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Shear layers in confined liquid metal MHD flow play an important role in geo- and astrophysical
bodies as well as in engineering applications. We present an experimental and numerical study of
liquid metal MHD flow in a modified cylindrical annulus that is driven by an azimuthal Lorentz
force resulting from a forced electric current under an imposed axial magnetic field. Hartmann and
Reynolds numbers reach Mmax ≈ 2000 and Remax ≈ 1.3 · 104, respectively, in the steady regime.
The peculiarity of our model geometry is the protruding inner disk electrode which gives rise to a free
Shercliff layer at its edge. The flow of liquid GaInSn in the experimental device ZUCCHINI (ZUrich
Cylindrical CHannel INstability Investigation) is probed with ultrasound Doppler velocimetry.

We establish the base flow in ZUCCHINI and study the scaling of velocities and the free Shercliff
layer in both experiment and finite element simulations. Experiment and numerics agree well on
the mean azimuthal velocity uφ(r) following the prediction of a large-M theoretical model. The
large-M limit, which is equivalent to neglecting inertial effects, appears to be reached for M >∼ 30 in

our study. In the numerics, we recover the theoretical scaling of the free Shercliff layer δS ∼M−1/2

whereas δS appears to be largely independent of M in the experiment.

I. INTRODUCTION

Magnetohydrodynamics (MHD) is the subject con-
cerned with the interplay of electrically conducting fluids
and magnetic fields. Interest in MHD arises from geo-
and astrophysical contexts as well as from engineering
applications. In the field of geo- and astrophysics, Lar-
mor [1] proposed an MHD dynamo to explain the gener-
ation of magnetic fields in the Sun and the Earth almost
a century ago. Today this theory is widely accepted and
supported by numerical and experimental evidence; for a
review see Olson [2].

In the area of engineering, the advent of liquid metal
MHD came with Hartmann’s invention of the electro-
magnetic conduction pump around 1915 [3] and his two
seminal articles on ‘Hg dynamics’ [4, 5]. Since then MHD
has found various applications in metallurgy and mate-
rial processing, liquid metal blankets of fusion reactors
as well as electromagnetic flow meters and pumps [6].

An important parameter characterizing the dynamical
regime of liquid metal experiments is the Reynolds num-
ber

Re =
U0a

ν
, (1)

where ν is the kinematic viscosity, a and U0 are typical
length and velocity scales, respectively. The effects of the
magnetic field are measured by the Hartmann number,
defined as

M = aB0

√
σe
ρν

(2)

where B0 is the imposed magnetic field strength, ρ the
mass density and σe the conductivity of the fluid. Strong

magnetic fields (M � 1) tend to make the flow uniform
(quasi-2D) along the direction of the field B. The pres-
ence of walls perpendicular and parallel to B leads to
Hartmann and Shercliff layers (also called ‘side layers’).
The thickness of these layers scales as δH ∼ M−1 and
δS ∼M−1/2 respectively for large M [4, 7].

A special case of liquid metal MHD is the ‘quasi-static’
limit where induced magnetic fields are negligible. It is
characterized by small Rm <∼ 1 and S <∼ 1. Here Rm and
S denote the magnetic Reynolds and the Lundquist num-
ber, respectively, which are defined as Rm = µ0σeU0a
and S = (µ0/ρ)1/2σeaB0 with µ0 = 4π · 10−7 Hm−1 the
permeability of free space.

Since the pioneering work of Hartmann, various studies
considered laminar pressure-driven MHD flow in straight
channels and ducts subject to different electrical bound-
ary conditions [7–10]. Using a boundary-layer technique,
Hunt and Stewartson [9] studied a duct with walls per-
pendicular to B being electrically insulating and parallel
walls conducting, and derived expressions for the flow
rate in the form of an asymptotic expansion in the limit
of large M (neglecting secondary flows). Amongst other
setups, they considered the purely electrically-driven case
of an MHD pump, which is also the driving mechanism
in our setup.

In order to avoid entrance effects which are always
present in straight duct experiments, other studies em-
ployed closed geometries like cylindrical ducts or spheri-
cal shells. Following the narrow-gap experiment of Baylis
[11], Baylis and Hunt [12] performed the first concise
study of flow in a cylindrical annulus with rectangular
cross section. Walls perpendicular to B were again elec-
trically insulating, parallel walls were conducting in order
to impose a radial current. Baylis and Hunt [12] worked
in the large-M limit in order to neglect secondary (radial
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and axial) flows. Their condition for inertial effects to

be negligible was
(
K/M2

)2
λ� 1 with the Dean number

K = λ1/2Re measuring curvature effects and the curva-
ture ratio λ = d/2rm of channel half-width d/2 to mean
radius rm. Under these assumptions, they found an ex-
pression for the azimuthal velocity in the core of the flow,

uBHφ (r) =
I

4πr
√
σeρν

, (3)

where I is the electrical current forcing the flow, and
r is the radial coordinate. In their theoretical model,
Baylis and Hunt [12] additionally took into account the
Hartmann and side layers. By comparing the resulting
flow rate with experimental data from Baylis [13], they
confirmed the asymptotic theory for the side layer from
Hunt and Stewartson [9].

A further theoretical study of laminar MHD flow in
annular ducts with rectangular cross section was under-
taken by Tabeling and Chabrerie [14]. Using a boundary-
layer technique, they focused on the secondary flows,
which Baylis and Hunt [12] had neglected, in the high-M
regime. Tabeling and Chabrerie [14] employed a pertur-
bation method containing expansions in ascending pow-
ers of the curvature ratio λ. They derived the veloc-
ities in the core and the Hartmann layers, and found
that secondary flows in these regions are dominantly one-
dimensional (suppression of uz). For the side layers, sec-
ondary flows are far more intense. The secondary flow
structure and the number of eddies in the side layer de-
pends on the conductivities of the walls. The expan-
sion in terms of ascending powers of λ in the perturba-
tion method of Tabeling and Chabrerie [14] converges if
K/M5/4 � 1 which is a more stringent criterion for in-
ertial effects to be negligible than the one in [12].

Numerical studies of quasi-static MHD flow in cylin-
drical geometries were performed using direct numeri-
cal simulation [15–17]. Other authors employed an ef-
fective 2D model for low-Rm MHD flows which conve-
niently incorporates boundary layer and recirculation ef-
fects [18, 19]. We will reference these studies in more
detail in the follow-up paper termed ‘Paper 2’ which ad-
dresses instabilities and flow transitions in our experi-
ment.

In recent years, there have been at least three experi-
mental studies of electrically-driven MHD flow in cylin-
drical annuli: Moresco and Alboussiere [20] studied the
stability of the Hartmann layer which we will come back
to in Paper 2. Boisson et al. [21] observed travelling
waves in a narrow-gap annulus. Mikhailovich et al. [22]
studied the decay of mean velocity components and tur-
bulent fluctuations. All of these experiments have in
common with Baylis and Hunt [12] the simple geometry
with straight conducting side walls.

In contrast, ZUCCHINI features modified cylindrical
side walls with a prominent disk electrode at the inner
cylinder and a ring electrode at the outer one, coloured
in Figure 1; all remaining walls are insulating. This gives

FIG. 1. Sketch of the modified cylindrical annulus ZUC-
CHINI. Forcing an axisymmetric electrical current I through
the liquid metal under an imposed magnetic field B gives rise
to a Lorentz force which drives an azimuthal flow. The elec-
trodes are coloured in red, the remaining walls are insulating.
The half-height a is used as length scale in the nondimension-
alization.

rise to a free shear/Shercliff layer at the edge of the disk
electrode. In this respect, our experiment is more similar
to the MATUR experiment of Messadek and Moreau [23]
who studied the quasi-2D turbulent behaviour occuring
in cylindrical shear flow resulting from the injection of
electrical current in the bottom plate.

An overview of the dimensions and parameters of the
previous experiments and ZUCCHINI is given in Table I;
the latter reaches Hartmann numbers that are more than
double the ones of the other experiments. Another novel
feature of our experiment is that we employ two UDV
probes which enable us to recover profiles of radial and
chordwise velocities through the free shear layer as well
as the radial profile of mean azimuthal velocity in the
core flow.

ZUCCHINI serves as a prelude to an experiment of
electrically-driven liquid sodium flow in a rapidly rotat-
ing spherical shell along the lines of Hollerbach et al.
[24]. The latter with its tentative acronym SpiNaCH is
designed to study the ‘magnetostrophic regime’, i.e. a
balance between Coriolis and Lorentz forces, which is be-
lieved to govern the motions of liquid metal in the Earth’s
outer core.

The present paper focuses on the steady and axisym-
metric base flow in ZUCCHINI; instabilities will be con-
sidered in the follow-up Paper 2. We describe the phys-
ical model underlying this work in Section II. In the
subsequent Section III, we detail the numerical and ex-
perimental setup as well as the methods. The results
Section IV is subdivided into the order-one azimuthal
flow, the recirculation flow and the shear layers. In Sec-
tion V, we discuss differences between the numerical and
experimental models.
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TABLE I. Parameter values of relevant experimental studies. Height h = 2a, outer radius ro and width d of duct, maximum
magnetic field strength Bmax, as well as resulting maximum Hartmann number M∗

max and liquid metal used. Note: For
comparison, the definition of the Hartmann number used in this table is M∗ = 2M , double the Hartmann number M from
Equation 2 used throughout the paper, since M∗ was reported in the previous studies. Hg means mercury, PD(P) potential
difference (probes) which are not shown in this study.

h in cm ro in cm d in cm Bmax in T M∗
max I in A fluid measurements

Baylis [11] 5 2.7 0.12 0.5 15 up to 30 Hg global PD

Baylis [13] 0.39-3.1 7 0.39-3.1 0.4 128 0.1-110 Hg global PD

Moresco and Alboussiere [20] 1 5 1 13 1690 650 Hg global PD, pressure

Boisson et al. [21] 12 4 1.2 0.15 460 50 GaInSn UDV

Mikhailovich et al. [22] 6.25 3.525 3.125 0.125 160 120 GaInSn local PDP

Messadek and Moreau [23] 1 11 11 6 1800 10-70 Hg local PDP

ZUCCHINI (this work) 10 20.5 16 1 4000 300 GaInSn UDV, local PDP

II. MODEL DESCRIPTION

The physical model studied here by numerical simula-
tions and laboratory experiments is a cylindrical annulus
filled with an electrically conducting fluid. The basic
setup is shown in Figure 1. Container and fluid are sub-
ject to an imposed axial magnetic field B = B0ez with
a strength of up to 1 T. We force an electrical current
I of up to 300 A between the edge of the disk electrode
at the center and the ring electrode at the outer cylin-
der. The remaining walls of the container are electrically
insulating. The radial current in an axial magnetic field
gives rise to a Lorentz force fL = j ×B in an azimuthal
direction resulting in an azimuthal fluid flow.

The governing equations of the system are the Navier-
Stokes equation including the Lorentz force fL, the in-
compressible continuity equation, Ohm’s law and the
equation of charge conservation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρν∇2u + j×B (4)

∇ · u = 0 (5)

j = σe (E + u×B) (6)

∇ · j = 0, (7)

where u is the velocity, E is the electric field and p is
the pressure. We are working in the quasi-static approx-
imation (Rm,S <∼ 1) where induced magnetic fields are
negligible and the field is entirely given by the imposed
field B. In this case, ∇× E = −∂B/∂t = 0, so that the
electric field can be written as the gradient of a potential
Φ, i.e. E = −∇Φ.

Charge conservation (Eq. 7) can be exploited to elim-
inate the current density j from Ohm’s law (Eq. 6). In
contrast to the full MHD equations, the system then
only contains one electromagnetic variable. Following
this path and using the half-height a, the imposed mag-
netic field strength B0 and a typical velocity U0 as scales,

Equations 4-7 are rewritten in nondimensional form,

Re

M2

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

M2
∇2u + (−∇Φ + u×B)×B (8)

∇ · u = 0 (9)

∇2Φ = ∇ · (u×B) . (10)

The nondimensional parameters governing the system are
the Hartmann number M (Eq. 2) and the Reynolds num-
ber (Eq. 1). The square of the Hartmann number M2

gives the ratio of Lorentz to viscous forces. The Reynolds
number Re is the ratio of inertial to viscous forces. Alter-
natively the interaction parameter N = M2/Re can be
used in the nondimensionalization which gives the ratio
of Lorentz to inertial forces.

III. METHODS

A. Numerical simulation

We perform numerical simulations using the commer-
cial finite element (FE) code Comsol Multiphysics (ver-
sion 4.3b) in order to gain a detailed insight into the
structure of the base flow encountered in the experiment.
The FE method facilitates the implementation of com-
plex geometries.

The system of equations to be solved in the geometry of
our modified cylindrical annulus is given in Equations 8-
10 with B = ez. In the first step (this paper), we are
only interested in the base flow, which in ZUCCHINI
is assumed to be steady and axisymmetric. Hence we
choose to perform axisymmetric simulations (∂/∂φ = 0)
of a cross-section in the (r, z)-plane, but allowing for non-
zero uφ; such calculations are often referred to as 2D3C
(2 dimensions, 3 components) simulations.

The governing equations need to be amended with me-
chanical as well as electrical boundary conditions. The
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mechanical boundary condition for all walls is no slip,
u = 0. For the electrical boundary conditions, we choose
−∇Φ = er, which means that we impose the electric cur-
rent density j0 at the inner electrode. The outer electrode
is set to ground, Φ = 0. A detailed reasoning for this
choice is given in Appendix A. The remaining walls are
insulating and have to fulfill the dimensionless electrical
boundary condition −n · ∇Φ = 0. The initial conditions
are u = 0 and p,Φ = 0 in the whole geometry.

The model geometry is a cross-section in the (r, z)-
plane of the container chosen to be as close to the exper-
imental setup as possible meaning that it has the same
shape and aspect ratio. Two minor differences have been
introduced. The first is that in the numerics also the
outer electrode protrudes from the wall for reasons of
generality whereas in the experiment it is mounted flush.
Translated into dimensional units, however, this modifi-
cation amounts to only 1 mm of prominence. The second
point consists in a specified rounding of the electrode
edges with a curvature radius of 0.5 mm (dimensional-
ized) in the numerics. The amount of rounding on the
experimental disk electrode might in fact be of similar
size. This modification with conducting boundary con-
ditions was found to yield a higher degree of charge con-
servation.

As a result of the convergence study presented in Ap-
pendix B where mainly the order of discretization and the
mesh size were varied, we use Lagrange elements of order
three for the discretization of the velocity, order two for
the pressure, and quintic elements for the electrical po-
tential. The mesh is triangular and quadrilateral in the
core and the boundary layers, respectively. A drawback
is the fact that charge is not automatically conserved us-
ing Lagrange elements.

We conduct a parameter study varying the Hartmann
number M and the input parameter Rei = j0a(νσB0)−1

over two to three orders of magnitude, M = {1, 3, 10,
20, 50, 100, 150, 200} and Rei = {1, 3, 10, 30, 100,
300, 1000} resulting in 56 parameter combinations. The
numerical model consists of 25308 domain elements and
900 boundary elements, and has roughly 106 degrees of
freedom. The advantage of 2D3C simulations is that they
can be run on a single node with every model running for
less than 2 CPU hours. After applying the quality criteria
from Appendix B, we are left with 51 models which have
all reached a steady state solution, ∂/∂t = 0.

The velocities from the numerical simulations pre-
sented in Section IV are averages over lines or different
volumes like the core flow or the boundary layers where
we assumed the theoretical scalings of the Hartmann and
Shercliff layers. Volume averages are either computed as

〈uφ〉 =

∫∫∫
uφ(r, z) rdrdφdz∫∫∫

rdrdφdz
, (11)

or based on kinetic energies as

‖ur‖ =

(∫∫∫
u2
r(r, z) rdrdφdz∫∫∫
rdrdφdz

)1/2

. (12)

The second definition is applied for the radial velocity
component ur because it changes sign within the volume.

B. Laboratory experiment

The ZUCCHINI experiment is designed to study
electrically-driven MHD flow in a modified cylindrical an-
nulus. In this paper, we are interested in the base flow;
the instabilities that develop in the free shear layer at the
edge of the inner electrode are the scope of Paper 2.

1. Setup

The experimental setup of ZUCCHINI consists of three
essential parts: the tank itself, the coils creating the mag-
netic field and the current supply. Moreover we use an
argon overpressure in the container to keep the working
liquid GaInSn pure, and ultrasonic Doppler velocimetry
(UDV) to diagnose the flow.

The ZUCCHINI container has an inner height of h =
2a = 10 cm (cf. Fig. 1). The radii of the inner and outer
cylinders are ri = 4.5 cm and ro = 20.5 cm respectively.
The disk electrode protruding from the inner cylinder
has a radius of rd = 7.5 cm, its axial width is 1 cm. The
ring electrode along the outer cylinder is 1.5 cm wide and
consists of six segments separated by small gaps.

During our experiments, we employed two different coil
systems for the generation of the magnetic field. For
the lower magnetic field strengths up to 0.1 T, we used
a modified Helmholtz coil system with three resistive
copper coils manufactured by Caylar (‘Caylar’ setup).
The field strength was measured by two calibrated Hall
probes with a precision of < 0.1 mT on the top lid of
the container. For the higher fields up to 1 T, we em-
ployed a single superconducting coil from Cryomagnetics,
Inc. (‘Cryo’ setup). The two systems also differ slightly in
the field geometry. The ‘Caylar’ setup creates a roughly
uniform field within the tank volume which decreases in
strength by only 7% with the radius. The ‘Cryo’ setup
is characterized by increasing field strengths with radius
and a finite amount of field curvature near the outer
cylinder.

The forcing current I between inner and outer elec-
trodes is generated by power supplies of type SM 18-50
from Delta Elektronika. These have an output voltage
of 0-18 V and an output current of 0-50 A. They are
characterized by an rms ripple and noise as low as 5 mA.
In our first setup ‘Caylar’ (Bmax = 0.1 T), we employ
three power supplies resulting in Imax = 150 A, while for
the ‘Cryo’ setup (Bmax = 1 T), we double the number
of power supplies to reach Imax = 300 A (cf. Tab. III).
Details about the current distribution are discussed in
Section V A.

The container is filled with 12.5 l (80 kg) of the eutec-
tic alloy GaInSn. We use MCP 11 alloy from 5N Plus
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TABLE II. Physical properties of GaInSn from Morley et al.
[25]. We present the data set resembling most the MCP11
alloy from 5N Plus used in our setup.

kinematic viscosity ν 2.98 · 10−7 m2/s

electrical conductivity σe 3.1 · 106 (Ωm)−1

density ρ 6360 kg/m3

melting point Tm 10.5◦C

sound speed c 2730 m/s

UK Ltd. According to the certificate of analysis, it con-
tains 65.9% gallium, 20.8% indium and 13.3% tin. Table
II gives its relevant physical properties. Besides being
liquid at room temperature, GaInSn has the advantage
of not being hazardous to human health and the environ-
ment. It may, however, be corrosive to metals, it weakens
especially aluminium, and it is expensive. Additionally
it is easily oxidized forming a sludge from mainly gal-
lium oxides (Ga2O3, Ga2O) which degrades or precludes
experimental measurements.

Prior to the first filling, the tank is thoroughly cleaned
with isopropyl alcohol, and the GaInSn is kept under a
slight overpressure of argon in a storage tank [25, 26].
The tubes and the experimental cavity are flushed with
argon. Once the GaInSn is transferred, a permanent
overpressure of 0.2 bar of argon is maintained to avoid
contamination. In addition, during the first filling the
GaInSn is filtered through four meshes of 100, 50, 30 and
15 µm to remove oxides. Around 90% of the sludge stays
in the coarsest mesh, and after the 50 µm mesh, hardly
any sludge remains. Over the several months of exper-
iments it was never necessary to empty and clean the
GaInSn, both electrical and acoustic couplings remain-
ing very good.

2. Measurements

The flow in ZUCCHINI is diagnosed with Ultrasonic
Doppler Velocimetry (UDV). The temperature of the
tank is monitored by a K-type thermocouple mounted
on the central disk electrode.

UDV as used in our experiment is based on the pulsed
emission of ultrasonic waves that are reflected at par-
ticles in the fluid. Velocities are derived from shifts in
position between pulses resulting in a profile of the ve-
locity component along the ultrasound beam. We use a
DOP3010 box from Signal Processing S.A., and multiplex
two channels. The emitting frequency fe of the probes is
selected according to the desired maximum profile depth
pmax and velocity vmax which are related by

pmaxvmax =
c2

8fe
(13)

where c is the speed of sound (cf. Table II) in the fluid
[27]. We use two UDV probes with fe = 8 MHz to

FIG. 2. Top view of tank with orientation of UDV probes
R (radial) and X (chordwise) in red. The angle α of the
chordwise beam with the radial direction decreases with the
distance from probe 2.

achieve sufficient resolution. The wave length in GaInSn
is 0.34 mm. The maximum achievable velocity measure-
ment in ZUCCHINI is of the order of 1 m/s which is
sufficient since we do not measure uφ directly. The half-
angle of divergence of the ultrasonic beam is 4.8◦. The
near field characterized by corrupted signals goes up to
1.8 cm distance from the probe.

The probes are pointing outwards from the inner cylin-
der in a horizontal plane 2.1 cm above the central plane
of the tank. Probe R (‘radial’) is measuring purely the
radial velocity ur along a radial profile. Probe X (‘chord-
wise’) has an offset of 90◦ to probe R in azimuthal direc-
tion, and points outward forming a skew angle with the
radial rays intersecting it as seen in Figure 2. It mea-
sures uχ, a combination of ur and uφ, with a respective
contribution that depends on the location along the pro-
file. This is exploited to construct radial profiles of mean
azimuthal velocity uφ in the next section.

Measurements with UDV in liquid metals have be-
come feasible in the last decades, for instance it was
used in gallium [28]. We rely on the unavoidable ox-
ides in GaInSn as scatterers of the ultrasonic beam,
mainly Ga2O3 (6440 kg/m3) and GaO2 (4770 kg/m3)
[21, 29, 30]. Some previous studies used UDV through
the container wall [21, 28], others brought the probes in
direct contact with the GaInSn as is done in our exper-
iment [30]. A good mixing of the oxides in GaInSn is
essential.

A typical experimental run begins by ramping up the
current in the magnetic coils. The fluid and the oxides
are mixed up by a strong electrical current through the
tank, typically 150 A or more. After the fluid has come
to rest, we record with UDV at a given magnetic field
strength stepwise increasing the electrical current. Be-
fore any recording, we let the flow reach its new equilib-
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TABLE III. Overview of the measurements taken in the two
setups ‘Caylar’ and ‘Cryo’. #(B) gives the number of sweeps
of I ∈ [Imin, Imax] performed in the range B ∈ [Bmin, Bmax];
B describes the geometry of the field.

Bmin Bmax #(B) B Imin Imax

‘Caylar’ 17.5 mT 83.4 mT 5 ∂Br,z/∂r <∼ 0 0 A 150 A

‘Cryo’ 83.5 mT 1000 mT 9 ∂Br,z/∂r > 0 0 A 300 A

rium state. The settling time decreases with increasing
magnetic field and current.

The sampling rate of the UDV is adjusted according
to signal quality and the ability to resolve the observed
oscillations (scope of Paper 2). In general it increases
from ∼ 1 Hz at low forcing current to ∼ 30 Hz at 150-
300 A. The recording time is set such that the frequency
resolution is sufficient (∼ 0.01 Hz for the oscillations). It
decreases from ∼ 150 s to ∼ 60 s with increasing current.

The parameter values of the recordings are given in
Table III. As a consistency check for our data set, we
took measurements at B = 83.5 mT (M = 169) in both
the ‘Caylar’ and the ‘Cryo’ setup. The mean azimuthal
flow uφ(r) turns out to be similar in magnitude and also
in structure. This allows us to combine the two data
sets despite the differing magnetic fields in the two se-
tups. For the base flow studied in this paper, the ‘Cryo’
data set provides more data due to its larger M . The
first instability is not observed below a forcing current
of roughly 10 A at M = 2022, while the flow is already
unstable at 2 A for moderate M in the ‘Caylar’ setup.

3. Processing

Experimental velocities presented in Section IV are
temporal means of the values ui measured by UDV where
i ∈ {r, χ, φ}. Since we operate in the steady regime, devi-
ations from the mean ui are small. We omit the overline
in ui since all velocities displayed are mean values. Az-
imuthal velocities uφ(r) are derived as a projection of the
chordwise measurements uχ(r) according to

uφ(r) =
r

e
uχ(r). (14)

where e = 25 mm is the distance of the UDV chord
(probe X) to the origin. We neglect the contribution of
the radial component ur, which is also contained in the
uχ-measurements, due to its small amplitude. Further
support for this proceeding is given in Section V B.

Spatial average values over the measured UDV profiles
are computed as

〈uφ〉 =

∫
uφ(r) rdr∫
rdr

(15)

and

‖ur‖ =

(∫
u2
r(r, z) rdr∫
rdr

)1/2

. (16)

with r ∈ [100, 150] mm in the core of the flow. The
average azimuthal velocity 〈uφ〉 is used in the definition
of the Reynolds number

Re =
〈uφ〉a
ν

. (17)

Reynolds numbers reach Re ≈ 1.3 · 104 at M = 2022 in
the steady regime considered in this paper.

IV. RESULTS

We now examine the data recorded in the laboratory
experiment ZUCCHINI and the numerical simulations.
As an example of the general dynamics in our setup at
low forcing, Figure 3 shows the velocity field u from
the numerics in a cross-section of the container at low
forcing current and at two different values of the Hart-
mann number M (or the magnetic field strength B0 re-
spectively). The profile of the dominant azimuthal flow
uφ (colours) looks similar to hydrodynamic pipe flow at
M = 1, whereas it is uniform along the direction of the
magnetic field (axial) at M = 200. At the same time, the
secondary flow gets concentrated in the boundary and
free shear layers developing at large M . Figure 4 shows
that the electrical current which drives the flow is flowing
through the Hartmann and Shercliff layers, whereas the
core is virtually current-free. At large M , most of the
dissipation takes place in the thin Hartmann layers.

We start our presentation of the results with the order-
one flow which is azimuthal due to the geometry of the
Lorentz-forcing. Subsequently we study the secondary or
recirculation flow in the (r, z)-plane before we turn to the
boundary and internal shear layers.

A. Order-one flow

The azimuthal flow uφ in our geometry is directly
driven by the Lorentz force resulting from the radial cur-
rent in an axial magnetic field. Figure 5a shows average
values 〈uφ〉 from experiment and numerics. We observe a
clear linear scaling with the electrical current, 〈uφ〉 ∼ I.
Moreover the experimental data (M > 35) fall close to
the same line as the numerical data with M ≥ 50. The
linear scaling uφ ∼ I is explained by a balance between
the dissipation in the Hartmann layer and the driving by
the Lorentz force.

The dashed line in Figure 5a indicates the theoretical
value of 〈uφ〉 according to the basic model of Baylis and
Hunt [12], further denoted as ‘BH’. Averaging their ex-
pression for the azimuthal velocity in the core (Eq. 3)
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(a) M = 1, I = 0.43 mA

(b) M = 200, I = 86.1 mA

FIG. 3. Example of nondimensional velocity u in the numer-
ical simulation with low forcing at (a) M = 1, I = 0.43 mA
and (b) M = 200, I = 86.1 mA. The colour scale shows uφ,
the streamlines ur and uz.

FIG. 4. Nondimensional electrical current density in the nu-
merical simulation at M = 200, I = 86.1 mA (cf. Fig. 3b).
The colour-coded quantity is log10 j2 with streamlines of
(jr, jz) superimposed to make the Hartmann and Shercliff lay-
ers visible which contain virtually the entire electrical current.
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FIG. 5. Mean azimuthal flow 〈uφ〉 in experiment (triangles)
and numerics (circles). Averages are taken along a radial
beam with r ∈ [100, 150] mm according to Eq. 15. (a) 〈uφ〉
scales linearly with the current I; the dashed line is the the-
oretical prediction 〈uBHφ 〉 from [12]. (b) 〈uφ〉 normalized by

〈uBHφ 〉 approaches the large-M limit for M >∼ 50.

according to Equation 15 between r1 and r2 leads to

〈uBHφ 〉 =
I

2π(r2 + r1)
√
σeρν

. (18)

In Figure 5b, we observe a quantitative agreement
within 25% between the theory and our experimental
measurements for M > 30. Numerical simulations are
shown to also converge toward the BH-value for M > 30.
The azimuthal velocity 〈uφ〉 is observed to be indepen-
dent of the Hartmann number M at large M as predicted
by the BH-theory.

The UDV profiles of measured chordwise and derived
azimuthal velocities, uχ(r) and uφ(r) are shown in Fig-
ure 6a and b, and compared with numerical and the-
oretical values. A characteristic feature is the velocity
increase in the free shear layer due to the current injec-
tion at the edge of the inner disk electrode (rd = 75 mm).
The shear layer forms on the cylinder tangent to the inner
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FIG. 6. Comparison of profiles of chordwise and azimuthal
velocities in experiment (solid lines), numerics and theory for
different M . (a) Chordwise profiles normalized to their max-
imum. The numerical profile for M = 169 (dashed) shows a
greater shear at the inner electrode (dashed vertical line) than
the experimental ones. (b) Derived azimuthal profiles (Eq. 14)
normalized to their value at r = 130 mm. The dashed line
depicts an algebraic law r−1.

electrode, separating the flow into an electrically forced
outer domain and an inner domain where the flow is en-
tirely governed by the diffusion of momentum.

The chordwise velocities (Fig. 6a) exhibit a qualitative
agreement between experimental and numerical data in
the volume between the two electrodes (vertical lines),
especially for r ∈ [100, 150] mm. For large radii, the
UDV signal is noisy. Above and below the inner elec-
trode (r < rd), we measure significant velocities in the
experiment, whereas velocities in the numerical models
vanish. The viscous entrainment appears to be higher
in the experiment. This contributes to the fact that the
shear in the free Shercliff layer at the inner electrode is
greater in the numerical profiles. We will come back to
this point in Section IV C.

The profiles of azimuthal velocity derived from experi-
mental data (Fig. 6b) confirm the scaling uφ(r) ∼ r−1
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FIG. 7. Ratio of poloidal to toroidal kinetic energy integrated
over the whole volume in numerical models displayed versus
(a) the electrical current I and (b) the Hartmann number M .
For large M , the ratio is very small and scales as Epol/Etor ∼
M−3.6I2.

predicted by the BH-model (Eq. 3) between the elec-
trodes. Significant deviations occur only near the inner
electrode as an effect of the free shear layer. The scal-
ing uφ(r) ∼ r−1 can be understood as the geometrical
spreading of the forcing current in the Hartmann layer
as I ∼ (2πr)−1.

B. Secondary flow

The dominant azimuthal flow in our setup drives a sec-
ondary recirculation in the (r, z)-plane. The magnitude
of the secondary flow is much smaller than the one of the
azimuthal flow. This is shown by the ratio of poloidal
to toroidal kinetic energies, Epol/Etor, in the numerical
models in Figure 7. Poloidal and toroidal kinetic ener-
gies are defined as Epol = 0.5

∫∫∫
(u2
r + u2

z) rdrdφdz and
Etor = 0.5

∫∫∫
u2
φ rdrdφdz, respectively. Epol reaches a

few percent of Etor at maximum, and decreases strongly
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FIG. 8. The ratio of radial to azimuthal kinetic energy
‖ur‖2/‖uBHφ ‖2 displayed versus the Hartmann number M for
the experimental data. The ratio does not decrease in the
same way as in the numerical data (Fig. 7) in the large-M
limit.

with M at large M . Also in the large-M , the ratio scales
as Epol/Etor ∼M−3.6I2.

As seen from Figure 3, the recirculation flow in the
(r, z)-plane has almost the same strength between inner
and outer electrode at moderate M = O(1) in the nu-
merical models. For large M , it is concentrated in the
boundary and free shear layers. The two large recircu-
lation cells (z < 0 and z > 0) present at moderate M
break up into several cells when increasing M . The re-
circulation is largely suppressed in the core of the flow is
as expected for this kind of quasi-2D flow.

In the experiment, the radial flow is probed by UDV
probe R located 2.1 cm above the mid-plane of the tank.
Hence we only have information on ur in the core of the
flow. We encounter radial velocities 〈ur〉 that are again
small compared to the order-one azimuthal flow as seen
in Figure 8. In contrast to the numerical data, however,
they preserve a finite magnitude up to the largest M . For
most values of the electrical current, the ratio of radial to
azimuthal kinetic energy ‖ur‖2/‖uBHφ ‖2 even appears to
become constant above M ≈ 1000. We will discuss the
discrepancy in the radial flow between experiment and
numerics in Section V.

C. Shear layers

1. Hartmann and Shercliff boundary layers

Hartmann and Shercliff boundary layers are the shear
layers that form at walls perpendicular and parallel to the
direction of the magnetic field to accommodate the core
velocity to the non-slip boundary condition. At large M ,
their thicknesses scale as δH ∼ M−1 and δS ∼ M−1/2,
respectively [4, 7]. Hence the theoretical boundary layers
at the experimental values of M ∈ [35, 2022] are as thin
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FIG. 9. Ratio of radial velocity in the boundary layers ‖uBLr ‖
to the square of the theoretical azimuthal velocity in the core
‖uBHφ ‖2. The observed scaling agrees well with the theory
of [14]. It is not possible to extract comparable data for the
experiment.

as δH = [1.4, 0.02] mm and δS = [8.5, 1.1] mm. The
observation of the outer wall Shercliff layer is hindered
by spurious wall reflections and a low signal-to-noise ratio
at large radii. For this reason, we only use the numerical
models for the study of the boundary layers.

Figure 9 shows the ratio of the radial velocity averaged
over all Hartmann and Shercliff layers to the square of the
theoretical azimuthal velocity in the core. For large M ,
we observe a scaling as ‖uBLr ‖/‖uBHφ ‖2 ∼ M−2. Since
ur is large only in the Hartmann layers, this relation is
also found when integrating ur over the whole volume or
considering local measurements in the Hartmann layers
only.

The observed scaling was also found in a theoreti-
cal study by Tabeling and Chabrerie [14] who studied
pressure-driven MHD flow in an annular duct. The re-
circulation flow is driven by the main azimuthal flow uφ.
Tabeling and Chabrerie [14] derived that uHLr ∼ u2

φM
−2

independent of the external driving.
Now we turn to the structure of the boundary lay-

ers. Figure 10a shows profiles of the velocity magnitude
u = (u2

r+u
2
φ+u2

z)
1/2 along z at the half-radius of the tank

for different Hartmann numbers M . The velocity profile
in the core of the flow is almost parabolic for M = 1
(hydrodynamic limit M → 0), and becomes flatter with
increasing M . For high magnetic fields (M � 1), the
core flow is two-dimensionalized. Figure 10d shows the
Hartmann layer thickness δH as a function of M (black
circles). The thickness of the boundary layer is defined
as the distance from the wall where the velocity magni-
tude u reaches 90% of its maximum (core) value. Fitting
the data that have M ≥ 20, the scaling found by linear
regression is δH ∼ M−1.003±0.004. This is in quantita-
tive agreement with the theoretical scaling of M−1 for
M � 1.

In our model, the boundary layer at the outer wall is
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FIG. 10. Scaling of the Hartmann and Shercliff layers in the numerical models. (a) Profiles of the velocity magnitude |u|
normalized to its maximum value along the z-direction at the half-radius of the container for different Hartmann numbers M .
(b) Profiles of the axial angular momentum L = r · u normalized to its maximum value along the r-direction at zi = 0.42; the
nondimensional height zi is where the radial and chordwise UDV probes are located in the laboratory experiment. (c) Profiles
of the velocity magnitude |u| normalized to its maximum value along the r-direction at height zi. (d) Scaling of the thickness
of the Hartmann (HL), side (SSL) and free Shercliff (FSL) layers with the Hartmann number M .

not a typical side or parallel layer since only the central
part of the outer cylinder is electrically conducting. In
standard examples like Baylis and Hunt [12], the whole
outer cylinder is conducting. For the computation of the
wall Shercliff layer in the numerical data, we use the ax-
ial angular momentum profile L = ru in Figure 10b since
the velocity itself is known to drop off with the radius as
in Equation 3. We again apply the 90%-criterion to the
profile. The scaling for M ≥ 20 is δS ∼ M−0.486±0.007

(blue triangles in Fig. 10d) which is close to δS ∼M−1/2

from the geometrically simpler theoretical model. Hence
the thicknesses of the boundary layers in the numerical
models are in good agreement with the theoretical pre-
dictions.

2. Free Shercliff layer

Of particular interest is the free Shercliff layer extend-
ing vertically from the inner electrode. Figure 10c shows
a radial profile of the velocity magnitude u which con-
tains the free Shercliff layer at a nondimensional radius
of r = 1.5. Similar to the Hartmann layer before, we
define its thickness δS as the radial distance between 5%
and 95% of the maximum velocity magnitude. Figure 10d
shows the scaling of the free Shercliff layer thickness (red
squares) as δS ∼ M−0.485±0.009 agreeing well with the
scaling δS ∼ M−1/2 for parallel layers. The scaling ex-
ponent varies little when using different percentages in
the criteria for the layer thicknesses.
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FIG. 11. Width δS of the free shear layer normalized by a =
50 mm versus Hartmann number M . For currents I > 1 A,
δS tends to a constant in the large-M limit.

As detailed above, it is difficult to measure the thin
layer widths experimentally. For the free shear layer,
however, it seems possible to extract a measure of the
thickness from profiles as the ones in Figure 6. Defin-
ing the layer width as the distance between the maxi-
mum azimuthal velocity and the inner electrode δS =
r(umaxφ )−rd leads to Figure 11. We observe a lot of scat-
ter in the data for moderate M . For large M , the layer
width appears to become a constant of δS/a ≈ 0.2 which
in dimensional units corresponds to roughly 10 mm. Only
for a forcing current of 1 A, δS decreases further with M .
This discrepancy between the inertialess theoretical and
numerical scaling of δS ∼ M−1/2 and the experimental
measure is discussed in the next section.

V. DISCUSSION

The previous sections have shown a very good agree-
ment of the dominant azimuthal flow in experiment, nu-
merics and theory. The magnitude of the recirculation
flow and the width of the free shear layer in the experi-
ment, however, are much larger than expected from nu-
merics and theory. In the following section, we discuss
the differences between experiment and numerical model
that might modify the flow in this way.

A. Axisymmetry numerics and experiment

The numerical model is perfectly axisymmetric and
has a uniform axial magnetic field. Hence a crucial
point is the degree of axisymmetry realized in the ex-
periment which has implications for the reconstruction
of the azimuthal velocity uφ from the UDV measure-
ments. Geometrically the laboratory setup is axisym-
metric within negligible manufacturing tolerances. The

symmetry might, however, be broken by the electrical
and magnetic setups.

The Lorentz-forcing of the flow in ZUCCHINI implies
that the symmetry of the electrical current plays an im-
portant role. In the ‘Caylar’ setup, each of the three
power supplies feeds two of the six segments of the outer
ring electrode. The amount of current flowing through
each segment is adjusted by additional Ohmic resistors to
vary by less than 4% between segments. The copper elec-
trodes have an electrical conductivity which is roughly 20
times higher than that of GaInSn. Hence we may assume
a homogeneous distribution of the forcing current as long
as wetting issues can be neglected.

A test of the sensitivity to the distribution of forc-
ing current showed that the flow is not affected signifi-
cantly even if one or more electrode segments are discon-
nected from the power supply as long as the remaining
electrode distribution is reasonably symmetrical. In the
‘Cryo’ setup, we avoided the problem of uneven current
distribution by using six power supplies, each feeding one
segment of the outer electrode. Hence the electrical setup
does not appear to be the cause of the observed discrep-
ancies.

During installation in the ‘Caylar’ coil system, we cen-
tered the ZUCCHINI tank not only geometrically but
also more precisely according to the magnetic field mea-
surements. We mapped the magnetic field inside the coil
volume by three perpendicular Hall effect sensors. With
increasing radius, its magnitude decreases by 7% within
the tank volume. Departures from axisymmetry were
found to be negligible. However, there seemed to be a
slight dependence of the field strength on the axial posi-
tion with higher values in the lower part of the tank.

The ‘Cryo’ setup consists of a single superconducting
coil made from twisted multi-filamentary NbTi/Cu by
Cryomagnetics, Inc. As the magnetic field is generated
by a single (short) coil, the magnetic field is less uniform
than in the Helmholtz-type ‘Caylar’ setup. The ‘Cryo’
setup shows an increase in magnetic field strength with
radius by roughly 15% and a significant amount of de-
viation from the axial direction at z 6= 0 near the outer
cylinder. Also deviations from an axisymmetric field are
larger than in the ‘Caylar’ setup.

B. Flow in the experiment

The order-one azimuthal flow uφ is robust against
small deviations from axisymmetry since it is directly
driven by the interaction of the electrical current with
the dominant axial field component. The radial flow ur,
however, appears to be quite sensitive to such deviations.
In the case of non-axisymmetric magnetic fields, ur is in-
creased as observed in Figure 8 especially at large M
(‘Cryo’ setup). This leads to an enhanced transport of
angular momentum, resulting in a significant flow in the
non-driven part of the fluid (r < rd in Fig. 6) and in a
smoothing of the free shear layer (Fig. 11). Additionally
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inertial effects may play a role at higher forcing. It ap-
pears that in most or all of the experimental profiles, we
are not looking at the actual free Shercliff layer as in the
numerics.

A second issue is the axisymmetry of the radial flow
ur itself. Comparing UDV measurements from probe R
with the ones of probe X, which also contain ur, we sus-
pect that the radial flow is different at the two probe
locations (cf. Fig. 2). Lacking complementary measure-
ments, it is not possible to rigorously test this hypothe-
sis. Nevertheless this observation together with the en-
hanced radial flow compared to the numerics has conse-
quences for our data processing. In the reconstruction
of azimuthal velocities uφ (Eq. 14), we neglect the con-

tribution ur
√
r2 − d2/d to the measured values uχ. This

approximation is justified since this contribution is small
compared to uχ r/d in the considered radial range. Fig-
ure 6 shows that the reconstruction of azimuthal veloci-
ties works well up to r = 150 mm where the noise in the
data becomes significant.

VI. CONCLUSION

We have studied the liquid metal flow that is generated
by Lorentz-force driving in a modified cylindrical annulus
by means of both laboratory experiments and numerical
FE simulations. The peculiarity of the ZUCCHINI geom-
etry compared to similar experimental studies [13, 20–22]
is the inner electrode which is built as a disk protruding
into the flow. This results in a free Shercliff layer be-
tween the inner and outer part without and with electri-
cal forcing, which becomes unstable at currents of a few
Amperes. This paper focuses on the steady axisymmetric
base flow below this threshold.

Our experimental setup reaches Hartmann numbers M
up to 169 for the ‘Caylar’ and 2022 for the ‘Cryo’ setup.
The flow is probed by ultrasound Doppler velocimetry.
To our knowledge, this is the first time, that the radial
profile of electrically-driven azimuthal flow with a free
Shercliff layer is established using UDV.

The structure of the base flow consists of a dominant
azimuthal component and a secondary recirculation flow
in the (r, z)-plane which is more than an order of a mag-
nitude slower. The azimuthal flow is characterized by the
inner non-driven part of the fluid, the free Shercliff layer,
and a drop-off with increasing radius as uφ(r) ∼ r−1.
We find very good agreement between the experimental
data, the numerical results and the theoretical prediction
from Baylis and Hunt [12]. The latter theory neglects
secondary (radial and axial) flows and assumes large M .
This large-M limit implies uφ(r) ∼ I, which we observe
in both numerical and experimental data, and appears
to be reached for M >∼ 30 in our setup.

The secondary flow differs in its magnitude between
experiment and numerics. A possible reason is the im-
perfect axisymmetry in the experimental setup. The en-
hanced radial angular momentum transport in the exper-

iment leads to a broadening of the free shear layer at the
inner electrode. In the numerics, we observe the theo-
retically observed scaling of the Shercliff layer width as
δS ∼M−1/2 from [7].

With this experimental and numerical study, we have
established the base flow in ZUCCHINI which allows us
to study the instabilities, especially the one of the free
shear layer, in Paper 2.

Appendix A: Electrical boundary conditions

What are the appropriate electrical boundary condi-
tions for the numerical simulations of ZUCCHINI? Im-
posing either the electric current density on or the voltage
difference between the two electrodes leads to two dif-
ferent boundary conditions. Strictly speaking, neither of
them is the one present in the lab experiment. There, the
electrical current is kept fixed by controlling the voltage
between the two electrodes. The electrical current den-
sity is free to rearrange on the electrodes while the poten-
tial difference between the two electrodes is not necessar-
ily the same at all times. The corresponding boundary
condition would be∫

∂Ω

j · n dS = Iimp, (A1)

where integration is performed over the conducting sur-
face ∂Ω of the electrodes. It is, however, nonlocal and not
straightforward implemented within a FE framework.

Instead, we choose to impose the current density j0 at
the inner electrode which leads to the dimensionless con-
dition −∇Φ = er (Neumann boundary condition for Φ).
The outer electrode is set to ground, Φ = 0 (Dirichlet
boundary condition for Φ). At least on the outer elec-
trode, the electrical current density is free to rearrange.
Imposing j0 on both electrodes appears to be physically
impossible. All insulating walls have to fulfill the dimen-
sionless electric boundary condition n · ∇Φ = 0.

Appendix B: Convergence study

We test the numerical convergence of our numerical
model of ZUCCHINI by varying several parameters, es-
pecially the order of spatial discretization and the mesh.
The parameters of the test case are M = 202.22 and
Rei = 114.86. These numbers correspond to the highest
magnetic field that can be reached in the ‘Caylar’ setup
(Bmax = 0.1 T), and an electrical current density j0 that
is based on an imposed current of 1 A on the inner elec-
trode which in the experiment yielded a steady flow at
first sight.

On the one hand we vary the order of spatial discretiza-
tion. For velocity, we test P3 (cubic) and P2 (quadratic),
for pressure P2 and P1 (linear), for the electric poten-
tial quintic, quartic and quadratic. Also we study the
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FIG. 12. Convergence of global and local quantities. (a) Radial kinetic energy when decreasing the element size in the mesh.
(b) ‘Ohmic dissipation’. (c) Radial velocity ur in the Hartmann layer. (d) Radial current density jr in the Hartmann layer.
Results are normalized by the best-resolved ‘P3+P2, quintic’ simulation.

effects of streamline diffusion (SL) and crosswind diffu-
sion (CW) which damp numerical oscillations by adding
a small amount of artificial diffusion in the streamwise
and crosswind direction respectively. On the other hand
we parametrize the element size, resulting in meshes with
different numbers of degrees of freedom (DOF).

Convergence is assessed using several global and lo-
cal quantities derived from velocity and current density.
Besides we also test whether the divergence-free condi-
tions for velocity and current density are fulfilled glob-
ally and locally. Examples of the convergence of global
quantities are given in Figures 12a and b which show in-
tegrated radial kinetic energy Er = 0.5

∫
u2
idS and inte-

grated ‘Ohmic dissipation’
∫

(j2
r +j2

φ+j2
z )dS. Figures 12c

and d display the convergence of point measurements of
ur and jr in the Hartmann layer. All quantities are nor-
malized to the best-resolved simulation with discretiza-
tion ‘P3+P2, quintic’. In conclusion of this first part

of the convergence study, we choose to use discretization
‘P3+P2, quintic’ with streamline diffusion. A model with
roughly 106 DOF is observed to have a sufficient numer-
ical convergence that is better than 0.1%.

In the second step of our convergence study, we refine
the element size of the mesh in the core and the bound-
ary layers independently from each other. It turns out
that by decreasing boundary layer size, we improve con-
vergence further, whereas decreasing core element size
does not make a difference. In general we make sure that
the boundary and shear layers are resolved by at least 5
elements within their thickness [31].

The quantity most difficult to conserve is ∇ · j = 0. In
our study, we only use simulations that have a ratio of
inflowing over outflowing electrical current of Iin/Iout ∈
[95%, 105%]. This criterion discards the models with the
largest forcing current for M ≥ 100, and leaves us with
51 out of 56 models.
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