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Abstract

We present numerical simulation results of the quasi-static magnetohydrody-

namic (MHD) flow in a toroidal duct of square cross-section with insulating

Hartmann walls and conducting side walls. Both laminar and turbulent flows

are considered. In the case of steady flows, we present a comprehensive ana-

lysis of the secondary flow. It consists of two counter-rotating vortex cells,

with additional side wall vortices emerging at sufficiently high Hartmann

number. Our results agree well with existing asymptotic analysis. In the

turbulent regime, we make a comparison between hydrodynamic and MHD

flows. We find that the curvature induces an asymmetry between the inner

and outer side of the duct, with higher turbulence intensities occurring at

the outer side wall. The magnetic field is seen to stabilize the flow so that

only the outer side layer remains unstable. These features are illustrated

both by a study of statistically averaged quantities and by a visualization

of (instantaneous) coherent vortices.
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Statistical and Plasma Physics, Université Libre de Bruxelles, Campus Plaine, CP 231,
B-1050 Brussels, Belgium

1. Introduction

In magnetohydrodynamics (MHD), one studies the coupling between

flows of electrically conducting fluids and electromagnetic fields. This branch

of physics describes a vast range of phenomena, like the origin of the Earth’s

magnetic field or the suppression of turbulence due to a magnetic field in

industrial melt flows. For most industrial applications and laboratory flows,

the coupling is virtually one-way; this means that the flow is significantly

affected by the Lorentz force due to the action of the magnetic field, but

that the induced magnetic field remains negligible compared to the exter-

nally imposed one. Such a behavior is the signature of flows in which the

magnetic Reynolds number Rm = µσUL is small compared to one. Here, µ

and σ are respectively the magnetic permeability and the electrical conduc-

tivity of the fluid, while U and L are typical velocity and length scales of

the flow under consideration.

Under such conditions, called the quasi-static regime, the magnetic field
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mostly tends to suppress variations along its direction. If the magnetic field

intensity is high, this results in a flow consisting of an extended, quasi-

uniform core, surrounded by thin shear layers due to the presence of solid

boundaries or discontinuities. We can distinguish between two different

types of wall shear layers: the Hartmann layer, which occurs at walls with

their normal vector non-perpendicular to the magnetic field and the side

layer (or parallel layer), which emerges at walls parallel to the magnetic

field. Under laminar conditions, their thickness can be expressed in terms

of the Hartmann number M , a dimensionless measure of the ratio between

the Lorentz and viscous force. The Hartmann layer has a typical thickness

of O(M−1), while that of the side layer scales as O(M−1/2). These shear

layers are prone to three-dimensional stabilities, as discussed by Thess and

Zikanov (2007).

In the past years, there has been considerable interest in the role of the

different shear layers in the transition of wall-bounded MHD shear flows.

Krasnov et al. (2004) performed a computational study of the instability

of the Hartmann layer, and found that the parameter which governs the

transition, is the ratio between the Reynolds number Re and the Hartmann

number. In their study, the transition is seen to occur for values of Re/M

between 350 and 400. Moresco and Alboussière (2004) performed friction

factor measurements in a toroidal duct of square cross-section at high Hart-

mann and Reynolds number. Since the major part of the friction occurs in

the Hartmann layer for high Hartmann number flows, they conjectured that

a sudden change in the behavior of the friction factor is related to a transi-

tion in the Hartmann layer. Their measurements showed that this transition

occurs at Re/M ≈ 380, regardless of the exact value of the Hartmann num-

ber. A linear stability analysis of Lingwood and Alboussière (1999) yielded
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a critical value of Re/M ≈ 48250. This large discrepancy indicates that the

transition is triggered by nonlinear effects.

The experimental method adopted in Moresco and Alboussière (2004) did

however not allow to study the behavior of the side layers. A computa-

tional study of Krasnov et al. (2010) on the other hand, showed that the

nuclei of instability in MHD straight duct flow are located in the side lay-

ers. The common feature in all these studies is that the Hartmann walls

are insulating. Other authors have considered the instability in duct flows

with conducting Hartmann walls (Reed and Picologlou, 1989; Kinet et al.,

2009). These flows however are characterized by strong side wall jets, and

undergo a completely different transition; they are not directly relevant to

the present work.

It is clear that the experiment of Moresco and Alboussière (2004) is far from

fully understood. Currently, it is unfortunately not possible to access the

whole parameter range covered in the experiment with numerical simula-

tions. Moreover, even the laminar behavior of MHD toroidal duct flow is

relatively unexplored. To the best of our knowledge, only two studies of the

laminar flow in such a configuration have been undertaken. The first one was

performed by Baylis and Hunt (1971). They used an asymptotic approach,

i.e. they assumed the existence of an inertialess and inviscid core, which is

surrounded by thin shear layers. Their results show that the inertial term is

negligible when the aspect ratio between the length and the average radius

R of the duct is small compared to M/R. One decade later, Tabeling and

Chabrerie (1981) performed a more detailed analysis, in which they consid-

ered the curvature as a small parameter. This allowed them to compute the

secondary flow profile in the shear layers for sufficiently low values of the

curvature and the Reynolds number and high values of the Hartmann num-
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ber. They predicted that streamwise-oriented vortices would occur in the

parallel layers, whose exact shape depends on the electric boundary condi-

tions. Furthermore, they found that the secondary flow has a strong radially

inward component along the Hartmann layers.

Hence, the aim of this work is to compute the full solution the MHD flow

of a liquid metal in a toroidal duct. Our work is organized as follows: first,

we outline the mathematical formulation and the computational details of

our simulations. The two following sections are devoted to a discussion of

the results for respectively steady and non-steady flows. The last section

summarizes the most important conclusions of this work.

2. Mathematical model and computational method

We consider the incompressible flow, characterized by a velocity field

u, of a fluid in a square annular duct with mean radius R and length 2L

(see figure 1). The axis of the torus is along the y-direction. The material

properties of the fluid, like its mass density ρ, kinematic viscosity ν and

electrical conductivity σ are assumed to be constant. The flow is subjected

to a uniform magnetic field B = B01y. Moreover, we assume that the

magnetic Reynolds Rm � 1, so that the magnetic field does not change

with time; this is called the quasi-static approximation. This means that

the induced electric field can be derived from a scalar potential function

φ (Roberts, 1967). The electric current density j obeys Ohm’s law for a

moving conductor:

j = σ (−∇φ+ u×B) (1)
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The constraint of charge conservation under the quasi-neutrality assump-

tion, ∇ · j = 0, leads to a Poisson equation for the potential:

∇2φ = ∇ · (u×B) (2)

The equations of mass and momentum conservation are the standard incom-

pressible Navier-Stokes equations in which a Lorentz force term is added:

ρ (∂tu + u · ∇u) = −∇p+ ρν∇2u + j×B (3)

∇ · u = 0 (4)

The boundary conditions for u and φ are the following. For the velocity, we

apply standard no-slip conditions on all the walls. The electrical boundary

conditions are inspired by the work of Moresco and Alboussière (2004).

This means that we have perfectly insulating Hartmann walls and perfectly

conducting side walls. Mathematically:

u = 0, ∂nφ = 0 at y = ±L (5)

u = 0, φ = ±V/2 at r = R± L (6)

This makes clear why we don’t need an external forcing term in equation

(3). By imposing a voltage difference between the side walls, a radial current

is injected in the fluid. The Lorentz force resulting from the interaction

between this current and the magnetic field, provides the necessary forcing

of the flow. Our formulation is slightly different from the one of Moresco

and Alboussière (2004) in the sense that, in the experiment, the amount of

injected current at the side walls was fixed, rather then the potential. In

other words: The side wall potential in the experiment was thus constant

in space, but still varying in time, while we allow fluctuations in time of the

total amount of injected current. In the laminar regime, both formulations
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Figure 1: Sketch of the annular geometry. The color of the walls indicates their electric

conductivity: perfectly conducting (light grey), and perfectly insulating (dark grey).

are of course strictly equivalent.

We can use the linearity of the Laplacian operator to split equation (2)

with boundary conditions (5-6) in two parts: φ = φ1 + φ2. Here, φ1 is

a solution of the non-homogeneous equation (2) with Neumann conditions

on the Hartmann walls and homogeneous Dirichlet conditions φ1 = 0 on

the side walls. φ2 on the other hand is a solution of the Laplace equation

∇2φ2 = 0, also with Neumann conditions, but now with non-homogeneous

Dirichlet conditions φ2 = ±V/2 at r = R± L. In the present geometry, the

potential φ2 and the corresponding external forcing fext take the following

form:

φ2 =
V

ln
(
R+L
R−L

) ln

(
r√

R2 − L2

)
(7)

fext = −σ∇φ2 ×B = fext1θ =
V B

r ln
(
R+L
R−L

)1θ (8)

We see that ∇φ2, and thus the external forcing, decrease as 1/r in radial

direction and are independent of the velocity field.

The different cases that we will consider can be characterized by three non-
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dimensional numbers: the well-known Reynolds number Re, the Hartmann

number M , and the ratio between the duct length and the mean radius of

the annulus:

Re =
UL

ν
(9)

M = B0L

√
σ

ρν
(10)

ζ =
L

R
(11)

In the definition of Re, the characteristic velocity U is defined as the bulk

streamwise velocity. We use a finite-volume method to discretize the equa-

tions. Our code is called YALES2, and is discussed in Moureau et al. (2011).

All the variables are defined at the centers of the control volumes. It is how-

ever necessary to define velocities at the control volume faces to avoid spu-

rious pressure oscillations. The spatial discretization is based on a central-

difference-like stencil. For the time-stepping algorithm, we apply a canonical

fractional-step method (Kim and Moin, 1985) with a Crank-Nicholson time

discretization for the viscous term, and a semi-implicit treatment for the

non-linear term; this means that we use a Crank-Nicholson discretization

for the convected velocity and an Adams-Bashforth method for the convect-

ing velocity. As such, the system of equations resulting from the implicit

treatment is linear.

The Lorentz force is treated explicitly, to avoid a coupling between the Pois-

son equation for the potential and the advancement of the velocity field. The

computation of the Lorentz force is carried out with a so-called current con-

servative method (Ni et al., 2007a,b), i.e. the current is computed as a

divergence:

j = ∇ · (jr) (12)
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This formulation reduces the total current in the domain to a boundary

term, and thus avoids global spurious contributions to the Lorentz force due

to discretisation errors. The Poisson equations for both the potential and

the pressure are solved with an algebraic multigrid method.

3. Laminar flow

In the present work, we extend the results of Tabeling and Chabrerie

(1981) to more modest values of M and larger values of ζ or Re. We con-

sider the following parameter combinations M = 25, 100 or 400, Re ≈ 0,

100 or 800, and ζ = 1/9. For all these cases, we assume that there exists

a solution which is independent of time and the polar coordinate θ. This

allows us to simulate only a small section of the torus. This assumption

has been verified for the parameter combination M = 25 and Re ≈ 800.

We performed a simulation in a complete torus (512 points in streamwise

direction, and 100 in both y- and r-direction) with a random velocity field as

initial condition. It appears that the final state eventually becomes indepen-

dent of time and of the streamwise coordinate, at least up to the accuracy

threshold of the iterative solvers. For the other parameter combinations, we

did not perform this check, and can not formally exclude that the flow has

a three-dimensional character. Our assumption of two-dimensionality for

these parameter combinations is then based on the following argument. Ac-

cording to Baylis and Hunt (1971), the importance of the non-linear term in

the momentum balance, which triggers three-dimensional effects, becomes

smaller if the value of ξ2 × (Re2/M4) decreases. For all investigated values

of Re and M , the combination M = 25, Re ≈ 800 yields the highest value

of ξ2 × (Re2/M4). For this parameter combination, we have numerical evi-
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dence that the flow is independent of the azimuthal coordinate θ. As such,

we do not expect three-dimensional effects to occur for the other parameter

combinations investigated.

The results that we present here, are thus obtained by simulating a section

of 0.216 radials (12.5 degrees) and 32 grid points in streamwise direction.

As such, we can increase the resolution in both y- and r-direction to 192

points. The grid is stretched in the core regions, according to a tangent

hyperbolic profile, so that we can resolve the Hartmann and side layers with

more details. These layers contain respectively 6 and 10 equidistant points

in wall normal-directions. The parameters of the tanh-stretching are chosen

such that the grid spacing transitions smoothly between the boundary layer

region and core regions. A cross-section of the mesh along two intersection

planes is shown in figure 2. The simulation for which Re = 0 is obtained

by omitting the non-linear term. Figure 3 shows the non-dimensionalized

product of the radial coordinate and streamwise velocity profile along the

centerline of the duct in the radial direction: uθr(U0R)−1. In the previous

expression, the reference centerline velocity U0 is defined as:

U0 =
V

B0R log
(
R+L
R−L

) (13)

As expected, we see that the velocity in the core becomes more and more

uniform as M increases. The results also illustrate that the velocity scales,

up to the leading order in M , as fextM
−2 ∝ V/B. This is in agreement with

the asymptotic analysis of Hunt and Stewartson (1965).

When the Hartmann number is high, the only relevant force in the core is

the Lorentz force jrB0, and the effect of the curvature is a simple decrease

of the streamwise velocity in the radial direction, a reflection of the 1/r

behavior of the ‘external forcing’ as discussed in the previous section. This
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Figure 2: Grid lines of the mesh used to simulate the laminar flow at M = 400 in a

cross-section along the plane y = 0 (a) and a quarter cross-section along the plane x = 0

(z = r < R and y > 0) (b). Detail of the mesh in the plane x = 0 near the corner between

the Hartmann and side wall (c).
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Figure 3: Streamwise velocity profiles for different Reynolds and Hartmann numbers along

the radial centerline of the duct. M = 25 (left), M = 100 (center), M = 400 (right), and

Re = 0 (−), Re ≈ 100 (−−) and Re ≈ 800 (◦).

is clear from figure 3, where we have a uniform profile of u(r, y = 0)r along

the radial centerline in the core, with minor overspeed zones in the side

layers; these zones exist also in the limit of R → ∞, i.e. in a straight,

square duct. At lower Hartmann number (M = 25), inertia starts to play

a role. A useful parameter in this context is the interaction parameter

N , an estimate of the ratio between the Lorentz force and inertia, defined

as N = M2/Re. This parameter becomes of order one for M = 25 and

Re ≈ 800. In that case, the streamwise velocity is ‘pushed’ towards the

exterior wall. At higher Hartmann number, the profiles for different values

of Re are virtually identical.

In figure 4, we show the streamwise velocity distribution along the magnetic

field direction, close to the upper wall at y = L (i.e. in the vicinity of one

of the Hartmann layers), for different values of r. The results are shown
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together with the analytical Hartmann profile uHa,an defined as:

uHa,an = u(y = 0, r = R)
(
1− exp

(
−ML−1(1− y)

))
(14)

For M = 100 and M = 400, we observe that the numerical velocity profiles

agree very well with the analytical one. If M = 25 on the other hand,

this agreement is only satisfactory for the results along the line r = R.

For this value of the Hartmann number however, the positions r = R ±
0.5L may be located in the side layers. As such, it should not be expected

that the velocity distribution at these positions tends towards the analytical

Hartmann profile. Finally, for Re ≈ 800, we see that the results at r =

R + 0.5L and r = R − 0.5L do not collapse anymore; this asymmetry was

already inferred from the results displayed in figure 3 (l.h.s.).

Since ∂θuθ = 0 in the laminar case, the vector field us = uy1y + ur1r is a

proper, solenoidal velocity field in two dimensions, and is termed secondary

flow. In figure 5 (a), we display the magnitude of this secondary flow field

in the complete cross-section of the torus, rescaled by U0, i.e:

Us(r, y) = U−10

√
v2(r, y) + u2r(r, y) (15)

Figure 5 (b) shows the streamlines of the secondary flow. For axisymmetric

flows, these can be computed as the isolines of a streamfunction ψ, which

satisfies:
1

r
∇ψ × 1θ = us (16)

Component-wise, this reads:

ur = −1

r

∂ψ

∂y
(17)

uy =
1

r

∂ψ

∂r
(18)
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Figure 4: Streamwise velocity profiles along the magnetic field direction at various values

of r for different Reynolds and Hartmann numbers along the radial centerline of the duct:

M = 25 (left), M = 100 (center), M = 400 (right), and Re = 0 (top), Re ≈ 100 (center),

Re ≈ 800 (bottom). Results at r = R (−−), r = R − 0.5L (◦), r = R + 0.5L (�), and

analytical profile (solid,grey).
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Figure 5: Secondary flow profile: magnitude Us (a) and streamlines (b) for Re ≈ 100, and

for different values of the Hartmann number. M = 25 (top), M = 100 (center), M = 400

(bottom).
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It follows that:
∂2ψ

∂r2
+
∂2ψ

∂y2
=

∂

∂r
(ruy)−

∂

∂y
(rur) (19)

If we now define u′s = uy1r − ur1y, we can write (19) as:

∇2ψ = ∇ ·
(
ru′s
)

(20)

in which r and y are to be considered as if they were cartesian variables. In

order to compute ψ, we can proceed as follows: on a two-dimensional mesh

which is an exact copy of the cut along planes θ = cst of the 3D mesh which

was used to perform the simulations, (like the one shown in figure 2(b))

we compute the right-hand side of (20), and subsequently solve the Poisson

equation (20). This equation is solved with Dirichlet conditions ψ = 0 on

all the walls. We show only results in the upper half plane, since Us and ψ

are respectively symmetric and antisymmetric around the axis y = 0.

ForM = 25, we see that we have one vortex cell, rotating in counterclockwise

direction, with a stagnation point (‘A’ in figure 5 (b)) towards the inner wall.

As the Hartmann number increases, the main vortex starts to develop two

subvortices (‘B’ in figure 5 (b)) of unequal strength; the one at the inner

side wall has a higher velocity than the one at the outer side wall. These

subvortices exhibit a kind of ‘bump’ (‘C’ in figure 5 (b)) in the side layers:

they have a large component in y-direction and then suddenly turn into

the opposite direction. This bump reveals itself in the profile of Us as a

valley between two hills (‘C’ in figure 5 (a)). At last, for M = 100 and

M = 400, we see the emergence of sidewall vortices, which are rotating in

the clockwise direction (‘D’ in figure 5 (b)), as predicted by Tabeling and

Chabrerie (1981). Due to their small spatial extent, it is difficult to discern

them in figure 5. Therefore, we plot the details of Us and ψ in the side wall

regions in figure 6, in which the radial coordinate has been rescaled to units
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Figure 6: Detail of the secondary flow profile for Re ≈ 100 and M = 400. Magnitude of

the secondary flow at the inner (a) and outer (b) side wall; arrows indicate the location

of side wall vortices. Streamlines at the inner (c) and outer (d) side wall.

of the side layer thickness: s± =
√
M(R ± L ∓ r); the location of the side

wall vortices are indicated by arrows in figure 6 (a) and (b). These side wall

vortices are much weaker than the main secondary flow vortex.

In figure 7, the radial velocity is plotted along the center line r = R (i.e.

along the direction of the magnetic field) in the vicinity of the Hartmann

layer. The coordinate η is a rescaling of y with the Hartmann number and

the duct length:

η = M
(

1 +
y

L

)
(21)

The velocity itself is rescaled as:

Urad(η) = −M2

(
νR

L2

)
U−20 ur(η, r = R) (22)
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Figure 7: Radial velocity profiles in the Hartmann layer: Comparison between the asymp-

totic solution (−) and the numerical results for different values of the Reynolds and Hart-

mann number. M = 25 (left), M = 100 (center), M = 400 (right), Re ≈ 100 (−−) and

Re ≈ 800 (◦).

and can be compared to its asymptotic counterpart in the Hartmann layer

(Tabeling and Chabrerie, 1981):

Urad,as(η) =
1

6

[
6 (η − 1/3) e−η + 2e−2η

]
+

5

6
Me−η +O

(
M−3

)
(23)

The simulation results only converge very slowly towards the asymptotic

ones with increasing M . Even at M = 400, the difference between both

results at the maximum of Urad is still around six percent, and this is much

larger than one would expect from a leading-error term of O(M−3). On the

other hand, we see that the results for both values of Re almost collapse.

The discrepancy between the asymptotic and numerical results might be

explained by the fact that expression (23) represents only a first-order term

in an expansion in ζ, and is only exact in the limit of ζ → 0. In the
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present case, ζ takes the value of 1/9, so that higher-order terms due to

curvature-induced non-linearities, may still have a considerable influence.

We finally note that the tendency of Urad has the same order-of-magnitude

for all combinations of Re and M . Given (22) and (23), it implies that ur

scales as (U0M)−2.

4. Time-dependent flow

In this section, we compare the nature of the turbulence between the

magnetohydrodynamic and hydrodynamic cases. Our main interest is in

the level of turbulence in the different types of boundary layers. We con-

sider three values of the Hartmann number: M = 0, 10 and 30. For the

hydrodynamic case (M = 0), the flow is forced by a streamwise pressure

gradient which is constant in time, and can be written as 1
r
∂P
∂θ , with ∂P

∂θ a

constant. Note that this last case is not physical; the integral
∫ 2π
θ=0

∂P
∂θ dθ

should be strictly zero since the pressure has a unique value at every point

in space. On the other hand, the Navier-Stokes equations contain a pressure

gradient term, but do not depend directly on the value of the pressure itself.

Hence, this constraint is of no relevance for our computations.

To the best of our knowledge, no profound study of this hydrodynamic case

has been performed until now. The Reynolds number in the three simula-

tions is between 3900 and 4000. Furthermore, the duct side and the mean

radius of the torus are chosen such that ξ = 1/18 ≈ 0.0555. This section

covers an angle of π/4 radials, which implies that the streamwise extent

of the simulation domain is about seven times the distance between the

duct walls. The mesh consists of 256 nodes in the streamwise direction and

100×100 nodes (along orthogonal grid lines) in the cross-section of the duct,
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where a stretching was applied. In the hydrodynamic case, the stretching

was such that the mesh contained at least three points within a distance of

one (turbulent) boundary layer thickness δ of the walls. This length scale is

given by the expression δ = ν/uτ where the friction velocity uτ can be de-

fined as: u2τ = − 1
2LR

∂P
∂θ . The quantity 1

R
∂P
∂θ represents the forcing at r = R.

Strictly spoken, this last formula only holds in the limit R → ∞ (straight

duct flow driven by a uniform pressure gradient), but it should also provide

an accurate estimate of the boundary layer thickness in the present case,

given the rather small value of the curvature that is considered.

The same mesh is used for the case M = 10. For M = 30 however, a less

severe stretching is applied in the Hartmann layers, since we presume that

these layers would be stabilized due to the presence of the magnetic field.

Statistics are obtained by a time averaging over, respectively, 720 (M = 0),

420 (M = 10) and 240 (M = 30) convective time scales L/U .

In figure 8 (above), we compare the main streamwise profile uθ for the dif-

ferent Hartmann numbers. Here, uθ denotes the average of uθ over time and

the azimuthal direction. In the case M = 0, we see that the centrifugal force

shifts the velocity maximum towards the outer wall. For smaller values of

r, the velocity maximum is not located on the symmetry axis y = 0, but

close to the upper and lower wall. We find a similar profile for the case

M = 10. The most striking tendency is that variations along the magnetic

field direction tend to disappear in the case M = 30. Streamlines of the

mean secondary flow are shown in figure 8 (below). These were computed

with the same procedure as described above. We have again two counter-

rotating vortex cells, whose stagnation points are now shifted towards the

outer wall. For the case M = 10 this vortex pair is accompanied by a much

weaker, counterrotating pair, located close to the outer side wall.

21



Figure 8: Isolines of the streamwise velocity (above) and streamlines of the secondary flow

(below). Results for M = 0 (left), M = 10 (middle) and M = 30 (center).

In figure 9, we show isolines of the fluctuating streamwise velocity urmsθ ,

defined as:

urmsθ =
√
uθuθ − uθ2 (24)

The magnitude of urmsθ can be interpreted as a measure for the turbulence

intensity. In the hydrodynamic case (M = 0), we see that all shear layers

are turbulent and that urmsθ takes a smaller, although non-negligible value in

the core. Furthermore, there is an asymmetry between the inner and outer

side wall. The turbulence is more intense at the outer side layer, in spite

of the fact that the external force is the weakest in this region. This is in

agreement with previous studies of curved channel flow (Moser and Moin,

1987; Nagata and Kasagi, 2004). As the Hartmann number increases, urmsθ

is strongly suppressed in the core, the inner side layer and the Hartmann

layers, whereas a significant level of turbulence persists in the outer side
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layer. This illustrates that unstable side layers may exist in an otherwise

stable flow.

These observations are confirmed by a visualization of coherent vortices in

the flow. According to Jeong and Hussain (1995), such a vortex can be

defined as a connected region in space with two negative eigenvalues of

Cik = SijSjk + ΩijΩjk, with Sij and Ωij being respectively the symmetric

and anti-symmetric part of the velocity gradient tensor ∂iuj . In figure 10, we

show the regions in the flow for which the second largest eigenvalue of Cik is

smaller then -0.08; this means that the weakest vortex cores (with a second

eigenvalue between -0.08 and 0.0) are left away to not overload the figure. In

the hydrodynamic case, we see that these structures are distributed over the

complete flow domain, with a higher density of vortices in the vicinity of the

outer wall. When a magnetic field is imposed, all these structures tend to be

suppressed with exception of the ones close the outer wall. Furthermore, we

observe that the structures become larger and populate less densely the flow

as the magnetic field strength increases. A similar tendency was observed

by Krasnov et al. (2008) in a numerical investigation of turbulent MHD

channel flow with spanwise magnetic field. Contrary to other studies of

MHD shear flows (Kinet et al., 2009), no elongation of these structures along

the magnetic field direction is found. Probably the value of the interaction

parameter N ≈ 0.2 is too small for this to be observed.

5. Conclusions

In this work, we presented an analysis of the quasi-static MHD flow

in a toroidal duct of square cross-section by means of numerical simula-

tions. In the case of laminar flow, we saw that an increase of the external
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Figure 9: Statistics of the fluctuating streamwise velocity urmsθ for different values of the

Hartmann number: M = 0 (above), M = 10 (center), M = 30 (below).
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Figure 10: Coherent structures in the flow. Isosurfaces of the value of the second largest

eigenvalue λ2 = −0.08 of the tensor Cik: M = 0 (above), M = 10 (center), M = 30

(below). The grey plane indicates the bottom wall of the torus.
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magnetic field leads to a drastic change of the main and secondary flows;

this secondary flow consists of two counter-rotating Ekman vortex cells,

but also exhibits side layer vortices at high Hartmann number. Our re-

sults confirmed and extended the earlier asymptotic analysis of Tabeling

and Chabrerie (1981). In the study of the turbulent regime, we found that

the streamline curvature leads to an asymmetric level of turbulence at the

convex and concave side walls. We also showed that a magnetic field sup-

presses turbulence in the core boundary layers. Moreover, we found that

unstable side layers can coexist with stable Hartmann layers. At last, a

study of coherent structures in the flow yielded an additional illustration of

the main features of the turbulent regime.
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