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Abstract We present numerical simulations without modeling of an incom-
pressible, laminar, unidirectional circular pipe flow of an electrically con-
ducting fluid under the influence of a uniform transverse magnetic field. Our
computations are performed using a finite-volume code that uses a charge-
conserving formulation (called current-conservative formulation in references
[12] and [13]). Using high resolution unstructured meshes, we consider Hart-
mann numbers up to 3000 and various values of the wall conductance ratio
c. In the limit c ≪ Ha−1 (insulating wall), our results are in excellent agree-
ment with the so-called asymptotic solution [1]. For higher values of the wall
conductance ratio, a discrepancy with the asymptotic solution is observed
and we exhibit regions of velocity overspeeds in the Roberts layers. We char-
acterize these overspeed regions as a function of the wall conductance ratio
and the Hartmann number; a set of scaling laws is derived that is coherent
with existing asymptotic analysis.

Keywords MHD, Numerics, Circular pipe, Wall-conductivity

1 Introduction

Magnetic fields can influence the flow of electrically conducting fluids, and
are therefore of important theoretical and practical interest. Applications
that concern liquid metals or electrolytes are, among others, the damping
of turbulence in casting processes, the flow of lithium in the breeder blan-
kets of future fusion devices, or electromagnetic flow meters that allow to
measure flow rates in a non-intrusive way. One of the most basic problems
that can be considered, is the determination of the laminar flow profile in a
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circular pipe under a uniform magnetic field, i.e. the magnetohydrodynamic
variant of Poiseuille pipe flow. Pioneering theoretical and experimental works
for this geometry were done by Hartmann and Lazarus [2], [3]. In the 60’s,
analytical solutions were obtained for pipes with insulating [4] as well as con-
ducting walls [5]. A later analytical work by Samad [6] considered the case of
a pipe with finite wall thickness and observed overspeed regions in the veloc-
ity profile of the MHD pipe flow. However, all these solutions are under the
form of infinite series expansions involving modified Bessel functions, which
make them difficult to evaluate, certainly when the intensity of the Lorentz
forces compared to viscous forces, as expressed by Hartmann number (Ha),
is high. This era saw also the birth of various approximative solutions, based
on asymptotic methods [1], [7], [8]. The results obtained through the asymp-
totic methods, tend to become better as the Hartmann number increases,
but it was also pointed out that the approximate solutions provided, break
down near to where the wall is parallel to the magnetic field. At that point in
history, the problem of the laminar pipe flow under a uniform magnetic field,
was considered to be more or less solved and attention was directed to more
challenging flows in complex geometries, magnetic field configurations or in
turbulent regimes, also favoured by the exponential increase in computing
power and the development of CFD tools, although the simulation of high
Hartmann number flows in finite-difference or finite-volume codes remained
to suffer from large numerical errors [9].

In this work, we revisit the basic problem of circular pipe flow under the
influence of a uniform magnetic field by means of high resolution numerical
simulations based on the finite-volume method. Given recent progress in the
numerical algorithms available to compute MHD flows, one can now reach
much higher Hartmann numbers without the need of specific modeling. This
allows us to compute accurately the laminar velocity profile of the flow and
confirm the presence of “jets” in the Roberts layers, as first reported in [6].
However, by considering high values of the Hartmann number, we show that
the intensity of these “jets” is O(Ha0) (and not O(Ha1/2) like the velocity
profiles in rectangular ducts with walls of finite conductivity or O(Ha) in
Hunt’s flow) so we refer to them as overspeed regions. We also provide a set
of scaling laws that is coherent with existing asymptotic analyses.

2 Mathematical formulation

We consider the incompressible, unidirectional flow u = u(x, y)1z of an elec-
trically conducting fluid through a circular pipe of radius L and of infinite
extent in the axial direction (see figure 1). The fluid can be characterized by
its density ρ, kinematic viscosity ν and conductivity σ. An external magnetic
field B = B01y is imposed. The flow is driven by a uniform pressure gradient
in the axial direction, −∇p = f1z. We assume that the magnetic Reynolds
number Rm = µσUL (with U a typical velocity scale and µ the magnetic
permeability) is much smaller than one, so that the induced magnetic field
is negligible compared to the applied one, and that we can invoke the quasi-
static approximation [10]. To obtain non-dimensional equations, we rescale
the variables as follows: u → U u, B → B0 1y, ∇ → L−1 ∇, t → ρ/(σB2

0)t,
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j → σU B0 j, φ → U B0 Lφ and p → σULB2
0p, with U = f/(σB2

0). The
steady, uni-directional, flow profile can then be found from the following two
conservation laws:

∂tu = Ha−2∇2u + j× 1y + 1z = 0 (1)

∇ · j = ∇ · (−∇φ + u × 1y) = 0 (2)

The first equation is a simplified version of the incompressible Navier-Stokes
equations for steady flows, where the nonlinear term does not appear because
of the unidimensional character of the flow, and where the Lorentz force term
is added. The only free parameter is the aforementioned Hartmann number
Ha; it is a measure of the square root of the ratio between electromagnetic
and viscous forces:

Ha = B0L

√

σ

ρν
(3)

The second equation expresses the conservation of charge, where Ohm’s law
for a moving fluid has been inserted. It is a Poisson type equation for the
electrical potential:

∇2φ = ∇ · (u × 1y) (4)

Suitable boundary conditions still need to be imposed in order to close the
problem. For the velocity field, we use the no-slip condition u|wall = 0. The
boundary condition for the potential is more intricate. In fact, we could solve
the Poisson equation (4) in a combined fluid-wall domain, with insulating
conditions at the outer wall boundary and impose continuity at the wall-
fluid interface. However, when the thickness of the wall is small compared to
the pipe radius, we can us the so-called thin wall approximation [11], which
assumes that currents discharge tangentially in the wall. This condition reads:

∂nφ = ∇τ · (c∇τφ) (5)

where ∇τ stands for the component of the ∇-operator tangential to the wall
and ∂n = n · ∇ with n the outward pointing normal vector on the wall (see
figure 1). At last, c is the so called wall-conductance ratio defined as:

c =
σwdw

σL
(6)

with σw and dw the wall conductivity and thickness. It is easily seen that in
the limit of perfectly conducting (insulating) walls, we recover the familiar
Dirichlet (Neumann) condition.

3 Phenomenology

In figure 1, the basic features of the MHD pipe flow are represented. In the
limit of high Hartmann numbers, three distinct regions can be considered:
the core of the flow, the Hartmann layers and the Roberts layers [1,7].

In the core region, the velocity profile is approximately flat in the direction
of the magnetic field and the current density generated is uniform j ∼ u×1y;
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Fig. 1 Electrical current paths in the MHD pipe flow for: (Left) perfectly insulating
pipe; (Right) perfectly conducting pipe

the momentum balance is governed by the imposed pressure gradient and the
Lorentz force since viscous effects are negligible. Since the current lines must
form closed paths in the combined pipe-wall domain, a potential is induced
that changes the direction of the currents in viscous boundary layers and
drives them along the wall and/or makes them enter into the wall, depending
on the wall conductance ratio.

The Hartmann layers are located in the vicinity of the pipe’s wall, where
its normal vector is not perpendicular the magnetic field. In the Hartmann
layers, the momentum balance is largely dominated by the Lorentz force and
viscous effects. This gives rise to an exponential drop-off in the velocity profile
as one approaches the wall.

Finally, the Roberts layers are defined as the regions in the pipe’s cross
section that are adjacent to its wall, and where the normal vector to the wall
is perpendicular the magnetic field. In the Roberts layers, the velocity profile
is determined by the combined balance between the pressure gradient, the
Lorentz force and the viscous effects. As the Hartmann number increases,
the extent of the Roberts layers decreases as well as their contribution to the
total mass flow in the pipe. An a priori prediction of the velocity profile in
the Roberts layers is very difficult since it depends in a subtle way on the
exact direction of the electric currents in these viscous boundary layers.

In the traditional asymptotic approximation of the MHD pipe flow [8], the
Roberts layers are not taken into account: the velocity profiles in the core
and Hartmann layers are matched and the core velocity is determined by
taking into account the pipe’s electrical boundary condition. The resulting
expressions for the velocity along the x- and y-axis, normalised with the

velocity at the center of the pipe uc = u(x = 0, y = 0) = − (1+c)L2∂zp
ρν(1+c Ha)Ha
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(with uc in terms of non-rescaled variables), read [8]:

u(x, y = 0)

uc
=

(1 + cHa)
√

1 − x2

1 + cHa
√

1 − x2
(7)

u(x = 0, y)

uc
= 1 − exp (Ha(|y| − 1)) (8)

We recall the important difference between the insulating pipe and the con-
ducting pipe, that is, uc scales as Ha−1 for c = 0 and as Ha−2 for c = ∞.

4 Numerical method

We use a node-based, unstructured finite-volume method to solve the set of
equations (1),(4) and (5). On regular grids, the spatial discretization is second
order accurate. On unstructured grids, like ours, it is first order accurate in
regions of space where the grid is skewed or stretched. One key feature of our
code, is the use of a charge-conserving algorithm, which has been shown to
be crucial at high Hartmann numbers [12], [13]. This means that the currents
at the grid nodes are interpolated from the current fluxes at the faces using
the following identity: j = ∇ · (jr), with r the position vector (see 10 for the
discrete form of this expression). This is very desirable, since it implies that
the numerical computation mimics the physical property that the integration
of the Lorentz force (or current) over the computation domain reduces to a
boundary term. As such, no spurious net Lorentz force is introduced by
discretisation errors.

To obtain the steady profile, we start from the arbitrary initial fields
u ≡ 0, φ ≡ 0, and advance them in time according to equations (1),(4)
and (5) until convergence is reached. For the Lorentz force term, we prefer
an explicit Euler scheme because it decouples the Poisson equation for the
potential from the velocity advancement. The viscous term is discretized
with an implicit Euler scheme for stability reasons. We can summarize the
procedure to advance the fields one step in time with the following four-step
algorithm:

1. Compute the velocity at time n+1 from that at time n using the simplified
Navier-Stokes equations:

un+1 − un

∆t
=

1

Ha2
∇2un+1 − ∂zp + (jn × 1y)z (9)

2. Find the potential at time n + 1 from the Poisson equation (4)

∇2φn+1 = ∇ ·
(

un+1 × 1y

)

(10)

3. Calculate current fluxes Jn+1
f through the nodal volume faces such that

the discrete divergence of the current is of the order of machine accuracy:
∑

faces Jn+1
f Af ≈ 0, where the summation is taken over all the faces of

one nodal volume and where Af represents the area of face f .
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4. Obtain the nodal current jn+1 from the aforementioned current-conser-
vative algorithm:

jn+1
node = V −1

node

∑

faces

Jn+1
f Afrf (11)

with Vnode the volume of the control volume associated with the node.
This nodal current can then be injected in expression (9) to calculate the
velocity un+2 from the fields at instant n + 1.

We solve the discrete equations on two-dimensional meshes which consist
of quadrilateral elements. Close to the wall, we use a stretching function
in order to properly resolve the Hartmann layers and other wall effects. At
sufficiently high resolution, we have checked that the solutions become mesh-
independent. The results that we show in this work, are the ones obtained on
the most fine meshes, containing 86450 nodes (Ha < 400) or 342000 nodes
(Ha ≥ 400).

5 Results and discussion

Figure 2 shows numerical and asymptotical solutions for a flow at Ha = 2000,
for both a perfectly insulating and perfectly conducting pipe. We consider
cuts of the velocity profile along the two main axes. For the insulating case
(c = 0), we observe a quasi-perfect agreement between our numerical method
and the asymptotic solution. In the conducting case (c = ∞), the agreement
is again excellent along the y-axis (in the direction of the magnetic field),
whereas there is a significant discrepancy in the results along the x-axis: small
zones of overspeed appear in the numerical solution, whereas the asymptotic
approximation predicts a flat profile.

In figure 3, we focus on the region between x = 0.8 and x = 1.0 for a
flow at the same Hartmann number (Ha = 2000), and consider four different
values of the wall conductance. The figure shows that the jets appear grad-
ually near the wall, with at first the emergence of a plateau, followed by the
formation of small side bumps with velocities below the core velocity, which
grow eventually into zones of overspeed.

We choose to define the wall conductance parameter ccrit that marks the
emergence of the overspeed regions as the minimum c for which the velocity
profile has a local maximum at positions different from the pipe axis. This
yields a curve in the (Ha, c)-plane that is displayed in figure 4. The results
can be summarized as follows:

– The lowest Hartmann number for which we observe a velocity overspeed,
is Ha = 12. Overspeed regions were observed earlier in this Hartmann
range (Ha = 18) by Samad [6].

– The curve goes through a local minimum at Ha = 35 and a local maxi-
mum at Ha = 41. For lower values of the Hartmann number, the curve
has a steep descent; at higher Hartmann numbers, ccrit follows a power-
law like behaviour.

– We can fit the results for Ha ≥ 250 with the relationship ccrit ∝ Ha−2/3.
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Fig. 2 Normalised velocity profiles for the laminar flow at Ha = 2000 in a pipe
with perfectly insulating (top) and perfectly conducting (bottom) walls along the
axes perpendicular (left) and parallel (right) to the field. Comparison between the
asymptotic approximations (solid line) and the numerical solution (×).
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Fig. 3 Emergence of the overspeed zones with increasing c, illustrated for a flow at
Ha=2000. Asymptotic approximations (solid line) and numerical simulations (×).
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Fig. 4 Limiting values ccrit (×) for the emergence of overspeed regions as a func-
tion of the Hartmann number and fitted power-law like behaviour (−−).

We define the relative amplitude α of the overspeed region as the ratio
between the local maximum and core velocity. Figure 5 displays the value
of α as function of the Hartmann number for different values of the wall
conductance. For c = ∞ and c = 1.0 and in the limit of Ha → ∞, α
clearly converges to a value slightly above 11 %. For c = 0.1, the values of
the Hartmann number considered are not high enough to observe the same
asymptote. However, it seems reasonable to conjecture that α scales like
O(Ha0), provided that c and Ha are sufficiently high.

To find the proper scaling for the width of the overspeed regions along the
x-axis, we introduce the coordinate ξ = 1−x, and investigate how the position
of the velocity maximum ξmax scales with the Hartmann number. From the
data in the left-hand side of figure 6, we conclude that, for Ha between 250

and 3000, ξmax scales as Ha−2/3 (for c = 0.1, this scaling is probably reached
only at the highest values of the Hartmann numbers considered). This scaling

matches the Ha−2/3 scaling of the zone where the asymptotic approximation
breaks down, obtained by Roberts in his analysis for the perfectly insulating
pipe [14].
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Fig. 5 Relative amplitude of the overspeed zones as a function of Ha for different
values of c.

In the same work, Roberts also derived for c = 0 that these regions are
responsible for a contribution of O(Ha−7/3) to the asymptotic expression for
the flow rate.

In the right-hand side of figure 6, we show the relative flow rate deficit
∆Q = (Qnumerical − Qasymptotic)/Qasmptotic as a function of the Hartmann
number. The asymptotic flow rate Qasymptotic does not contain Hartmann or
side layer correction terms, and is given by [8]:

Qasymptotic = 4uc(1 + c Ha)





π

4c Ha
− 1

(c Ha)2
+

π

2(c Ha)3

− 2

(c Ha)3

arctanh
(√

c Ha−1
c Ha+1

)

√

(c Ha)2 − 1



 (12)

Figure 6 (r.h.s) shows us thus that the combined Hartmann and side layer
correction term scales as Ha−1. It is however not straightforward to consider
the contribution of the side jets alone. Nevertheless, figure 7 gives an indi-
cation of how small the side layer correction term might be; the numerical
profile along the x-axis is partially below and partially above the asymptotic
profile. For the values of the Hartmann number and coductance ratio consid-
ered, these positive and negative corrections to the flow rate always cancel
each other nearly perfectly; hence, it is very likely that the overspeed regions
induce a flow rate correction that is much smaller than one would intuitively
expect.
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Fig. 6 Scaling laws in the conducting pipe: Position of the velocity maximum
ξmax(l.h.s.) and flow rate deficit ∆Q (r.h.s.) as function of the Hartmann number
for three different values of the wall conductance.

6 Conclusion

By means of numerical simulations without model, based on a conservative
formulation for the current, we were able to investigate in detail the laminar
magnetohydrodynamic pipe flow in a wide parameter range. We observe over-
speed regions at sufficiently high values of the Hartmann number and the wall
conductance ratio. These overspeed regions do not disappear as Ha → ∞ but
are of order O(Ha0) compared to the core velocity. This behavior is similar
to what was observed in [15] in the case of the perfectly conducting duct flow.
We also characterize the lateral extent of the overspeed zones and show that
they are fine enough to fit in a region that the earlier asymptotic expression
of [8] cannot predict.
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