, Kerswell [16] showed that spheroidal inertial modes could be

constructed from finite-dimensional bases of polynomial vector fields. Zhang and co-workers

on the other hand, were the first ones to obtain explicit expressions for all possible inertial

modes that can exist in a spherical and spheroidal geometry [26, 27]. Furthermore, much

attention has been devoted to non-smooth inertial wave solutions that can be excited in a

spherical shell[28–30] or parallelepiped[31]; in the low-viscosity limit, these take the form of

wave attractors.

This work builds upon and extends the existing theories of inertial modes in the fol-

lowing sense: (i) We outline a procedure to compute inviscid inertial modes in a triaxial

ellipsoid. We apply this technique to compute, for the first time, a handful of eigenvalues

and eigenmodes in triaxial geometry. In this sense, our contribution is somewhat similar to

the results obtained by Kudlick[25] for inertial modes in a spheroid. It is also an extension of

the approach of Kerswell[16] to triaxial ellipsoids. Furthermore, following Greenspan[32], an

expression for the viscous corrections to the eigenvalue is at hand, once the inviscid problem

has been solved. In this work, we will compute these corrections for one particular class of
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modes. (ii) We shed new light on the still open question whether the inertial modes form a

complete set, i.e. whether it is possible to expand an arbitrary, sufficiently smooth solenoidal

vector field in a series of inertial modes. (iii) We prove that two integral properties of inertial

modes, originally discovered by Zhang, Liao et al. [27, 33] for rotating spheres, extend to

triaxial ellipsoids.

II. MATHEMATICAL FORMULATION

We consider an inviscid and incompressible fluid contained within a triaxial ellipsoid of

semi-major axes a, b and c. In mathematical terms, it is described by:

x2

a2
+
y2

b2
+
z2

c2
= 1. (1)

The notations x, y, z refer to the cartesian coordinates. In the following, we will denote the

position vector as r, i.e. r = (x, y, z). The ellipsoid is rotating at angular speed Ω0 around

the z-axis. We now consider the equations of mass and momentum conservation for small

amplitude motion of an inviscid compressible fluid, expressed within a frame of reference

rotating with the ellipsoid:

∇ ·U = 0, (2)

∂U

∂τ
+ 2ẑ ×U +∇P = 0. (3)

Here, τ denotes time with respect to the time scale Ω−1
0 , ẑ is the unit vector along the rotation

axis, and U and P are the velocity and pressure field. We have dropped the non-linear term

in the momentum equation (3), as we assume small amplitude motion. Inviscid inertial

modes are then solutions of (2)-(3) of the form U = u(r) exp (iλτ), P = p(r) exp (iλτ). The

scalar λ is termed the eigenvalue or eigenfrequency, and the fields {u, p} eigenmodes. As

such, the above equations can be reformulated as follows:

∇ · u = 0, (4)

2ẑ × u+∇p = −iλu. (5)

Finally, the system of equations (2)-(3) or (4)-(5) should be supplemented with the non-

penetration condition at the boundary of the ellipsoidal volume:

U · n̂ = u · n̂ = 0, (6)
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where the vector n̂ denotes the unit outward normal to the triaxial ellipsoid:

Equation (5) can be recast in terms of the vorticity ω ≡ ∇×u.

∇× (2ẑ × u) = −iλω. (7)

We note that the non-penetration condition (6) does not impose any constraint on the

vorticity field.

It can be shown that the eigenvalues λ are real and −2 ≤ λ ≤ 2[32]. Furthermore,

eigenmodes u satisfy the following orthogonality relationship:

y
u

†
i · uj dV = δij , (8)

provided that λi 6= λj . The notations † and δij respectively refer to the complex conjugate

and the Kronecker delta. In this expression, and in the remainder of this article, the inte-

gration domain for three-dimensional integrals is always the ellipsoidal volume bounded by

(1).

III. AN ALGORITHM TO FIND INERTIAL MODES

In this section, we will develop a method to compute inviscid inertial modes in a triaxial

ellipsoid. Most authors that have addressed this problem in other geometries, did so by

recasting the eigenvalue problem (4)-(6) in terms of the pressure alone. This yields the

famous Poincaré equation[20]:

∇2p−
(
λ

2

)2

(ẑ · ∇)2 p = 0, (9)

supplied with the boundary condition:

(ẑ · ∇p) (ẑ · n̂)−
(
λ

2

)2

n̂ · ∇p− i
λ

2
(n̂× ẑ) · ∇p = 0. (10)

For−2 ≤ λ ≤ 2, this equation is hyperbolic and is in general ill-posed; this implies that it has

singular solutions that are not square-integrable [28, 34]. However, for specific geometries,

such as cylinders, spheres and spheroids[21, 25], and annular ducts [35], the problem is well-

posed and regular solutions for the pressure eigenmodes can be constructed. Once these are

found, an expression for the velocity eigenmodes is at hand.
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Although it is possible to separate the Poincaré equation for rotating triaxial ellipsoids

in terms of ellipsoidal coordinates[36], we will adopt a different approach here. We will start

from the hypothesis that the inertial modes {u, p,ω} can be written as polynomials in terms

of cartesian coordinates x, y and z. There are multiple motivations for this ansatz. First,

it is well-known that inertial modes in spheres and spheroids[21, 23, 25] are of this form.

Furthermore, polynomial solutions of the Poincaré equation in triaxial ellipsoids have been

studied previously, amongst others by Cartan[37] and Lyttleton[36]. Finally, investigations

of the linear stability of flows within rotating triaxial ellipsoids [38–41] suggest that the

Coriolis operator is closed within certain subspaces of polynomial velocity fields.

This section is now organized as follows. In subsection IIIA, we present the concept

of vector spaces of solenoidal polynomial vector fields. This will allow us, in subsection

IIIB, to reformulate the problem (4)-(6) as a finite-dimensional eigenvalue problem for

which a full spectral decomposition is granted. In subsection IIIC, we will then apply this

approach by computing eigenvalues and eigenmodes for subspaces of low polynomial degree.

In subsection IIID, we will address the first-order viscous corrections of the eigenfrequencies.

Finally, subsection III E is devoted to a comparison between theoretical results and numerical

simulations.

A. Preliminary concepts

In the following, we present concepts regarding vector spaces of polynomial vector fields

in ellipsoidal domains. This theory was originally devised by Gledzer and Ponomarev[38]

and Lebovitz [42], and was also thoroughly covered in a recent work by Wu and Roberts [40]

(see their Appendix A). It can be described in terms of two vector spaces that we will denote

Wn and Vn. These are defined as follows: Wn is the vector space of solenoidal vector fields

w whose cartesian components are homogeneous polynomials of degree n in the cartesian

coordinates. Vn is the vector space of solenoidal vector fields v that satisfy (6), and are such

that ∇× v ∈ Wn. These vector spaces have the following properties:

1. If we consider a toroidal-poloidal decomposition of an element w of Wn:

w = ∇× t(r)r +∇×∇× s(r)r, (11)

then it is always possible to write t as a homogeneous polynomial of degree n and s as a
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homogeneous polynomial of degree n+1. Furthermore, adopting spherical coordinates

(r, θ, φ), we can use the fact that the spherical harmonics Y m
l (θ, φ) of degree l and order

m have a polynomial representation[43]. This allows to find an expansion for t and s

of the following form:

t = rn
n∑

l=1
mod(l,n)=0

tlmY
m
l (θ, φ), (12)

s = rn+1

n+1∑

l=1
mod(l,n)=1

slmY
m
l (θ, φ). (13)

To generate a basis for Wn, one can simply take the vector fields that are associated

with each individual spherical harmonic Y m
l in (12) and in (13).

2. The vector spaces Wn and Vn are isomorf, i.e. for any given element w of Wn, one

can find exactly one solenoidal vector field v such that w = ∇× v and v satisfies the

no-penetration condition (6). As such, we can introduce the ’inverse curl operator’

∇−1× that acts on elements of Wn and generates elements of Vn. We will write this

as:

v = ∇−1 ×w. (14)

3. The elements of Vn are polynomials of degree n+ 1 in the cartesian coordinates.

4. The dimension of Wn and Vn is (n+ 1)(n+ 3).[42]

For further corroborations, including a more rigorous mathematical underpinning of some

of these properties, we refer to Appendix A.

We also introduce the vector spaces W̃n and Ṽn . Here, W̃n is the vector space of

all solenoidal vector fields w whose cartesian components are polynomials (not necessarily

homogeneous) of maximum degree n, i.e.:

W̃n ≡ Wn ⊕Wn−1 ⊕Wn−2 ⊕ ... (15)

The vector space Ṽn is defined likewise, i.e.:

Ṽn ≡ Vn ⊕ Vn−1 ⊕ Vn−2 ⊕ ... (16)

In the following, we will denote the dimension of Ṽn and W̃n as N .
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B. The inertial mode equation projected onto Ṽn and W̃n

We now return to the inertial mode problem, and look for velocity eigenmodes u that

are to Ṽn; its corresponding vorticity eigenmode ω belongs to W̃n. We use (14) to ’uncurl’

expression (7) as follows:

∇−1 ×∇× (2ẑ × u) = −iλ∇−1 × ω, (17)

= −iλu. (18)

Now, we note that the operation:

∇× (2ẑ × u) = −2
∂

∂z
u (19)

transforms u ∈ Ṽn into elements of W̃n. Indeed, the polynomial degree of u being part

of Ṽn is not higher than n + 1; thus, ∂
∂z
u is of maximum polynomial degree n. Moreover,

∂
∂z
u is solenoidal given that u also satisfies this property. From these two arguments, it

follows that ∇× (2ẑ × u) ∈ W̃n. This implies that the left-hand side of (18) defines a linear

operator L on Ṽn. We can recast (18) as follows:

Lu = −iλu, (20)

Furthermore, we endow the vector space Ṽn with an inner product that we denote as

〈vj, vk〉, and is defined as follows:

〈vj , vk〉 =
y

v
†
j · vk dV. (21)

Once this is established, it is possible to generate an orthonormal basis {e1, e2, ..., eN} for

Ṽn. As such, any element u of Vn can uniquely be decomposed as:

u =
N∑

k=1

γkek, (22)

with γk = 〈u, ek〉.
Of utmost importance now is that the operator L is skew-Hermitian, i.e.:

〈vj ,Lvk〉 = −〈Lvj , vk〉. (23)

The proof of this is straightforward. Indeed, one has:

∇×Lvk = ∇× (2ẑ × vk) , (24)
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and thus:

Lvk = 2ẑ × vk −∇ψ. (25)

Given the solenoidal character of vj and the non-penetration condition (6), it follows that:

〈vj ,Lvk〉 =
y

v
†
j · (2ẑ × vk −∇ψ) dV =

y
v
†
j · (2ẑ × vk) dV. (26)

In a similar way, one obtains:

〈Lvj , vk〉 =
y

vk · (2ẑ × vj)
† dV = −

y
v
†
j · (2ẑ × vk) dV. (27)

Comparing (26) and (27), one finds indeed that (23) holds.

Using the expansion (65), the eigenvalue problem (20) can be recast as:

−iλγk =

N∑

l=1

〈ek,Lel〉γl. (28)

The coefficients 〈ek,Lel〉 define the matrix elements Mkl of a square matrix M of finite size

that is skew-Hermitian. Although the technique of polynomial vector spaces has been used

before to find inertial modes in spheroidal geometry[16], we are the first to substantiate that

the ‘inertial mode operator’ can be brought in skew-Hermitian form when projected onto

these vector spaces. This is important because, by virtue of the spectral theorem, it ensures

the following: (i) The eigenvalues of L (or M) are purely imaginary (i.e. λ is real) and

whether are zero, or come in pairs ±iλk. (ii) It is possible to find N linearly independent

eigenvectors that are solution of the inertial mode equation. Moreover, they are mutually

orthogonal with respect to the inner product (21). In other words, the eigenvectors form

an orthonormal basis for Ṽn. These properties hold for any n. As such, it is in principle

possible to construct an arbitrarily large set of eigenmodes by using the procedure described

above.

C. Linear and quadratic inertial modes

In this subsection, we use the approach outlined in the previous subsections to solve the

inertial mode problem within the subspaces Ṽ0 and Ṽ1, i.e. for eigenmodes that are linear,

respectively quadratic polynomials in the cartesian coordinates. We will only discuss the

final result here. For more details on the intermediate steps leading to these results, we refer

to Appendix B.
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FIG. 1. Isocontours of |λ1,2|, the eigenfrequency of the spin-over mode given by expression (32),

plotted in the (β, c)-plane.

For the three-dimensional subspace Ṽ0 = V0, we find the following eigenvalues:

λ1,2 = ± 2ab√
a2 + c2

√
b2 + c2

,λ3 = 0. (29)

We can rewrite λ1,2 in function of two independent, dimensionless parameters c and β. To

this end, we first introduce R, the mean equatorial radius:

R =

√
a2 + b2

2
. (30)

This allows to define the dimensionless aspect ratio c and ellipticity β:

c = c
R
, β = a2−b2

a2+b2
. (31)

As such, we can rewrite λ1,2 as follows:

λ1,2 = ±2

√
1− β2

(1 + c2 + β)(1 + c2 − β)
. (32)

In figure 1, we display contours of |λ1,2| in the (β, c)-plane. The velocity eigenmodes corre-

sponding to these eigenvalues are:

u1,2 =
( z
c2
x̂− x

a2
ẑ
)
∓ i

b

a

√
a2 + c2

b2 + c2

( z
c2
ŷ − y

b2
ẑ
)
,u3 = − y

b2
x̂+ x

a2
ŷ. (33)
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All three eigenmodes are of uniform vorticity. For u1,2 the vorticity is purely equatorial;

these eigenmodes are usually referred to as the spin-over mode. If we choose β = 0, we

obtain the classical result[25, 27, 41]:

λ1,2 = ± 2

c2 + 1
,u1,2 =

z
c2
(x̂∓ iŷ)− (x∓ iy) ẑ. (34)

for the spin-over mode and its eigenfrequency in spheroidal geometry.

We now turn our attention to Ṽ1. Since Ṽ0 is a subspace Ṽ1, the solutions (29)-(33)

are also eigensolutions of the inertial mode problem for Ṽ1. The eight other eigenvalues

are associated with eigenmodes that are quadratic polynomials. These eigenvalues are the

roots of the following characteristic polynomial, which is, for brevity, written in function of

A = a2/c2, B = b2/c2:

(AB + A +B)
[
3(A+B) + AB + 8

][
3(A+ 1)B + A+ 8B2

][
3(B + 1)A+B + 8A2

]
λ8

+16AB

[
453A2B2 + 214A2B2(A +B) + 213AB(A2 +B2) + 262AB(A+B) + 52AB(A3 +B3)

+11(A2 +B2) + 26AB + 55A3B3 + 26(A4 +B4) + 62(A3 +B3) + 18A2B2(A2 +B2)

]
λ6

+32A2B2
[
36AB(A2 +B2) + 52(A3 +B3) + 59(A2 +B2)

+12(A+B) + 176AB + 220AB(A+B) + 111A2B2
]
λ4

256A3B3
[
6(A2 +B2) + 19AB + 2(A+B) + 1

]
λ2

+256A4B4.

(35)

The zeroes of this polynomial come in four pairs ±iλj (j = 1, .., 4). In principle, one can

still find an explicit expression for λj . These are lengthy and cumbersome, and therefore,

are not written here. However, for the spheroidal case (i.e. with β = 0), the expression is

more compact. We find:

λ1 = ±10+4
√

9+c2

11+4c2
, λ2 = ±10−4

√
9+c2

11+4c2
, λ3 = ± 2√

1+4c2
, λ4 = ± 2

1+2c2
, (36)

a result that was previously obtained by Kerswell[16], who used the same technique as the

present one for a spheroidal geometry.

In figure 2, we show curves of constant |λj| in the (c, β)-plane. The isocontours are

symmetric with respect to the axis β = 0, which reflects the fact that the problem is

invariant under an exchange of a and b. In figure 3, we illustrate the spatial structures of
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FIG. 2. Isocontours of the absolute value |λj | of the eigenfrequencies of quadratic inertial modes

within the subspace Ṽ1, plotted within the (β, c)-plane. Each subfigure corresponds to one pair

of roots ±iλj of (35). Corresponding circulation patterns of eigenmodes associated with these

eigenvalue pairs can be found in figure 3. We note that λ1 in (36) corresponds to subfigure (a), λ2

to subfigure (b), etc.

these modes. To do so, we provide meridional circulation patters of the eigenmodes in the

planes x = 0 and y = 0 for one specific geometry, defined by β = 0.867, c = 0.911. The four

values of |λ| corresponding to subfigures (a)-(d) are respectively 1.078, 0.09572, 0.5796 and

0.3781. One of the more striking features is that the circulation pattern shown in subfigure

(b) is virtually independent from z. Such an almost geostrophic profile is indeed consistent

with a low value of λ = 0.09572. As a further illustration, we also show these patterns for

two selected eigenmodes of the vector space Ṽ2, i.e. of polynomials of degree 3, in figure 4.
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(a) (b)

(c) (d)

FIG. 3. Meridional circulation patterns of quadratic inertial modes in the planes x = 0 and y = 0

for an ellipsoid defined by β = 0.867 and c = 0.911). Corresponding eigenvalues associated with

these eigenmodes can be found in figure 2.

(a) (b)

FIG. 4. Meridional circulation patterns of selected cubic inertial modes of Ṽ2 in the planes x = 0

and y = 0 for an ellipsoid defined by β = 0.867 and c = 0.911).

D. Viscous corrections of the spin-over mode frequency

In this section, we are concerned with inertial modes in a viscous fluid. Instead of (5),

the governing momentum equation now reads:

2ẑ × u+∇p− E∇2u = −iλu, (37)

and the boundary condition (6) is replaced by:

u = 0. (38)
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The parameter E is termed the Ekman number, and obeys the following definition:

E =
ν

Ω0R2
. (39)

Here ν denotes the kinematic viscosity, which is assumed uniform, and R is defined by (30).

The classical approach to the viscous problem is the one of asymptotic boundary layer

theory[23, 25, 27, 32]. For sufficiently small Ekman number, one assumes that the vis-

cous eigenmode can be expanded as the sum of the inviscid eigenmode, and a number of

corrections that are asymptotically small in their magnitude and/or spatial extent. More

specifically, the velocity field can be decomposed in an interior flow uI and a viscous Ekman

boundary layer uB that allows to accommodate the no-slip condition (38); the wall-normal

thickness of this boundary layer is of order-of-magnitude E1/2. Each of these contributions,

as well as the pressure and eigenfrequency, can then be expanded in in a powers series in

the Ekman number:

uI = uI0 + E1/2uI1 + ... (40)

uB = uB0 + E1/2uB1 + ... (41)

pI = pI0 + E1/2pI1 + ... (42)

λ = λ0 − iE1/2G+ ..., (43)

In these expressions, the leading-order terms uI0, pI0 and λ0 denote the velocity, pressure

field and eigenvalue of the corresponding inviscid mode. In general, G is a complex number,

i.e. G has both a real and imaginary part, that correspond respectively to a viscous decay

rate and frequency shift.

In this work, we are not concerned with solving the structure of the boundary layer flow

uB or secondary interior flow u1. However, following Greenspan[32] (his section 2.9), we

can determine G, merely based on the inviscid frequency and velocity eigenmode profile.

Indeed, G is given by:

G = − ISt
u

†
I0 · uI0 dV

, (44)

with IS the surface integral over the surface of the ellipsoid:

IS =
1

23/2

{ 1

1− (ẑ · n̂)2
{
|n̂ · ẑ × uI0 − iẑ · uI0|2 |b+|1/2

(
1 +

ib+
|b+|

)

+ |n̂ · ẑ × uI0 + iẑ · uI0|2 |b−|1/2
(
1 +

ib−
|b−|

)}
dS,

(45)
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and b± = λ0± ẑ · n̂. Although the integral (45) can in general not be computed analytically,

IS and G are readily evaluated numerically. As an illustration, we compute G for the spin-

over mode. In figure 5, we show isocontours of the real and imaginary part of G in the

(β, c)-plane. We find that the real part of G increases in absolute value with decreasing

c and increasing |β|. The imaginary part on the other hand also reaches its minimum for

β = 0. Furthermore, we can validate our results by comparing against the expressions

for G for oblate spheroidal geometries (i.e. for β = 0) derived by Zhang and co-workers

[27]. Defining the eccentricity E =
√
1− c2, these authors provide the following asymptotic

formulas for the real and imaginary part of G:

R(G) = −3(19 + 9
√
3)

28
√
2

+
−1039 + 171

√
3

1232
√
2

E2 +O(E4) (46)

= −2.620− 0.4263E2 +O(E4)

I(G) = −3(−19 + 9
√
3)

28
√
2

+
1039 + 171

√
3

1232
√
2

E2 +O(E4) (47)

= 0.2585 + 0.7663E2 +O(E4)

In Table I, we compare values of G obtained by numerical evaluation of the expressions (44-

45) against their asymptotic counterparts (46-47). We find that the agreement between both

values is within one percent for all values of E considered. However, we observe noticeable

discrepancies for the imaginary part for E & 0.3. A MATLAB script that allows to compute

G for a given β and c is provided as online supplementary material.

TABLE I. Comparison between numerically obtained and asymptotic values for G for oblate

spheroidal geometries.

c E G (from (44 − 45)) G (from (46 − 47))[27]

1 0 −2.620 + 0.2585i −2.620 + 0.2585i

0.99 0.14107 −2.629 + 0.2739i −2.629 + 0.2737i

0.96 0.28000 −2.655 + 0.3223i −2.654 + 0.3185i

0.92 0.39192 −2.689 + 0.3913i −2.686 + 0.3762i

0.87 0.49305 −2.731 + 0.4851i −2.724 + 0.4448i

0.75 0.66143 −2.835 + 0.7457i −2.807 + 0.5937i
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FIG. 5. Isocontours in the (β, c)-plane of the real (subfigure a) and imaginary (subfigure b) part of

the viscous correction G of spin-over mode eigenfrequency (for the positive value of λ1,2 in (29)).

E. Numerical validation

To verify the theoretical results obtained in subsection IIIC, we adopt the following

approach. We will compute numerical solutions of the system:

∇ ·U = 0, (48)

∂U

∂τ
+ 2ẑ ×U +∇P = E∇2U + f (r) cos(ζτ), (49)

i.e the equations of motion for incompressible, rotating, viscous, small-amplitude motion.

Our numerical method is based on a finite-volume algorithm for an unstructured set of

control volumes[44]. We now prescribe the forcing f(r) to be of the following form:

f (r) = C
(
uk(r) + u

†
k(r)

)
, (50)

where uk and u
†
k are a pair of conjugate velocity eigenmodes of Ṽ1, i.e. they are quadratic

polynomials. We denote their corresponding eigenvalues as ±iλk. Furthermore, C is a

constant whose exact value is not of major importance. As has been recently argued in

the case of libration [45], the harmonic forcing f (r) cos(ζτ) can resonantly drive an inertial

mode ul, provided the following two conditions are met:

1. The integral
t

V
u

†
l · f (r) dV does not vanish. From (50) and the orthogonality

property of inertial modes (8), it follows that f (r) can only enter in resonance with

uk and u
†
k.
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2. The eigenfrequency λl and the driving frequency ζ should be (nearly) equal.

The above two conditions imply that resonance can only occur if ζ = ±λk. We now verify

whether this behavior is recovered in the numerical solution for the choice of parameters

c = 1, β = 0.45, E = 5 · 10−4. For this parameter set, we find that one of the eigenmodes

associated with the subspace Ṽ1 is characterized by the eigenfrequency λk = ±0.83236. This

corresponds to subfigure (c) in figure 2, and its meridional circulation pattern is similar to

the one shown in figure 3(c). Furthermore, the forcing f (r) corresponding to this eigenmode

pair is:

f(r) = C (0.82812yzx̂− 0.48581xzŷ + 0.312166xyẑ) . (51)

In figure 6, we show time-series of the kinetic energy Ek = 1
2C2

t
V
|U |2 dV for dif-

ferent forcing frequencies ζ . We indeed find that resonance only takes place for ζ = λk.

Furthermore, in figure 7, we compare between numerically established profiles of Uz and

theoretically obtained solutions for uz,k in the planes x = 0 and y = 0. We observe an

excellent agreement between both profiles, except near the boundaries, where the numerical

solution exhibits viscous Ekman layers. Our numerical findings are thus consistent with our

theoretical arguments, i.e.the prescribed force f (r) can resonantly drive the mode uk, pro-

vided ζ = ±λk. As such, our numerical calculations validate the theoretical results obtained

in subsection IIIC.

IV. COMPLETENESS OF THE INERTIAL MODES

One of the major outstanding questions regarding the theory of inertial modes is whether

they are complete. By the term complete, we mean that any sufficiently smooth solenoidal

velocity field that satisfies the non-penetration condition can be expanded as a sum of

inertial modes. This question was first raised by Greenspan in his now-classical monograph

on rotating flows[32]. It has essentially remained unanswered until date, apart from a recent

work that proved the completeness of inertial modes in a rotating annular duct [46]. The

issue of completeness is not without interest, because such a property could provide a new

paradigm for the solution of many fluid dynamic problems in rapidly rotating systems.

Indeed, since the Coriolis force does not couple different inertial modes, an expansion in

terms of inertial modes of the could provide a more efficient way to solve and understand

the behaviour of rapidly rotating flows.
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FIG. 7. Isocontours of the numerically established flow Uz (top half) at instant τ = 92, and the

theoretically computed z-component uz,k of the inertial mode uk (bottom half) in the planes x = 0

(subfigure a) and y = 0 (subfigure b). Both quantities have been normalized such that their value

at the origin is 1.
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The approach presented in section III and appendix A now allows us to shed some new

light on this outstanding question. As a starting point, we recall that the eigenvalue problem

yields a complete basis of eigenvectors for the subspace Ṽn. Since Ṽn is isomorf with W̃n, it

follows that the vorticity eigenmodes are a basis for W̃n. This means that every solenoidal

vector field w that is polynomial and of maximum degree n, can be expanded as a sum of

inertial modes of W̃n. In terms of the Mie representation, the toroidal and poloidal scalars of

the vorticity eigenmodes of W̃n span all scalar functions that are of the form ft, respectively

fs:

ft(r, θ, φ) =

l+2k≤n∑

k=0

n∑

l=1

l∑

m=−l

tklmr
l+2kY m

l (θ, φ), (52)

fs(r, θ, φ) =

l+2k≤n+1∑

k=0

n+1∑

l=1

l∑

m=−l

sklmr
l+2kY m

l (θ, φ). (53)

Taking the limit of n→ ∞, we obtain the following expressions:

ft(r, θ, φ) =

∞∑

k=0

∞∑

l=1

l∑

m=−l

tklmr
l+2kY m

l (θ, φ), (54)

fs(r, θ, φ) =
∞∑

k=0

∞∑

l=1

l∑

m=−l

sklmr
l+2kY m

l (θ, φ). (55)

On the other hand, every function f that is square-integrable over the ellipsoidal volume

under consideration, can be expanded as follows[43]:

f(r, θ, φ) =

∞∑

k=0

∞∑

l=0

l∑

m=−l

fklmr
l+2kY m

l (θ, φ). (56)

Comparing the above expression to (54) or (55), one finds that they only are different in the

lower bound for the index l. Thus, given a square-integrable function f , one can define f ⋆:

f ⋆(r, θ, φ) = f(r, θ, φ)−
∞∑

k=0

fk00r
2k. (57)

As such, f ⋆ is of the form (54) or (55), and has thus a decomposition in terms of vorticity

eigenmode toroidal or poloidal scalars. Furthermore, we note that:

∇× fr = ∇× f ⋆r. (58)

This suggests that every vorticity field for which both the toroidal and poloidal scalars

are square-integrable functions, can be expanded in terms of vorticity eigenmodes. Given
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that the subspaces Ṽn and W̃n are isomorf, this furthermore suggests that any, sufficiently

smooth solenoidal velocity field that satisfies (6) can be expanded on a basis of inertial

modes. However, a more rigorous proof is required to show exactly how the regularity

and integrability constraints on the Mie scalars carry over to the vorticity field and its

corresponding velocity field. Such a proof however, is outside the scope of this work.

V. INTEGRAL PROPERTIES

For inertial modes in rotating spheres and spheroids, it was shown [26, 27] that the

following identity holds for any inertial mode ul:

〈ul,∇2ul〉 =
y

u
†
l · ∇2ul dV = 0. (59)

We now argue that this integral also vanishes in rotating triaxial ellipsoids. Our line of

thought is as follows. Since Ṽn−2 is a subspace of Ṽn, Ṽn has an orthonormal basis of

inertial modes {u1,u2, ...,uk,uk+1, ...,uN} such that {u1,u2, ...,uk} is a basis for Ṽn−2. We

recall that, by virtue of the skew-Hermitian nature of the eigenvalue problem of which these

modes are the eigenvectors, these (finite-dimensional) bases are complete. We now consider

a certain inertial mode ul within the subspace Ṽn such that ul does not belong Ṽn−2, i.e.

with k < l ≤ N . Thus, ωl belongs to the subspace W̃n, but not to W̃n−2. This is equivalent

to saying that the cartesian components of its associated vorticity field ωl = ∇ × ul are

polynomials of (exactly) degree n or n− 1. Now, ∇2ul does not necessarily belong to Ṽn−2.

Indeed, nothing guarantees that ∇2ul satisfies the non-penetration condition (6). On the

other hand, ∇2ωl = ∇ × ∇2ul belongs to the subspace W̃n−2, as it is solenoidal and its

polymomial degree is not higher than n− 2. Now, we define:

Ql ≡ ∇−1 ×∇2ωl. (60)

By definition, the operator ∇−1× transforms elements of W̃n−2 into elements of Ṽn−2. As

such Ql belongs to Ṽn−2, and thus satisfies the boundary condition (6), in contrast to ∇2ul.

However, Ql and ∇2ul are connected by the following identity:

∇×Ql = ∇×∇2ul = ∇2ωl, (61)

and thus:

∇2ul = Ql −∇ψ. (62)
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As such, one can write:

〈ul,∇2ul〉 = 〈ul,Ql〉 − 〈ul,∇ψ〉 = 〈ul,Ql〉. (63)

Here, we have used the fact that:

〈ul,∇ψ〉 =
y

u
†
l · ∇ψ dV = 0. (64)

This integral vanishes because ul is solenoidal and satisfies the non-penetration condition

(6). Now, since Ql ∈ Ṽn−2, we may write it as a sum of inertial modes ui of Ṽn−2, i.e.:

Ql =

k∑

i=1

αiui. (65)

This expansion finds it justification in the fact that the inertial modes ui of Ṽn−2 are a

complete basis for this vector space, as argued at the beginning of this section. This implies

that (63) may be recast as:

y
u

†
l · ∇2ul dV =

k∑

i=1

αi

y
u

†
l · ui dV. (66)

Hence, since ul is orthogonal to every ui (1 ≤ i ≤ k), every term in sum on the right-hand

side of the above expression vanishes, and we recover (59). We find thus that this remarkable

integral property also holds for rotating triaxial ellipsoids.

Furthermore, we find that the integral (66) also vanishes if we replace u†
l by u†

m, provided

that um is an inertial mode that does not belong to Ṽn−2. we can reformulate this as follows.

The integral property y
u†

m · ∇2ul dV = 0 (67)

is satisfied if the highest polynomial order of the cartesian components of um is higher than

n− 2. This can be identified with another integral property postulated by Liao and Zhang

[33]. In their notation, this is written as:

〈umlM ,∇2umlK〉 = 0, M ≥ K (68)

where the highest polynomial degree of umlK and umlM is 2K +m, respectively 2M +m.

Thus, the above arguments do extend the integral property discovered by Liao and Zhang

[33] to triaxial ellipsoids.

21



VI. CONCLUDING REMARKS

In this work, we have outlined a procedure to compute inviscid inertial modes in a ro-

tating triaxial ellipsoid. Analytic, explicit expressions for the eigenvalues can be obtained

for a limited number of eigenmodes. We have illustrated this for velocity eigenmodes that

are linear and quadratic in the cartesian coordinates. Furthermore, it is straightforward to

extend our work to polynomial bases of higher degree. Indeed, using a clever combination of

state-of-the art numerical and symbolical mathematical software, it is in principle possible to

fully automate the procedure described in section III. Taking into account that the dimen-

sion of the subspaces increases rapidly with polynomial degree, and that the computational

power to solve an eigenvalue problem scales as the third power of its dimension, this may

rapidly become very involved. Nevertheless, computational power is so abundant these days

that solving the eigenvalue problem up to degree 50 or so should not pose a major problem.

Furthermore, we have shown that two integral properties, originally postulated for inertial

modes in spherical and spheroidal domains, also apply to triaxial ellipsoids. These properties

reflect that the inertial modes are of polynomial nature. This, at its turn, is closely related to

the fact that the solution of the Laplace equation for the gauge function (A20) are ellipsoidal

solid harmonics, which have a polynomial representation. In response to the question raised

by Liao and Zhang[33], this is really the distinctive feature which makes that these properties

hold for ellipsoidal domains, and not e.g. for cylindrical ones. Finally, we have also addressed

the question of completeness of inertial modes. Hopefully, our new insight is an impetus for

a mathematically rigorous proof of a completeness theorem.

Possible applications of the present work include the linear stability analysis of rotating

flows in triaxial ellipsoids in terms of inertial modes. As mentioned in the introduction,

previous work have to the limit of small deformation; using the present results, this can be

extended to ellipsoids of arbitrary deformation. This in fact comes down to a reinterpretation

of the works of Gledzer and Ponomarev [38] Wu and Roberts[40] and Roberts and Wu[47].

We are already undertaking such an effort for the case of flows driven by libration. Finally, a

number of issues have remained unaddressed in this work. Although we have computed the

leading order viscous correction to the eigenfrequency, one major task to be achieved is the

calculation of the viscous Ekman boundary layer. In our understanding, this will necessitate

the use of an ellipsoidal coordinate system, and appears a challenging problem.
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Appendix A: Vector spaces of polynomial solenoidal vector fields

In this section, we discuss the properties of the vector spacesWn and Vn that are presented

in subsection IIIIIIA in more detail:

1. We show that the elements w ∈ Wn have a toroidal-poloidal representation (11) in

which t and s are respectively homogeneous polynomials of degree n and n + 1. To

this end, we start from the well-known identities:

∇2
⊥s = r ·w, (A1)

∇2
⊥t = r · ∇ ×w, (A2)

in which ∇2
⊥ denotes the ’angular momentum operator’:

∇2
⊥ = − 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

r2 sin2 θ

∂2

∂φ2
. (A3)

Since w ∈ Wn, the right-hand side of (A1) and (A2) are homogeneous polynomials of

degree n + 1 and n respectively. Using the fact that the spherical harmonics have a

polynomial representation[43], we may recast (A1) and (A2) as follows:

∇2
⊥s = rn+1

n+1∑

l=1
mod(l,n)=1

l∑

m=−l

almY
m
l (θ, φ), (A4)

∇2
⊥t = rn

n∑

l=1
mod(l,n)=0

l∑

m=−l

blmY
m
l (θ, φ). (A5)

The absence of the l = 0 harmonic in these expressions is due to the fact that w and

∇ × w are solenoidal. Given that the spherical harmonics are eigenfunctions of the
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angular momentum operator, we immediately find:

s = rn+1
n+1∑

l=1
mod(l,n)=1

l∑

m=−l

alm
l(l + 1)

Y m
l (θ, φ), (A6)

t = rn
n∑

l=1
mod(l,n)=0

l∑

m=−l

blm
l(l + 1)

Y m
l (θ, φ). (A7)

This is indeed of the form (12) and (13) with coefficients slm = alm/(l
2 + l) and

tlm = blm/(l
2 + l).

2. The vector spaces Vn and Wn are isomorf. To prove this, we start from a toroidal-

poloidal decomposition of v ∈ Vn:

v = ∇× T (r)r +∇×∇× S(r)r. (A8)

Substituting this into w = ∇× v, with w of the form (11), leads to:

T = s, (A9)

∇2S = t. (A10)

The Poisson equation (A10) should be supplemented with a boundary condition such

that v satisfies the boundary equation (6). Its general solution is of the form S =

SP + SH , where SP is a particular solution of (A10) and SH a harmonic function that

allows to satisfy the boundary condition. With t of the form (12), a solution for SP is

readily found:

SP = rn+2

n∑

l=1
mod(l,n)=0

tlm
(n+ 3)(n+ 2)− l(l + 1)

Y m
l (θ, φ). (A11)

We now consider the following solenoidal vector field:

v0 = ∇× T (r)r +∇×∇× SP (r)r. (A12)

It follows that w = ∇× v0. By virtue of the Helmholtz theorem, we know that any

other vector field v that obeys w = ∇× v is of the form:

v = v0 −∇ξ. (A13)
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To fix the gauge function ξ, we require that v is solenoidal and satisfies (6). This leads

to a Laplace equation for ξ:

∇2ξ = 0, (A14)

with boundary condition:

n̂ · ∇ξ = n̂ · v0. (A15)

Since the right-hand side of (A15) satisfies:

{
n̂ · v0 dS =

y
∇ · v0 dV = 0, (A16)

the problem (A14)-(A15) has a solution that is unique, up to an irrelevant additive

constant. Thus for any element w of Wn, the corresponding element of Vn is uniquely

determined, and this shows that both vector spaces are indeed connected by an iso-

morphism.

3. We now also argue that the elements v of Vn are polynomials of degree n + 1. Using

(13), (A9) and (A11), we find that the components of vector field v0 defined by (A12)

are homogeneous polynomials of degree n + 1. The polynomial character of v now

hinges on the nature of the solution for ξ of the problem (A14)-(A15). To this end,

we introduce ellipsoidal coordinates (µ1, µ2, µ3), that are defined as follows [48]:

x2

a2 + µ1
+

y2

b2 + µ1
+

z2

c2 + µ1
= 1, (A17)

x2

a2 + µ2

+
y2

b2 + µ2

+
z2

c2 + µ2

= 1, (A18)

x2

a2 + µ3

+
y2

b2 + µ3

+
z2

c2 + µ3

= 1. (A19)

We can assume without loss of generality, a > b > c. Then, the following bounds

apply: µ1 > −c2,−c2 > µ2 > −b2,−b2 > µ3 > −a2. The surfaces of constant µ1 are

confocal ellipsoids; in particular, the surface µ1 = 0 is the ellipsoidal surface defined by

(1) The general solution of (A14) within the interior of the ellipsoid is of the form[48]:

ξ(µ1, ν2, µ3) =

∞∑

l=0

2l+1∑

m=1

AlmE
m
l (µ1)E

m
l (µ2)E

m
l (µ3), (A20)

where the functions Em
l denote Lamé functions of the first kind. It is furthermore

well-established that products of the form Em
l (µ1)E

m
l (µ2)E

m
l (µ3) are polynomials of
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degree l in the cartesian coordinates; such products bear the name solid ellipsoidal

harmonics. The boundary condition (A15) now allows to determine the coefficients

Alm. We can recast (A15) as follows:

∂ξ

∂µ1

∣∣∣∣
µ1=0

=
( x
a2

x̂+
y

b2
ŷ +

z

c2
ẑ
)
· v0. (A21)

Using (A20), the left-hand side can be further expanded as:

∞∑

l=0

2l+1∑

m=1

Alm
dEm

l

dµ1

∣∣∣∣
µ1=0

Em
l (µ2)E

m
l (µ3) =

( x
a2

x̂+
y

b2
ŷ +

z

c2
ẑ
)
· v0. (A22)

Now, the right-hand side of this expression is a polynomial of degree n+2. According

to Ferrers[49], this implies that the coefficients Alm are non-zero only if l ≤ n + 2.

Since the corresponding solid harmonic functions in (A20) are polynomials of degree

l, it follows that the solution for ξ is polynomial of (maximum) degree n + 2. Hence,

the components of v are of degree n+ 1.

Appendix B: Solution of the eigenvalue problem in Ṽ0 and Ṽ1

In this appendix, we provide more details about the computation of the eigenvalues and

eigenmodes of the space Ṽ0 and Ṽ1. The first step required to fulfill this task consists of

generating the basis vectors for the respective subspaces. In principle, one could follow the

approach sketched in appendix A. However, a more convenient algorithm was presented by

Wu and Roberts [40]. They first compute the basis vectors V for the unit sphere (with re-

spect to coordinates R = (X, Y, Z)), and then use the so-called Poincaré transformation[50]:

V = (VX , VY , VZ) → v = (vx, vy, vz) = (aVx, bVy, cVz) , (B1)

R = (X, Y, Z) → r = (x, y, z) = (aX, bY, cZ) , (B2)

to transform V (R) into v(r), where the latter vector field is (i) solenoidal and (ii) satisfies

the boundary condition (6) at the surface of the ellipsoid defined by (1) (with respect to the

coordinates (x, y, z)). Furthermore, unlike the approach sketched in subsection IIIIII B, we

will not make use of a set of orthogonal basis vectors. This would present a complication

that is unnecessary, as eigenvalues and eigenmodes are invariant under a change of basis.

For the subspace Ṽ0 = V0, one has the basis vectors:

v1 =
(
0,− z

c2
, y
b2

)
, v2 =

(
z
c2
, 0,− x

a2

)
, v3 =

(
− y

b2
, x
a2
, 0
)
. (B3)
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Any velocity field u in this subspace can thus be written as u =
∑3

j=1 γjvj. Substituting

this form in the ‘vorticity’ form of the inertial mode equation (7), we obtain three scalar

equations (one for each component of the vorticity) for the unknown coefficients γj. This

can be written under the form:

iλγk =
3∑

j=1

Mkjγj, (B4)

with:

M =




0 2b2

b2+c2
0

− 2a2

a2+c2
0 0

0 0 0


 . (B5)

The eigenvalues and eigenvectors of this system are then given by (29) and (33).

The subspace Ṽ1 is the direct sum of V0 and V1, and is eleven-dimensional. A set of basis

vectors for Ṽ1 is found by extending the basis (B3) with the following vectors:

v4 =
(
0, xz

c2
,−xy

b2

)
, v5 =

(
−yz

c2
, 0, xy

a2

)
,

v6 =
(
zx, zy, c2

(
1− 2x2

a2
− 2y2

b2
− z2

c2

))
, v7 =

(
−zx, zy, c2

(
x2

a2
− y2

b2

))
,

v8 =
(
yx, b2

(
z2

c2
− x2

a2

)
,−yz

)
, v9 =

(
yx, b2

(
1− 2x2

a2
− y2

b2
− 2 z2

c2

)
, yz

)
,

v10 =
(
a2

(
1− x2

a2
− 2y2

b2
− 2 z2

c2

)
, xy, xz

)
, v11 =

(
a2

(
y2

b2
− z2

c2

)
,−xy, xz

)
.

(B6)

We substitute again u =
∑11

j=1 γjvj into (7). This gives rise to three scalar equations, one

for each vorticity component ωk:

iλ

11∑

j=1

(Nkxjx+Nkyjy +Nkzjz +Nk0j) γj =

11∑

j=1

(Mkxjx+Mkyiy +Mkzjz +Mk0j) γj, (B7)

This has to hold for any position (x, y, z) in space, and therefore splits into twelve equations

of the form:

iλ

11∑

j=1

Nkljγj =

11∑

j=1

Mkljγj, (B8)

where l can each take the values x, y, z or 0. We recall that the basis vectors v1,2,3 are

purely linear in the coordinates. Therefore the coefficients Nklj and Mklj with j = 1, 2, 3

are non-zero only if l = 0. Conversely, the other basis vectors do not possess a linear term,

and thus Nk0j and Mk0j are zero for j = 4, ..., 11. This means that the linear system defined

by (B7) block-separates into two blocks, one corresponding to j = 1, 2, 3, the other one to
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to j = 4, ..., 11. The first one is identical to (B4)-(B5); the second one consists of the nine

equations:

iλ
11∑

j=4

Nkljγj =
11∑

j=4

Mkljγj, (B9)

where l now only takes the values x, y and z. Among these equations, there is one hidden

linear dependency. Indeed, since both the left-and right-hand side of (7) are solenoidal by

construction, one has the following identities for any j = 1, 2, .., 8:

Mxxj +Myyj +Mzzj = 0, (B10)

Nxxj +Nyyj +Nzzj = 0. (B11)

In other words, the sum of the three equations for which k = l gives rise to the identity

0 = 0. One of these equations is thus a linear combination of the other ones, and should thus

be left out. If one omits the equation for which k = l = z in (B9), The resulting eigenvalue

problem can be written as:

iλ
11∑

j=4

NKjγj =
11∑

j=4

MKjγj, (B12)

with:

N =




1− 1
B

1
A

0 0 0 0 0 0

1
B

−1 − 1
A

0 0 0 0 0 0

0 0 1− 4
B

1− 2
B

0 0 0 0

0 0 1− 4
A

−1− 2
A

0 0 0 0

0 0 0 0 −1 − 2B
A

1 + 4B
A

0 0

0 0 0 0 1− 2B
A

1− 4B
A

0 0

0 0 0 0 0 0 −1− 4A
B

−1− 2A
B

0 0 0 0 0 0 1 + 4A
B

−1− 2A
B




, (B13)
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,

M =




0 0 2 −2 0 0 0 0

0 0 2 2 0 0 0 0

0 −2 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 0 0 0 0 0 −8 −4

0 0 0 0 0 0 2 2

0 0 0 0 4 −8 0 0

0 0 0 0 −2 2 0 0




. (B14)

The characteristic polynomial of the matrix N−1M is given by (35). It is even and of degree

eight. Hence, it is still possible to find explicit solutions for the eigenvalues, i.e. for the roots

of this polynomial.
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