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We present an investigation of the stability of liquid metal flow under the influence of an imposed
magnetic field by means of a laboratory experiment as well as a linear stability analysis of the setup
using the finite element method. The experimental device ZUCCHINI is a modified cylindrical
annulus with electrically-driven flow of liquid GaInSn operating at Hartmann and Reynolds numbers
up to M = 2022 and Re = 2.6 · 105 respectively. The magnetic field gives rise to a free shear layer
at the prominent inner electrode.

We identify several flow regimes characterized by the nature of the instabilities. Above a critical
current Ic = O(0.1 A), the steady flow is destabilized by a Kelvin-Helmholtz mechanism at the
free shear layer. The instability consists of counterrotating vortices traveling with the mean flow.
For low forcing, the vortices are restricted to the free shear layer. Their azimuthal wave number
m grows with M and decreases with Re. At Re/M ≈ 25, the instability becomes container-filling
and energetically significant. It enhances the radial momentum transport which manifests itself in
a broadening of the free shear layer width δS . We propose that this transition may be related to an
unstable Hartmann layer. At Re/M2 = O(1), an abrupt change is observed in the mean azimuthal
velocity 〈uφ〉 and the friction factor F , which we interpret as the transition between an inertialess
and an inertial regime.

I. INTRODUCTION

In the context of geo- and astrophysics as well as en-
gineering applications, it is of great interest to study
the interaction between electrically conducting fluids and
magnetic fields. This research area is called magneto-
hydrodynamics (MHD). Two MHD regimes can be dis-
tinguished by the value of the magnetic Reynolds num-
ber Rm = µ0σeU0a where µ0 is the permeability of free
space, σe the electrical conductivity, U0 a typical velocity
and a the length scale of the system. On the one hand
is the regime of large Rm where e.g. planetary dynamos
live [1]. It is characterized by a two-way interaction be-
tween flow and magnetic field. On the other hand is the
regime of small Rm <∼ 1 and small Lundquist number

S = (µ0/ρ)1/2σeaB0
<∼ 1 with ρ the mass density and B0

the strength of the imposed magnetic field. This regime
is characterized by the absence of the reaction of the flow
on the magnetic field which means that induced fields are
negligible. Many liquid-metal experiments and engineer-
ing applications fall into this so-called quasi-static limit
[2]; it is also believed to govern the small-scale motions
in the Earth’s core [3].

The experiment ZUCCHINI (ZUrich Cylindrical
CHannel INstability Investigation) allows us to study
electrically-driven MHD flow at low Rm in the modi-
fied cylindrical annulus shown in Figure 1. All side walls
are electrically insulating except the inner and outer ring
electrodes. Forcing a radial electrical current I through
the tank filled with liquid GaInSn under an imposed mag-
netic field B gives rise to a Lorentz force leading to a
mainly azimuthal flow. The system is controlled by two
nondimensional parameters, namely the Hartmann num-
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FIG. 1. Sketch of the modified cylindrical annulus ZUCCHINI
with dimensions. Forcing an axisymmetric electrical current
I through the liquid metal under an imposed magnetic field B
gives rise to a Lorentz force which drives an azimuthal flow.
The electrodes are coloured in red, the remaining walls are
insulating. The half-height a = 5 cm is used as length scale
in the non-dimensionalization.

ber M and the Reynolds number Re,

M = aB0

√
σe
ρν
, Re =

U0a

ν
. (1)

where ν is the kinematic viscosity of the fluid.
In the first part of this work [4], hereafter referred to

as ‘Paper 1’, we investigated the steady base flow exper-
imentally as well as numerically. Also a detailed descrip-
tion of the setup and previous experiments is found there.
In the current study, we focus on the instabilities of the
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flow which will be shown to originate from the free shear
layer near the inner electrode.

Most earlier experiments in similar geometries oper-
ated in the unstable regime and used global potential dif-
ference measurements to diagnose the flow [5–7]. Transi-
tions in flow regimes were diagnosed by the friction factor
F , defined in Equation 18 or similar quantities describing
the dissipation in the system. Some experiments probed
the flow structure locally by potential difference probes
(PDP) [8, 9] or ultrasonic Doppler velocimetry (UDV)
[10]. We employ both local and global measurements.

The most significant difference between ZUCCHINI
and most other experiments is the presence of the in-
ner electrode which protrudes into the flow. Since the
magnetic field suppresses gradients along its direction, a
free shear layer develops at the edge of the electrode. In
addition the Hartmann layers at walls perpendicular to
the field with thickness δH ∼ M−1 and Shercliff (side)
layers at parallel walls scaling as δS ∼M−1/2 are impor-
tant features of confined low-Rm MHD flow.

Experimental investigations naturally incorporate the
whole physics of a system. Due to the sparsity of exper-
imental measurements, it is instructive to complement
the experiment by numerical simulations which, how-
ever, do not reach the same parameter values. The fa-
mous Moresco and Alboussière [7] experiment (MA04)
studying the instability of the Hartmann layer as well as
the original Hartmann and Lazarus [11] duct experiment
have been the topic of intense numerical investigations.
Krasnov et al. [12] explained the discrepancy in the value
for the threshold of instability between results of MA04
(Rec/M ≈ 380) and the linear stability analysis which is
two orders of magnitude larger by finite-amplitude per-
turbations. Vantieghem and Knaepen [13] found that the
magnetic field suppresses turbulence in the core and the
Hartmann layers and that unstable side layers can coex-
ist with stable Hartmann layers. Zhao and Zikanov [14]
studied the MA04 setup below the threshold of Hartmann
layer instability for a Hartmann number of M = 260.
They found that a first instability limited to the outer
side layer does not change the friction factor F much
which is dominated by stresses at the Hartmann walls.
This picture of subsequent relaminarization of the core
flow, the Hartmann layers and finally the side layers with
increasing magnetic field was confirmed by the straight
duct simulations of Krasnov et al. [15] at Re = 105 and
M ∈ [0, 400]. Not only the critical parameters for the
laminar-turbulent transition but also friction coefficients
were in agreement with Hartmann’s original data [16].

Another approach for the numerical simulation of
MHD flow at large Hartmann numbersM and interaction
parameters N = M2/Re is the effective two-dimensional
model of Pothérat et al. [17, 18]. It is based on the as-
sumption of a quasi-2D core flow, and includes 3D effects
due to the Hartmann layers in the averaged equations.
It has been validated against experimental results, e.g.
the free shear layer study of Alboussière et al. [8]. A
similar concept underlies the geostrophic-like model by

Alboussière [19, 20] for large-M flows.

Free MHD shear layers have been studied theoreti-
cally [21, 22], experimentally [8, 9, 23, 24] and numer-
ically [18, 24]. Lieutaud and Neel [22] studied the sta-
bility of electrically-driven shear flow in a straight duct
against two-dimensional perturbations, and found the
limit of unconditional stability below which any arbi-
trary 2D perturbation decays. The MATUR experiment
examined the structure as well as momentum transport
of a quasi-2D MHD turbulent shear layer at M = 42
and up to 1800 in [7, 8], respectively. It was found
that the shear layer thickness is significantly increased
and scales as δS ∼ (M/Re)−1/2.3, the laminar predic-
tion being δS ∼ M−1/2. The velocity field is dominated
by a small number of large coherent structures moving
with a transit velocity of slightly above uφ,max. In the
Princeton MRI experiment [23, 24], a free Shercliff layer
was studied in the presence of rotation and magnetic
field in a cylindrical Taylor-Couette apparatus. Finally
the Taylor-Couette experiment DTS observed magneto-
inertial waves in spherical geometry [25, 26].

The present paper focuses on the instabilities in ZUC-
CHINI. Section II summarizes the physical model which
can be found in more detail in Paper 1, as well as the nu-
merical and experimental methods. Section III describes
our findings for the mean flow, the instability of the free
shear layer and further transitions in the friction factor.
A discussion in Section IV concludes the work.

II. MODEL AND METHODS

The configuration is a cylindrical annulus filled with
an electrically conducting fluid. The basic setup is
shown in Figure 1. The half-height of the container is
a = 5 cm. The radii of the inner and outer cylinders
are ri = 4.5 cm and ro = 20.5 cm, respectively. The
disk electrode protruding from the inner cylinder has a
radius of rd = 7.5 cm, its axial width is 1 cm. Container
and fluid are subject to an imposed axial magnetic field
B = B0ez with a strength of up to 1 T. We force an elec-
trical current I of up to 300 A between the edge of the
disk electrode at the center and the ring electrode at the
outer cylinder. The remaining walls of the container are
electrically insulating. The mainly radial current density
j in an axial magnetic field gives rise to a Lorentz force
fL = j × B in the azimuthal direction resulting in an
azimuthal fluid flow.

With Rm <∼ O(10−1) as an indicator of the ratio of
induced to imposed magnetic fields, induced fields are
largely negligible in ZUCCHINI. For this so-called quasi-
static approximation (Rm� 1), the dimensional govern-
ing equations are the Navier-Stokes equation, the incom-
pressible continuity equation, Ohm’s law and the equa-
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tion of charge conservation,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρν∇2u + j×B (2)

∇ · u = 0 (3)

j = σe (E + u×B) (4)

∇ · j = 0, (5)

where u is the velocity vector, E is the electric field and
p is the pressure. The nondimensional equations are

Re

M2

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

M2
∇2u + (−∇Φ + u×B)×B (6)

∇ · u = 0 (7)

∇2Φ = ∇ · (u×B) (8)

as derived in Paper 1. The nondimensional parameters
governing the system are the Hartmann number M and
the Reynolds number Re defined in Equation 1. The
square of the Hartmann number M2 gives the ratio of
Lorentz to viscous forces. The Reynolds number Re is
the ratio of inertial to viscous forces. Alternatively the
interaction parameter N = M2/Re can be used which
gives the ratio of Lorentz to inertial forces.

A. Numerical simulation

We assume that the base flow in ZUCCHINI is steady
and axisymmetric as established in Paper 1. In real-
ity, such a flow occurs only at very low forcing. For a
given Hartmann number M , the flow may be unstable
to infinitesimally small perturbations in the velocity field
above a critical value Rec of the Reynolds number, called
the linear onset of instability. These perturbations ini-
tially grow like eσt where σ is the growth rate. The flow
could also be unstable to finite-amplitude perturbations
potentially already below the linear onset of instability,
Re < Rec, called a subcritical instability. With the lin-
ear instability analysis, we hence find an upper bound for
the onset of instability.

As for the base flow, we perform numerical simulations
using the commercial finite element (FE) code Comsol
Multiphysics, version 4.3b. The brute force approach
of recovering the unstable flow by 3D simulations is too
costly since very thin boundary layers δH ∼M−1 have to
be resolved. Hence we choose to study the linear onset of
instability by simulating modes with different azimuthal
wave numbers m separately. The separation is possible
since modes with different m are not coupled in the linear
problem. In this way, the problem reduces to 2D3C (2
dimensions, 3 components) simulations.

1. First-order perturbation equations

For the study of the linear onset of instability, the ve-
locity field is expressed as a sum of the steady and ax-
isymmetric base flow ub and and a harmonic perturba-
tion u′ with an explicit φ-dependence using the azimuthal
wave number m,

u = ub(r, z) + u′(r, z, t) eimφ. (9)

The perturbation is assumed to be small compared to the
base flow, |u′| = ε |ub| with ε � 1. The same procedure
is applied to the remaining variables pressure p and the
electric potential Φ. Inserting these expressions into the
governing Equations 6-8 yields terms of order ε0, ε1 and
ε2. Terms of order zero that constitute the base flow
(equivalent to Eq. 6-8) were solved in Paper 1, second-
order terms are negligible. The remaining terms of order
one in ε make up the linearized perturbation equations.
They are given in cylindrical coordinates in Appendix A.

2. Numerical model

The linearized perturbation equations (Eq. A1-A5) as
well as the equations for the axisymmetric base flow
(Eq. 6-8) are solved with the FE method. The 2D ge-
ometry corresponds to a (r, z)-plane section through the
experimental setup of ZUCCHINI. Details of the imple-
mentation are found in Paper 1. In the present study, we
use quadratic and linear Lagrange elements for the dis-
cretization of velocity and pressure fields, respectively;
the discretization of the electric potential is quadratic.
In order to further reduce computation time, the mesh is
adapted for every M . The differences in global and local
measurements of velocity and electrical current density
compared with highly resolved simulations from Paper 1
are negligible (<∼ 0.1%).

Velocity boundary conditions are no slip, u = 0. For
the base flow, electrical boundary conditions are insulat-
ing, −n · ∇Φ = 0, at all boundaries apart from the elec-
trodes; at the inner electrode, a radial current is forced,
−∇Φ = er, the outer electrode is set to ground, Φ = 0
(Paper 1, Appendix A). For the linearized perturbation
equations, the boundary conditions are the same as for
the base flow apart from the electrical boundary condi-
tion for the inner electrode which is also insulating.

In order to have a perturbation in the linearized equa-
tions to begin with (which also satisfies the continuity
equation), a flow is driven by the injection of a radial elec-
trical current at the inner electrode which is shut off after
some time. For our study, we applied−∇Φ = f(t)er with

f(t) =

{
c
2 (1 + cos(πt/t0)) for t < t0
0 for t ≥ t0,

(10)

which is smooth at t0 for which we used t0 = 0.1. The
constant c is adjusted in the range from 10 for M = 10
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FIG. 2. Temporal evolution of nondimensional kinetic ener-
gies of perturbation E′i where i ∈ {r, φ, z}. The data are taken
from runs with M = 100, I = 0.22 A and m = 4 (blue) and
m = 6 (red) respectively. Continuous lines are E′φ, dashed
lines E′r, dotted lines E′z.

to 0.5 for M = 200 such that the kinetic energy in the
perturbation of the flow is small (∼ 10−3) compared to
the base flow.

In the linear instability study, first the base flow model
at (M,Re) is run until it converges. Then the flow for
every azimuthal wave number m is simulated separately.
The number of degrees of freedom ranges from roughly
1.6 · 105 at M = 10 to 3.1 · 105 at M = 200. Calcu-
lations were performed on a single processor with every
run (M,Re,m) taking of the order of four hours of CPU
time.

3. Parameters and processing

We perform a systematic parameter study of the first-
order perturbation equations in order to calculate growth
rates σ for the different modes and discover the threshold
of linear stability. Moreover we study the spatial struc-
ture and behaviour of the unstable modes.

The parameter study of the base flow in Paper 1
contained models with M ∈ [1...200]. An asymptotic
behaviour in terms of velocity scalings was found for
M >∼ 30. In this parameter regime, the axisymmetric
base flow (m = 0) is stable up to the highest forcing. We
restrict our linear stability analysis to Hartmann num-
bers M ∈ [10, 200]. The imposed electrical current I,
which defines the input Re in the numerical study, is cho-
sen between 1 mA and 4.3 A. For 48 parameter combina-
tions (M, I), we run models with azimuthal wave number
m ∈ [1...10]. To check the behaviour of the growth rates
at higher m, we perform simulations with m up to 50 for
the case (M = 20, I = 0.43 A). We measure the tem-
poral evolution of the spatial components of the kinetic

energy of the perturbation,

E′i = 0.5

∫
u′2i dS, (11)

where i ∈ {r, φ, z} denotes the radial, azimuthal or axial
component.

Figure 2 shows the temporal evolution of the kinetic
energies for M = 100, I = 0.22 A, m = 4 and 6. After
the shutdown of the initial excitation, the kinetic ener-
gies in the 2D section are oscillating around a curve of
exponential decay (m = 4) or growth (m = 6). We fit
an exponential function Aeσt to the azimuthal kinetic
energy of perturbation E′φ using linear regression. Ex-

tracting σ from E′r or E′z yields the same result. Positive
growth rates σ > 0 mean that infinitesimal perturbations
grow and the flow is unstable. Since the frequency of the
instability is experimentally observable, we also measure
the oscillation frequency 2f of the azimuthal kinetic en-
ergy which is two times the frequency f with which the
azimuthal velocity u′φ oscillates. This is done using the

Lomb-Scargle periodogram [27] due to the uneven sam-
pling of the data in time (adaptive time stepping). The
oscillation frequencies of radial and axial velocity com-
ponents are the same as the azimuthal one.

B. Laboratory experiment

In the ZUCCHINI experiment, we study the instabili-
ties of electrically-driven MHD flow, especially the ones
occurring in the free Shercliff layer at the inner electrode.
We also find indications for instability in the Hartmann
layer.

1. Setup

The experimental setup consists of three main parts:
the tank filled with liquid GaInSn in the form of a mod-
ified cylindrical annulus, coils that create the imposed
magnetic field B, and power supplies generating the cur-
rent I (Fig. 1). The setup is described in detail in Pa-
per 1. The tank is equipped with ultrasonic Doppler ve-
locimetry (UDV) and potential difference probes (PDP)
to diagnose the flow. The working fluid is MCP 11 alloy
from 5N Plus UK Ltd. consisting of 65.9% gallium, 20.8%
indium and 13.3% tin. It is liquid at room temperature;
its relevant physical properties are given in Table I. Since
it is easily oxidized, we keep the whole system under an
argon overpressure of 0.2 bar at all times.

The data of this work come from two different realiza-
tions of this setup. The first one is the ‘Caylar’ setup
which consists of three resistive magnetic coils in a mod-
ified Helmholtz arrangement reaching a maximum field
strength of B = 0.1 T. The three SM 18-50 power sup-
plies from Delta Elektronika provide a total forcing cur-
rent up to I = 150 A. In the second setup, called ‘Cryo’,
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TABLE I. Physical properties of GaInSn from Morley et al.
[28]. The presented data resemble the MCP11 alloy from 5N
Plus.

kinematic viscosity ν 2.98 · 10−7 m2/s
electrical conductivity σe 3.1 · 106 (Ωm)−1

density ρ 6360 kg/m3

melting point Tm 10.5◦C
sound speed c 2730 m/s

a single thick superconducting coil set from Cryomag-
netics, Inc. provides a magnetic field up to Bmax = 1 T.
The electrical current between the electrodes is driven by
six SM 18-50 power supplies and reaches a total forcing
current of Imax = 300 A. More detailed information on
magnetic field geometry, current distribution and GaInSn
handling is given in Paper 1.

2. Measurements

The flow in ZUCCHINI is measured by UDV and PDP.
Since the two methods rely on different physical princi-
ples, they provide independent measurements allowing to
mutually check the results. In the following section, we
describe the measurement methods, the data processing,
and present a data example.

We use the UDV system DOP3010 from Signal Pro-
cessing S.A. with three multiplexed channels connected
[29]. The UDV probes have an emission frequency of
fe = 8 MHz. UDV is based on measuring shifts in the
position of particles, in our case oxides of Ga, suspended
in the fluid between two consecutive ultrasonic pulses. It
gives a profile of the velocity component along the ul-
trasonic beam. For technical details and procedures, see
Paper 1.

Two of the three UDV probes are mounted in the in-
ner cylinder of the tank as shown in Figure 3. Probe
R measures the radial velocity ur along a radial profile
to the outer wall. Probe X records the chordwise veloc-
ity uχ which contains uφ as well as ur. UDV probe Z
is mounted flush in the bottom plate of the tank slightly
outside the inner disk electrode. It records a profile of the
axial velocity uz over the entire height of the container.

PDP measurements have not been used in Paper 1.
Hence we give here a more detailed overview of the
method. We employ PDPs which make use of the ex-
ternally imposed magnetic field. The PDP measures the
voltage drop ∆Φ across the distance between the wires
∆l induced by the flow of an electrically conducting fluid
in a magnetic field. In the absence of electric currents j,
Ohm’s law (Eq. 4) relates the electric field E ≈ ∆Φ/∆l
linearly to the velocity [30]. In specific cases, it is nec-
essary to take thermoelectric effects into account due to
the different materials of PDP and fluid when measuring
∆Φ [31, 32]. Also it is known that PDPs perturb liquid
metal flow [33]. We consider these effects to be negligible

FIG. 3. Top view of tank with orientation of UDV probes
R (radial) and X (chordwise) in red and the location of the
potential difference probes A and B in yellow.

in our experiment.
We use an array of wires mounted flush in the top lid

of the container to measure ∆Φ in the r- and φ-directions
in a similar way to that of Kljukin and Thess [34] and
Messadek and Moreau [9]. Our PDP arrays consist of
squares of 2×2 brass pins with a width of a few tenths of
a mm and a spacing of 10.16 mm, thus yielding two radial
and two azimuthal measurements per PDP array. The
PDP arrays A and B are located on a radial ray above the
radial UDV beam at r = 75 mm and 140 mm respectively.
Since B ≈ B0ez, azimuthal and radial velocity are given
by

u{φ,r} =
∆Φ{r,φ}
B0 ∆l

. (12)

In the limit of high Hartmann numbers, M � 1, the
electric potential is uniform along the direction of the
magnetic field and does not significantly change over the
Hartmann layer. Hence our measurements of ∆Φ in the
Hartmann layer do not only give local velocities but carry
information about the core velocity. We have verified
that the velocities calculated from PDPs agree qualita-
tively with the ones measured by UDV. Nevertheless we
report PDP measurements as voltages only in this study.

The PDPs are connected to a NI PXI-2501 multiplexer
and a NI PXI-4070 data acquisition system through a
LAN cable of category 5e or similar shielded cables. In
the 0.1 V (resp. 1 V) range, the measurements have a res-
olution of 0.1 µV (resp. 1 µV). Sampling with roughly
50 Hz (resp. 750 Hz) leads to a noise level of less than
∼ 1 µV (resp. ∼ 10 µV). Potential differences are mea-
sured against the inner electrode as common reference,
and later combined to yield local measurements.
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UDV and PDP provide time series of velocity and po-
tential, respectively. The sampling rate of the UDV is
adjusted according to signal quality and the ability to
resolve the observed oscillations. In general it increases
from ∼ 1 Hz at low currents (steady flow) to ∼ 30 Hz at
150-300 A. The recording time is set such that the fre-
quency resolution is sufficient (∼ 0.01 Hz). In general it
decreases from ∼ 150 s to ∼ 60 s with increasing current.
The sampling rate of the PDPs is 5.2 Hz per channel for
low forcing currents and 83.3 Hz for high currents.

3. Processing

UDV and PDP time series are treated similarly. In
both cases, we calculate the temporal mean value (·) and
the standard deviation σu. After detrending with a linear
function and applying a Hann window to the time series,
we perform a fast Fourier transform (FFT) to find the
two dominant frequency components fi and their respec-
tive amplitudes Ai with i ∈ {1, 2}. Only spectral peaks
with Ai > 10 〈A〉 are considered as significant frequency
components where 〈A〉 is the average value of the radially
stacked amplitudes.

PDP measurements are processed in a similar way. In
general, they confirm the results from the UDV record-
ings. Hence we focus on the UDV data in this work. A
PDP data example is given in Appendix B.

Profiles of mean azimuthal velocity uφ(r) are derived
as

uφ(r) =
r

e
uχ(r), (13)

where e = 25 mm is the distance of the UDV chord (probe
X) to the origin. For a discussion on the reconstruction
of uφ, see Section V B in Paper 1. We define the spa-
tial averaging along a profile in a cylindrical coordinate
system as

〈·〉 =

∫
· rdr∫
rdr

. (14)

The radial range of averaging in the case of 〈uφ〉 is r ∈
[100, 150] mm. The Reynolds number is defined as

Re =
〈uφ〉a
ν

(15)

where 〈uφ〉 is averaged both in time and space.

III. RESULTS

In this section, we present the results of the numerical
and experimental investigations which do not overlap in
parameter space but give complementary insights into
the system. The first part is dedicated to the mean (time-
averaged) flow which has been studied in terms of the
base flow in Paper 1 for the cases with low forcing up to

I = 9 A only. Then we study the instability of the free
shear layer as well as its structure and the shear layer
width. The section is concluded by the friction factor
which shows indication of a turbulent Hartmann layer at
medium M and large forcing.

A. Mean flow

The mean flow u is the basis on which possible in-
stabilities develop. In Paper 1, we have shown that u
is dominated by its azimuthal component uφ due to the
Lorentz forcing in our model. At large M and low forcing
I, the numerical results of the base flow followed well the
theoretical expression

uBH
φ (r) =

I

4πr
√
σeρν

(16)

of Baylis and Hunt [6]. The experimental profiles in Pa-
per 1 exhibited the same proportionality uφ(r) ∼ I/r,
however, with 20% smaller absolute values.

Figure 4a shows profiles of the time-averaged az-
imuthal flow uφ(r) in the experiment at M = 1769
(B = 875 mT) for varying forcing current. The gen-
eral shape of the profiles is similar as in Paper 1 up to
the highest forcing of I = 300 A: a shear layer forms on
the cylinder tangent to the inner electrode, separating the
flow into an electrically forced outer domain and an inner
domain where the flow is only viscously entrained from
the forced region. This momentum diffusion appears to
be enhanced at large forcing, broadening the free shear
layer which we will study in Section III C.

Figure 4b shows the average value 〈uφ〉 of the mean
azimuthal flow as a function of the current I and the
Hartmann number M . For large M >∼ 500, we observe
a collapse of all data onto a linear scaling 〈uφ〉 ∼ I with
the current up to the largest forcing. At lower M < 500,
we observe a transition in the base flow. A low-forcing
regime follows the same linear trend as for the highest
M . Above a critical value of the injected current the
mean flow tends to be less energetic, the amplitude in-
creasing less rapidly with the current. The smaller M ,
the sooner this transition occurs. Although we do not
have evidence from the present data, it is not excluded
that this change of behaviour continues at the largest M
but for currents that are out of reach with our setup.
In the range of parameters accessible with this experi-
ment, it is not possible to differentiate between a second
linear behaviour and another mathematical form, which
may lead to saturation at larger I. We will come back
to this transition when looking at the friction factor in
Section III E, especially Figure 14.

B. Instability of the free shear layer

For our understanding of the general dynamics in the
modified cylindrical annulus, it is important to determine



7

60 80 100 120 140 160 180
0

500

1000

1500

2000

r in mm

u
φ
in

m
m
/
s

I
in

A

0

50

100

150

200

250

300

(a)

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

I in A

〈u
φ
〉
in

m
m
/
s

 

 

M

200

400

600

800

1000

1200

1400

1600

1800

2000

(b)

FIG. 4. (a) Profiles of mean azimuthal flow uφ(r) in the experiment at M = 1769 (B = 875 mT). The color indicates the
forcing current I. The vertical line shows the location of the inner electrode, r = 75 mm; the grey window, r ∈ [100, 150] mm, is
used to calculate the average value 〈uφ〉. (b) Radial average 〈uφ〉 of the mean azimuthal flow in the experiment plotted versus
forcing current I. The color indicates the Hartmann number M .

10
0

10
1

−6

−5

−4

−3

−2

−1

0

1

m

σ

 

 

M = 100, I = 0.13 A

M = 100, I = 0.22 A

M = 20, I = 0.43 A

(a)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M

I
in

A

 

 

2

3

4

5

6

7

8

9

m =

(b)

FIG. 5. Numerical linear stability study. (a) Growth rates σ versus azimuthal wave number m of the modes for (M = 100, I =
0.13 A and 0.22 A) as well as (M = 20, I = 0.43 A). Modes with σ > 0 are linearly unstable. (b) Curves of neutral stability
(σ = 0) for different azimuthal wave numbers m in parameter space (M, I). The data points are derived from the measured
growth rates by linear interpolation, the connecting lines are piecewise cubic Hermite interpolating polynomials.

the onset of the first instabilities that develop on top of
the stationary base flow. Experimentally, the instabilities
are, however, only unambiguously observed when they
reach a certain amplitude and become significant in terms
of energy compared to the base flow. Hence we start our
study of the instabilities in the system by the numerical
linear stability analysis described in Section II A.

Figure 5a displays the growth rate σ of modes with
different azimuthal wave numbers m for three selected
cases (M, I). At M = 100, all modes are stable for I =
0.13 A. For I = 0.22 A, the modes with m ∈ {5, 6, 7, 8}
are unstable whereas larger m are stable again. As seen
in the case (M = 20, I = 0.43 A), the growth rate σ

decreases almost monotonically towards large m. In a
3D setup with all wave numbers present, all modes with
σ > 0 might grow. After sufficient time, however, only
the mode with largest σ is observed.

Through an interpolation, we find the critical current
Ic for which σ = 0 at every (M,m). These curves of neu-
tral stability are shown in Figure 5b. The lowest curve
corresponds to the mode which becomes first unstable
when increasing the current. The onset of linear insta-
bility is given by the lower envelope of all these curves.
Its critical current Ic has a minimum of roughly 0.13 A at
M ≈ 30. For larger M , it increases to 0.28 A at M = 200;
the scaling follows Ic ∼M0.5. We observe that the wave
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number m of the most unstable mode increases from 3
at M = 10 to 8 at M = 200. Since we are dealing with a
linear stability study, we can not predict the wave num-
ber of the dominant mode for I � Ic. In the saturated
regime, it is possible to find different modes, as we will
see in the experimental data.

In the experimental UDV recordings, we use the stan-
dard deviation σuφ

of the azimuthal velocity as a tracer
of the instability, i.e. the fluctuating part of uφ. Figure 6a
shows radial profiles of σuφ

/〈uφ〉 at M = 1769 and vary-
ing current. Neglecting measurement noise, the quantity
σuφ

/〈uφ〉 can be interpreted as the square root of the ra-
tio of energy in the instability to the energy in the base
flow. We observe that σuφ

/〈uφ〉 has a significant peak in-
side the edge of the inner electrode (r = 75 mm) already
at the lowest forcing. This peak shifts to a slighly larger
radius with higher forcing but stays near to the inner
electrode. It indicates an instability localized at the free
shear layer, which we will call regime 1 in Figure 6b. At
this point, the instability is energetically not significant
compared to the base flow.

At larger forcing current I, σuφ
/〈uφ〉 increases while

the peak broadens over a larger radial range. The insta-
bilities grow in amplitude and are not restricted to the
free shear layer anymore but become container-filling.
We will call this regime 2 in Figure 6b, and take as
a criterion for the transition that the radial average is
〈σuφ
〉/〈uφ〉 > 0.1 (dashed line). In regime 2, the insta-

bility alters the base flow as we will see when looking at
the shear layer width in Section III C.

Figure 6c is a synopsis of the results from the numerical
linear stability study and the transition between regimes
1 and 2 in the experimental data. This stability diagram
in (M,Re)-space shows the linear onset Rec as connected
squares, experimental data points in regime 1 as open
circles and the ones in regime 2 as filled diamonds.

All our experimental UDV measurements exhibit a lo-
calized peak of σuφ

at the location of the free shear layer.
This result is well understood from the very threshold ob-
tained in the numerical simulations. We tried to perform
experiments at very low current to capture the onset of
regime 1. However, the resolution of the UDV does not
allow us to resolve both the large amplitude mean flow
and the small amplitude fluctuations simultaneously.

The transition between regimes 1 and 2 in the UDV
data is well described by Re/M ≈ 25 for large M in Fig-
ure 6c. Hence we use this combined parameter to collapse
the σuφ

/〈uφ〉 data. Figure 6d displays 〈σuφ
〉/〈uφ〉, where

σuφ
was averaged over r ∈ [60, 120] mm, versus Re/M for

large M >∼ 500. The data appears to be well collapsed
onto one curve that exhibits a clear transition, increasing
by roughly an order of magnitude around Re/M ≈ 25.

C. Shear layer width

As the instabilities appear to develop at the free shear
layer for low forcing, it is instructive to have a closer look

at the properties of this layer. A measure that is accessi-
ble from profiles of azimuthal velocity uφ(r) (Fig. 4a)
is the width δS of the free shear layer. We define it
as the radial distance between the point of maximum
azimuthal velocity and the edge of the inner electrode,
δS = r(uφ

max)− rd.
Figure 7a shows δS versus the current I for experimen-

tal runs at large M >∼ 500. The different-M data behave
similarly with δS first dropping from 10 to 5 mm when
increasing I, and then exhibiting two jumps to rather
constant plateaus of 13 mm and 19 mm. Only the data
points at 1 A do not follow this behaviour, and show a
clear M -dependence with smaller δS at larger M .

Also the δS-data are collapsed onto a single line when
using the parameter Re/M instead of I as seen in Fig-
ure 7b. The two transitions in δS from 5 mm to 13 mm
and subsequently to 19 mm occur at roughly Re/M ≈ 25
and 70, respectively. Hence the first increase in the shear
layer width corresponds to the transition from regime 1
to 2. At the value of Re/M ≈ 25, the instabilities start
to fill the entire container as discussed in the previous
section. This appears to enhance the radial transport
of momentum and flatten the velocity gradient, thereby
broadening δS .

D. Structure of the instability

After determining the threshold of the instability and
its location, we turn to its structure. The numerical lin-
ear stability analysis allows to conveniently plot the per-
turbation velocity field u′. Figure 8 displays four snap-
shots of u′ for the most unstable, slightly supercritical
mode m = 8 at M = 200. The perturbation flow (as the
base flow) is largely axially invariant due to the magnetic
field. The radial and azimuthal velocity components, u′r
and u′φ are of the same order and oscillate as seen in
Figure 2. The four snapshots of Figure 8 are taken with
equal time intervals over one period of oscillation. The
perturbation flow corresponds to alternating vortices at
the free shear layer that are swept with the mean flow.

The shear rate γ in the axisymmetric base flow is
shown in Figure 9. It is defined as the magnitude γ = |γ|
of the strain-rate tensor γ =

(
∇u + (∇u)T

)
. By far the

largest shear occurs in the Hartmann boundary layers at
the top and bottom lids. But also the free shear layer at
the edge of the inner electrode and the outer-wall bound-
ary layer contain a significant amount of shearing. The
first instabilities hence appear to be an instability of the
free shear layer itself, similar to a Kelvin-Helmholtz in-
stability.

When observing the vortices travelling with the mean
flow from a fixed point in the laboratory frame, we mea-
sure the oscillation frequency f of the velocity compo-
nents. Figure 10 shows f from the numerical study as
a function of the current I for different M . For a given
electrical current, frequencies are higher for larger M .
Note that only perturbations above the threshold of in-
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FIG. 6. Standard deviation and stability in the experimental data. (a) Profiles of the ratio of standard deviation σuφ to mean
azimuthal velocity 〈uφ〉 at M = 1769 (B = 875 mT). The color indicates the electrical current I. The vertical line indicates
the location of the inner electrode, r = 75 mm. (b) Example profiles from (a) showing (1) an instability localized at the free
shear layer, and (2) a broad tank-filling instability with 〈σuφ〉/〈uφ〉 > 0.1. (c) Measured data in (M ,Re)-space with open circles
corresponding to regime (1) and filled diamonds falling into regime (2). The red line with slope 1 appears to separate the two
regimes well for M >∼ 100. The filled squares denote the critical Re for linear instability in the numerical study. (d) Averaged
ratio 〈σuφ〉/〈uφ〉 for large M >∼ 500 versus Re/M showing a clear transition from regime (1) to (2) at Re/M ≈ 25.

stability which is between 0.13 and 0.28 A depending on
M (cf. Fig. 5b) are growing and potentially observable.
Frequencies near the onset of linear instability range from
roughly 4 mHz at M = 10 to 25 mHz at M = 200.

Oscillation frequencies in the experiment are deter-
mined by FFT from the UDV and PDP recordings as
described in Section II B 3. Figure 11 displays the two
dominant frequencies versus the current I for M = 1769.
We observe a clustering of the frequencies on straight
lines, f in general increasing with I. The largest dom-
inant frequency observed at 300 A exceeds 7 Hz. UDV
and PDP measurements both contain the same frequen-
cies, and hence confirm each other. The various lines
correspond to different modes present in the flow.

Adopting the picture of vortices being swept with the
mean flow, we plot the dominant frequencies f versus

the radial average value of mean azimuthal velocity 〈uφ〉
in Figure 12. Again we see a clustering of the data on
straight lines through the origin which is the expected
picture for the travelling Kelvin-Helmholtz instability.
The wave number m of the instability is determined as

m = 2πr
f

ut
. (17)

Assuming the transit velocity ut to be slightly above
uφ

max/2 as found by Messadek and Moreau [9] and
uφ

max ≈ 1.2〈uφ〉 in our data, we find m = 2 for the
lowest mode. The second distinct line would correspond
to m = 6, the steepest cluster at small velocities (small
currents) to a mode with m > 20. Hence we observe
a tendency towards larger-scale (low-m) structures with
higher forcing. We propose that it can be interpreted as
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FIG. 7. Width δS of the free shear layer versus (a) the current I and (b) the parameter Re/M in large M >∼ 500 models; color
indicates the Hartmann number M . We observe transitions in δS to 13 mm at Re/M ≈ 25 and to 19 mm at Re/M ≈ 70.
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FIG. 8. Temporal evolution of the perturbation velocity u′ over one period for the slightly supercritical case (M = 200, I =
0.34 A,m = 8). Colours indicate the azimuthal velocity u′φ, arrows show u′r and u′z. The four snapshots are taken with equal
time intervals over one oscillation period T . Originating from the Shercliff layer at the inner electrode, the perturbation flow
appears to meander with all velocity components changing sign over one period. The structure consists of alternating vortices
being swept with the mean flow, and thus is attributed to a Kelvin-Helmholtz-type instability.
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FIG. 9. Shear rate γ of the axisymmetric base flow for the
slightly supercritical case (M = 200, I = 0.34 A,m = 8).
Most shearing occurs in the very thin Hartmann layers at the
top and bottom walls, followed by the free Shercliff layer at
the inner disk electrode and the outer side layer. Note the
cropped color scale.
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FIG. 10. Frequencies f of the oscillations of the azimuthal ve-
locity u′φ in the numerical linear stability study as a function
of the forcing current. Colours indicate the value of the Hart-
mann number M ; note the different scale compared to the
experimental data. Empty symbols denote decaying modes,
filled symbols the fastest growing modes.

the inverse energy transfer leading to a merging of spatial
structures in forced quasi-2D flows [8, 9].

In the numerical linear stability analysis, we found that
the azimuthal wave number of the most unstable mode
grows from m = 3 at M = 10 to m = 8 at M = 200
(Fig. 5). In the experiment, there appears to be a trend
towards larger m (steeper lines) with increasing M at low
forcing in agreement with the numerical prediction. The
steepest cluster line which includes data with M >∼ 500
in Figure 12 corresponds to m > 20 in accordance with
the extrapolation of the m present in the numerics. The
decrease in m with Re as well as the increase with M are
features also known from hydro- and magnetohydrody-
namic spherical Couette flow [35, 36].
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φ (red diamonds). The selected
data were taken at M = 1769 and have an energy larger than
10 times the noise level.
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FIG. 12. Plot of dominant frequencies f1 and f2 in uχ versus
the radial average value of mean azimuthal velocity 〈uφ〉. The
data points cluster on straight lines through the origin. This
suggests that the instabilities are traveling with the mean flow
at a transit speed ut. Under this assumption, the lowermost
line corresponds to an azimuthal wave number of m = 2.

A difference between the linear stability analysis and
the experiment is that in the first all values of m appear
whereas the experiment is fully nonlinear and only a few
distinct m are observed. A possible mechanism how this
occurs was described by Kaplan [37]. Using nonlinear
3D simulations, the author revealed the energy pumping
between modes with different m and formulated it as a
network. This leads to saturation and to suppression
of all modes but one. Experimentally, we hardly ever
measure directly at the onset of instability and hence
only observe the final saturated state.

We compare the wave numbers m found in the nu-
merical analysis and the experiment with the prediction
of a theoretical stability analysis for 2D instabilities in
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FIG. 13. Friction factor F versus Re/M as in [7]; colour
indicates M . The crosses are the experimental data, the
squares the numerical data from the base flow study with
M ∈ [50, 200]. The dashed line gives the laminar value
Flam = 2(Re/M)−1 from theory.

electrically-driven shear flow by Lieutaud and Neel [22].
At onset, similar wave numbers m as in our linear sta-
bility analysis are predicted, m increasing with M . Fol-
lowing [22], we would expect m ≈ 24 for the onset of in-
stability at M = 2022. Experimentally we observe wave
numbers of this order at large M and low forcing.

E. Friction factor

The friction factor F quantifies the dissipation in the
system. Hence it is well suited to study processes that sig-
nificantly affect the total amount of dissipation. In their
study of the stability of the Hartmann layer, Moresco
and Alboussière [7] (hereafter referred to as MA04) used
measurements of the friction factor and defined it as

F =
IB

u2mρ2πr
(18)

where the mean azimuthal velocity um was determined
from measurements of the potential drop between inner
and outer cylinder. We use um = 〈uφ〉, the mean az-
imuthal velocity derived from UDV measurements. Fig-
ure 13 shows the relation between friction factor F and
the parameter Re/M for our experimental and numerical
data. As in MA04, the data with different M are pretty
well collapsed in this plot. The dashed line shows the
friction factor Flam = 2(Re/M)−1 for laminar flow. The
numerical data from the base flow study obey Flam well
with the small difference coming from the definition of
our local average. For the experimental data, we observe
that the measured F follows Flam up to Re/M ≈ 100.
For larger Re/M , the measured data transit to larger
values of F . For lower M , this transition is gradual.
For moderate M , the observed transition is more pro-
nounced.

For a closer examination, Figure 14a shows the fric-
tion factor from the experimental data normalized by its
laminar value, F/Flam. Up to Re/M ≈ 4, F does not
exceed Flam by more than 20%. For large M , we observe
a gradual transition to F/Flam ≈ 1.5 at Re/M ≈ 70.
Above this value, depending on M , we observe a plateau
followed by an abrupt increase of F/Flam. This sec-
ond transition is not well captured by a universal crit-
ical Re/M . In Figure 14b, the same quantity F/Flam is
plotted against Re/M2 showing a clear transition around
Re/M2 = O(1) for all accessible M . This contrasts with
earlier studies that found a transition in the Hartmann
layer occurring at a critical Re/M ≈ 380. The increase in
F/Flam above Re/M2 = O(1) exhibits a power-law scal-
ing of the form F/Flam ∼ (Re/M2)α, with α increasing
with M .

Due to its definition (Eq. 18), the friction factor F is
linked to the average velocity 〈uφ〉. Studying the friction
factor in our case is equivalent to looking more closely at
the behaviour of 〈uφ〉 in Figure 4b. Figures 14c and d
illustrate this correspondence.

IV. DISCUSSION AND CONCLUDING
REMARKS

In this study, we report several transitions. The first
one is well captured in our numerical linear stability anal-
ysis, and scales roughly as Re ∼M1/2. In the accessible
range of parameters of our experiment, we always op-
erate in the unstable regime. The numerics suggest a
Kelvin-Helmholtz-like instability mechanism emanating
from the free shear layer.

At larger values of M and Re, unaccessible numeri-
cally, we observe further transitions. The first one oc-
curring at Re/M ≈ 25, which can be interpreted as a
Reynolds number based on the thickness of the Hart-
mann layer, is associated with a significant increase in
the amplitude of the fluctuating component (Fig. 6) and
a pronounced change in the free shear layer thickness
(Fig. 7b). Above this transition, the instability is no
longer localized in the vicinity of the free shear layer but
fills the entire fluid volume. These observations suggest
a Hartmann layer destabilization mechanism. Further-
more, the critical value Re/M ≈ 25 is consistent with
the criterion for absolute stability derived by Lingwood
and Alboussière [38] for an isolated Hartmann layer,
Re/M ≈ 26. In addition, the observed transition coin-
cides with a mild increase in the friction factor deduced
from the steady azimuthal velocity 〈uφ〉 as seen in Fig-
ure 14a. The mechanism underlying the feedback effect
of the fluctuating component onto the mean flow has yet
to be established.

Yet another transition occurs at Re/M2 = O(1), and
is observed in the friction factor and the mean velocity
(Figs. 14b and d). The transition is characterized by
an abrupt increase in the dissipation, and thereby a de-
crease of 〈uφ〉. Meanwhile, we do not see any significant
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FIG. 14. First row: Friction factor F normalized by its laminar value Flam. Second row: Average azimuthal velocity 〈uφ〉
normalized by its theoretical value 〈uφBH〉. Colors indicate M as in Figure 13. Plotting the data versus Re/M (a and c)
collapses well the large-M runs in red and yellow, whereas the parameter Re/M2 (b and d) appears to govern the significant
transition at Re/M2 = O(1).

changes in the frequency content at this parameter value
(Fig. 12).

A similar sudden increase in F as at this third observed
transition has been reported by MA04. In contrast with
the present study, they proposed that the critical param-
eter governing their transition was Re/M ≈ 380 rather
than Re/M2 = O(1). MA04 argued that the abrupt
change in F results from the onset of turbulence in the
Hartmann layer, which is commonly associated with a
critical value of Re/M , the Reynolds number based on
the Hartmann layer thickness.

It should be noted that there are three major differ-
ences between the MA04 experiment and the present one.
First, their configuration did not give rise to a free shear
layer. Second, the two experiments do not operate in the
same parameter regime except for the cases M = 169 and
253. Although our setup can reach Hartmann numbers of
order 2000, our limitations in injected electrical power do
not allow us to achieve sufficiently high values of Re/M
or Re/M2 to observe this transition for M > 253. Third,
the curvature ratio λ = d/2rm of channel half-width d/2
to mean radius rm of the two experiments is very differ-
ent. In the MA04 experiment, it was O(0.1), whereas it
is O(1) in the present setup.

The last point has implications for the strength of the
secondary (radial and axial) flow. Following Baylis and
Hunt [6], secondary flows and associated inertial effects

are negligible in the large-M limit, if
(
K/M2

)2
λ � 1,

with the Dean number K = λ1/2Re measuring curva-
ture effects. For λ = O(1) as in the present study, this
criterion is equivalent to N2 � 1 with the interaction
parameter N = (Re/M2)−1. Hence the observed transi-
tion at N = O(1) can be interpreted as the point where
inertial effects become negligible.

The MA04 experiment on the other hand operated
in the inertialess regime even for N <∼ O(1) due to the
smaller curvature ratio. This could explain why they
where able to observe transition to turbulence in the
Hartmann layer with a scaling of Re/M ≈ 380, while
the present experiment detects a different transition,
Re/M2 = O(1), in the range of moderate Hartmann
numbers, M <∼ 250. Further investigations at higher
current will be necessary to test whether the criterion
for transition to turbulence in the Hartmann layer is
also observed in our setup at asymptotically large M .

In conclusion, the ZUCCHINI study has been able to
characterize different regimes of confined low-Rm MHD
flow with increasing forcing: stable flow, an unstable free
shear layer, unstable core flow and an unstable Hartmann
layer. The numerical linear stability analysis and the ex-
perimental measurements with UDV and PDP provide
complementary information, and yield a consistent pic-
ture of the dynamics.
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For the future, it would be interesting to study how the
flow in our modified cylindrical annulus is affected by a
global rotation of the tank introducing a strong Coriolis
force. Also it would be instructive to perform similar
experiments with transparent electrolytes facilitating
flow visualization. We are looking forward to seeing
how the experience from ZUCCHINI is applied to study
the magnetostrophic regime, i.e. a balance between
Lorentz and Coriolis forces, in the rapidly-rotating
spherical SpiNaCH (Spinning Natrium in Confoederatio
Helvetica) experiment proposed by [39] which uses a

similar electrical driving for a flow of liquid sodium.

Appendix A: First-order perturbation equations in
cylindrical coordinates

We give here the first-order perturbation equations in
cylindrical coordinates for the numerical study of the lin-
ear onset of instability. Quantities describing the base
flow are written with a superscript b, first-order pertur-
bations are denoted by a prime.
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Appendix B: PDP data example

PDP measurements are processed in the same way as
UDV recordings in Section II B 3. Figure 15 shows ex-
ample recordings of the eight PDPs in inserts A and B
at M = 1769 and I = 150 A; both inserts provide time
series corresponding to radial and azimuthal flow. The
largest potential differences are the ones measured at the

outer azimuthal PDPs, ∆ΦB
r,1 and ∆ΦB

r,2, because of the

large uφ at this location. As ∆ΦA
r,1 and ∆ΦA

r,2 which
show the largest-amplitude oscillations, they record the
same signal. Potential differences connected to radial
flow, ∆Φφ, are oscillating around zero. The PDP mea-
surements confirm our findings from the UDV recordings
as e.g. seen from the coninciding frequencies in Figure 10.
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FIG. 15. Example time series of PDP: Potential differences
∆Φr and ∆Φφ measured at the two inserts A and B indicating
azimuthal and radial velocities, respectively, for M = 1769
and I = 150 A. Detail of the time series of all eight probes.
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