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Abstract

We have designed a 2D thermal-mechanical code, incorporating both a characteristics based marker-in-cell method and
conservative finite-difference (FD) schemes. In this paper we will give a detailed description of this code. The temperature
equation is advanced in time with the Lagrangian marker techniques based on the method of characteristics and the temperature
solution is interpolated back to an Eulerian grid configuration at each timestep. This marker approach allows for the accurate
portrayal of very fine thermal structures. For attaining a high relative accuracy in the solution of the matrix equations associated
with both the momentum and temperature equations, we have employed the direct matrix inversion technique, which becomes
feasible with the advent of very large shared-memory machines. Our conservative finite-difference schemes allow us to capture
sharp variations of the stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity.
We have tested this code with numerous examples drawn from Rayleigh—Taylor instabilities, the descent of a stiff object
into a medium with a lower viscosity, viscous heating and flows with non-Netwonian rheology. We have also benchmarked
successfully with variable viscosity convection for lateral viscosity contrast up&o\i8 have delineated the regions in
thermal problems where the diffusive nature of the temperature equation changes from its parabolic character locally to a
non-linear hyperbolic-like equation due to the presence of variable thermal conductivity. Finally we discuss the applicability
of this marker-based and finite-difference technique to other evolutionary equations in geophysics.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction with great fidelity the significant finite deformation
in strongly viscous rocks at cold temperatures to
Today, as modeling of geomechanics is entering a contrasting rheological properties across fault zones
new millennium, geoscientists are faced with more re- (Kameyama et al., 1999; Regenauer-Lieb et al., 2001,
alistic situations in lithospheric and mantle dynamics. Kameyama and Kaneda, 2Q0@nd transport proper-
These new difficulties arise from the need to model ties involving vapor or volatiles (e.gWoods, 1999;
Richard et al., 2002 The rheology of crustal and
"+ Corresponding author. Tek+49-234-3223518; mar_ltle rocks de_pends strongly_on _the temperature,
fax: +49-234-3214433. strain-rate, volatile content, grain size and the hy-
E-mail addresstaras.gerya@ruhr-uni-bochum.de (T.V. Gerya). drostatic pressure (e.qRanalli, 1995; Karato, 1997
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These extenuating physical and dynamical circum-
stances imposed by the sharply varying viscosity and
volatiles indeed represent a major challenge for the
momentum equation in geodynamics, unlike those
found in the oceanographic or atmospheric sciences.
In the limit of creeping flow or the zero Reynolds
number regime, the momentum equation becomes
a highly non-linear elliptic partial differential equa-
tion primarily because of non-linear constitutive
relationship between the stress and strain-rate ten-
sors, unlike the other areas in fluid mechanics (e.g.,
Batchelor, 1967; Balmforth and Provenzale, 2001
The solution of these elliptic partial differential equa-
tions has remained a chief computational challenge
in solid-earth geophysicsygen et al., 2000a)bbe-
cause of the ill-conditioned nature of the matrix with
vastly varying magnitude in the elements due to
the large variations in the rheological properties of
rocks. Various types of methods have been devised
for solving the elliptic equation for variable viscos-
ity. A popular method has been the multigrid method
(Wesseling, 1992; Moresi and Solomatov, 1p9n-
other non-linearity, not often appreciated up to now
in geomechanical-modeling, is that due to variable
thermal conductivity in the energy equation. The ther-
mal conductivity of crustal and mantle rocks depends
on the temperature and pressuko{meister, 1999
and endows the temperature equation with a strong
non-linearity from the square of théT term near the
boundary layersQubuffet and Yuen, 2000; Dubuffet
et al., 2000, 200Pwhich greatly exacerbates numer-
ical difficulties, produces numerical instabilties and
requires more grid points than for constant thermal
conductivity situations\{an den Berg et al., 2001All
transport properties of rocks including viscosity, con-
ductivity vary strongly with chemical composition or
mineralogy. Similar types of quadractic non-linearity
involving the gradient of volatile content, are also
found in convection equations with volatile or vapor
transport (e.g.Woods, 1999; Richard et al., 2002
Thus, they cause sharp fronts involving multicompo-
nent flows in geological situations, especially when
the transport of volatiles is also included in the gov-
erning equations in mantle convectiofrointaine

et al., 2001; Richard et al., 20p2
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1. the ability to conserve stresses under conditions
involving sharply discontinuous viscosity distribu-
tion;

the ability to conserve heat and chemical fluxes
in the face of sharply varying conductivity, trans-
port coefficient and temperature gradients at
the thermal or chemical boundary layers with
temperature-dependent conductivity and non-linear
transport coefficient, such as in vapor flow at
mid-ocean ridgesHountaine et al., 20Q1

the ability to conserve scalar quantities with mul-
tiscale properties, such as temperature field, chem-
ical species, and density in flows with a strongly
advection character, i.e., high Peclet number.

2.

3.

Besides these factors, there are other challenges
which are also quite potent, such as phase transi-
tions and its rheological consequences of a dramatic
softening from grain-size reduction from nucleation
processes in phase transformation (eRjedel and
Karato, 1997. We aim to demonstrate in this work
that all of these requirements can be achieved by
using a marker-in-cell algorithm (e.grackbill and
Ruppel, 1986; Brackbill et al., 1988; Brackbill, 1991,
Oran and Boris, 1987; Moresi et al., 20@®mbining
conservative finite-difference (FD) scheme with an
arbitrary order in accuracy, an Eulerian/Lagrangian
primitive variable formulation based on moving mark-
ers which combine both the control volume method
(e.g., Patankar, 1980; Albers, 20p@&nd the accu-
rate trajectories behind the concept of the method of
characteristicsNlalevsky and Yuen, 1991

Recent advances in hardware technology with the
distributed-shared-memory architecture on supercom-
puters have prompted us (i) to use large number
(10°-10°) of markers allowing high-resolution char-
acterization of complex model geometry (e.gen
et al., 1999 and (ii) to look again at direct solvers,
such as the Gaussian elimination or Cholesky decom-
position (Malevsky and Yuen, 199Zor 2D problems
because of its prowess in terms of superior relative
accuracy over iterative solvers used in many variable
viscosity codes (e.gMoresi and Solomatov, 1995;
Tackley, 1998. Recent innovations in the machine
architecture on the IBM-SP4, CRAY-1X and the

From a general geophysical standpoint, we should Japanese NEC machines have put at least 16 Gbytes
consider at least three important elements for modeling of shared memory available on a single node. Within
these kinds of flows: the next 2 years the next generation of these machines
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will offer 64-128 Ghytes on a single node. Itis there- o, = 2nsz;
fore our challenge to prepare for the onslaught of

these ultra-lage distributed-shared-memory architec- o — Ux
ture. The anticipation of these coming technological x
innovations has figured prominently in our computa- 1 /v, v,
tional strategy laid out in this paper. &=\ 7+
. . S . 2\ 9z ox
In Section 2we will provide in some details the
implementation of these algorithms on conservative v,

finite-difference schemes for modeling flows with 2z2= 9z

variable viscosity and conductivity. We then move to

a description of the marker scheme combined with This is followed by the constitutive relationship be-

this conservative finite-difference method and the tween the stressof and strain-rate ), where the

novel treatment of the temperature equation by this transport coefficient represents the viscosity, which

hybrid scheme combining the best of the Lagrangian depends on the temperatuf®),(pressureR), chem-

and Eulerian approaches. We then demonstrate inic@l components@) and strain-rate.

Section 3oy some benchmarks the efficacy of our hy- The conservation of mass is given by the continuity

brid method and present the results on various types eguation in which we keep density to be a constant in

of flows characterized by variable viscosity, viscous all terms except for the buoyancy force, where both

heating and variable thermal conductivity. The final témperature and volatile content come into play. This

section will be our discussion and conclusions. level of truncation is known as the Boussinesq ap-
proximation on which most mantle convection codes
were built on (e.g.,Moresi and Solomatov, 1995;

2. Basic background of the numerical Trompert and Hansen, 1996; Albers, 2D00
modeling scheme vy O,
— 4+ —==0. 3)
ox 0z

2.1. Principal equations
As part of our new computational strategy, instead

In this section we will describe in detail the numer- Of using the Eulerian frame of reference, we have
ical implementation of the fundamental conservation elected to go to the Lagrangian frame of reference
equations of mass, momentum and energy and the con-for temperature equation, and the extended Boussi-
stitutive relationships between stress and strain-rate N€sd approximationGhristensen and Yuen, 198%as
needed for mode”ng geomechanical prob'ems in the been used to take into account adiabatic and viscous
two_dimensional Creeping ﬂOW regime. They W|” be heating contributions. These two terms are deemed
app”cable in Convective heat_transfer prob'ems in- Signiﬁcant in many important tectonic Situations, such
volving multiphase viscous fluids in the presence of a &S mountain-belt collisiorKincaid and Silver, 1996
gravitational body force term. This set of partial dif- The temperature equatioiq. (4) is a second-order
ferential equations comprises, first of all, the Stokes in space and first-order in time and it is non-linear in
equations of slow flow where the inertial terms are T because of the variable thermal conductivity.
droppedEgs. (1) and (2are the second-order elliptic DT dqe g,
equations in the velocity fieldy. pCp (Ft) = ——+— + Hr+ Ha+ Hs, (4)

0x 0z
do: do oP
ot = — PO, (1) T
x < qx=k<T,P>x(8—>,
X

do- d0: JP
24+ = — —p(I.0O)g.. )
0z ox 0z

Oxx = 2NExx

oT
q; = k(T, P) x (_),
0z

Oxz = 2N€xz H, = const
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o= (L) 0 (2)]

~ Top[vigy + v.8:].

oP
0z

Hgs = oyxéxx + 022822+ 20x28xz,

where DT/Dt represents the substantive time deriva-
tive and we have used markers here to follow the
temporal development of both the temperature field
and the chemical components field, as they are being
advected by the common velocity field. Other nota-
tions inEgs. (1)—(4)are:x andz denotes, respectively,
the horizontal and vertical coordinates,im v, and

v, are components of the velocity vector in mist
time in s; 0.y, 0y, 0,, are components of the vis-
cous deviatoric stress tensor in units of Pa;, &,;,

e.. are components of the strain-rate tensor ;s

P the pressure in P&; the temperature in Kg, and

q. are horizontal and vertical heat fluxes in W7

the effective viscosity in Pas, depending on pressure,
temperature and strain-rate (el8analli, 199%; p the
density in kg3, depending on chemical composi-
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Fig. 1. Schematic representation of non-regular rectangular stag-

tion, phase assemblage (e.g., presence of dense min'gered Eulerian grid used for numerical solutionksf. (1)—(4) g

erals, melt, e.g.Gerya et al., 2001, 2002pressure
and temperatureg, andg, denote components of the
vector of acceleration within the gravity field for the
x-z 2D coordinate system, nt$; k(T, P) is the vari-
able thermal conductivity coefficient in WK1,
depending on the temperature and press@gthe
isobaric heat capacity in Jk§K—1; H,, Ha, andHs

denote, respectively, radioactive, adiabatic and shear

heating production in Wm? (for simplicity of cal-
culation ofH, slight deviations of dynamic pressure
gradient9P/ox andaP/ozfrom pg, andpg, values are
neglected).

2.2. Computational strategy with markers

In order to achieve the goals set out in geo-modeling
as outlined in the introduction, we have designed
a conservative finite-difference scheme over an
irregularly-spaced staggered grid in an Eulerian grid
configuration Fig. 1). The irregularly spaced grid is
extremely useful in handling geodynamical situations
with multiple-scale character, such as in a subduct-
ing slab and the wedge flow above it (e.Davies
and Stevenson, 1992This Eulerian FD method is
then combined with the moving marker technique

andg, are components of gravitational acceleration in ke co-
ordinate frame. Different symbols correspond to the nodal points
for different scalar properties, vectors and tensors+ 1/2, etc.
andj, j+1/2, etc. indexes represent the staggered grid and denote,
respectively, the horizontal and vertical positions of four different
types of nodal points. Many variables,( v;, oxx, 0z, 02z, Exx,

&xzr €22, P, T, , p, K, Cp, etc.), up to around 25 at grid point, are
part of the voluminous output in this code.

or the Lagrangian approach, shown Ig. 2 to
solve Egs. (1)-(4) We show inFig. 3 a schematic
flow-chart for updating at each timestep the evo-
lutionary equations contained in (1)—(4). We have
solvedEgs. (1)—(4)based on a combination of finite
control volume method (e.gRatankar, 1980; Albers,
2000, combined with an arbitrary order of accu-
racy in the finite-difference discretizatiofr@rnberg,
1995 and method of characteristics (e.iylalevsky
and Yuen, 1991; De Smet et al., 2Q0thplemented
via the moving marker technique (e.¢ipckney and
Eastwood, 1981; Christensen and Yuen, 1984;
Weinberg and Schmeling, 1992; Schott and
Schmeling, 1998; Gerya et al., 200The steps are as
follows (detailed explanation of these steps is given in
Sections 2.3-2)5
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Fig. 2. Schematic representation of geometrical relations used for the adopted first-order of accuracy interpolation schemes of a parameter
B (a) from the markers to Eulerian nodes and (b) from Eulerian nodes back to markers. Each marker holds information concerning
the temperaturel, position coordinates, three components of the strain tensor, representing the deformation history and the chemical
component<C.

1. Solving 2DEgs. (1)—(3)by directly inverting the 8. Calculating globally the scalar physical properties

global matrix with a Gaussian elimination method, (7m+ Pm» Gy Cpms Ky C, etc.) from the markers.
which is chosen because of its programming sim- 9. Interpolating temperature and other scalar proper-
plicity, stability and high accuracy. ties, such a£;, Cp, from the markers to Eulerian

2. Calculating the non-linear shear- and adiabatic  nodes. Returning to Step 1 at the next timestep.
heating termsHsg; ; and Hy; j) at the Eulerian

nodes. We have implemented the above computational al-
3. Calculating DT/Dt); ; values at the Eulerian gorithm in a new computer code, called 12VIS, which
nodes by an explicit scheme. is written in the C—computer language in order to

4. Defining an optimal time stept for temperature  facilitate post-processing. This code has been devel-
equation. We use a minimum time step value satis- oped on the basis of our previous thermo-mechanical
fying the following conditions: given absolute time  code based on finite-differences, (12), which employed
step limit on the order of a minimal characteristic finite-difference method over a half-staggered grid and
timescale for the modelled processes; given relative used the marker techniqu&¢rya et al., 2000
marker displacement step limit (typically 0.1-0.2
of minimal grid step) corresponding to calculated 2.3. Interpolation of scalar fields, vectors and tensors
velocity field (see Step 1); given absolute nodal

temperature change limit (typically 1-20 K) corre- According to our algorithmic approach the temper-

sponding to calculated expliciD{T/Dt);, ; values ature field and other scalar propertigs £, Cp, C, Kk,

(see Step 3). etc.) are represented by scalar values ascribed for the
5. Solving the non-linear temperature equation im- multitudinous markers initially distributed on a fine

plicitly by a direct Gaussian inversion method. regular marker mesh with a smalk{/2 of marker

6. Interpolating calculated nodal temperature changes grid distance) random displacemefig. 2). The ef-
(see Step 6 dig. 3) from the Eulerian nodes to the  fective values of all these parameters at the Eulerian
markers and calculating new marker temperatures nodal points are interpolated from the markers at each
("T). time step. An average number of markers per grid

7. Using a fourth-order in spaceffirst-order in time ex- cell commonly vary fromn x (10°-10%) depending
plicit Runge—Kutta scheme for advecting all mark- on the complexity of model geometry (e.8rackbill,
ers throughout the mesh according to the globally 1991; Ten et al., 1999%erya et al., 2003). The fol-
calculated velocity field (see Step 1). lowing standard first-order of accuracy scheme (e.g.,
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1 Solving of ) Return fo Step 1 9 Interpolation of
momentum equation < (next time slice) scalar properties
by direct method (including temperature)
y from markers
2 Calculation of to Eulerian grid
shear and adiabatic 4
heating 8 Calculation of
L2 scalar properties
3 Calculation of for markers
orlot (viscosity, density,
by explicit method conductivity, etc.)
4 Criterion for 7 Advection of
time stepping Ar markers by velocity field
for temperature equation calculated at Step 1
! i
5 Implicit solving of LU 6 Interpolating of
temperature equation [—| | nodes X temperature changes from
by direct method Eulerian grid to markers

Fig. 3. Flow chart representing the adopted computational strategy used in the programming of the computer code 12VIS. Panel for Step

6 shows the scheme for interpolating the calculated temperature c

Fornberg, 199bis used to calculate an interpolated
value of a parameteB; ; for ijth-node using val-
ues B,,) ascribed to all markers found in the four
surrounding cellsKig. 29

L) = T .
’ 2 m Wi, )
Ax 1— Az, /Az¢i—
WinGij) = [1— - ] x n/82G-y2)
Axi-1/2 ]  Axi-1/2) X Az(j-1/2)

where wy ; represents a statistical weight of
mth-marker at theijth-node; Ax,/AX;-1/2) and
Az,/Az;_1/2) are normalized distances from
mth-marker toijth-node. In the case of non-uniform
Eulerian grid, we use a two-dimensional bisectioning
method to determine the corresponding grid cell in
which the marker is located{g. 29. For interpo-
lating the nodes along the margins we use only the
markers found inside an Eulerian grid independent
of the boundary conditions. The slight inaccuracy
of interpolation for marginal nodes is compensated
by our increasing the grid resolution at the bound-
aries. The use of a higher-order accurate interpolation
schemes produces undesirable numerical fluctuations
in scalar, vector and tensor properties interpolated
in the proximity of sharp transitions. For example,

hanges from the Eulerian grid to the moving markers.

negative values of viscosity are calculated at the fixed
Eulerian nodes at thermal boundary layers with sharp
(>10®) viscosity contrast, by using a second-order FD
scheme (e.gFkornberg, 199b

For the same reason we have used a standard first-
order of accuracy (e.giornberg, 199pprocedure for
the reversed problem of interpolating the scalar prop-
erties (including calculated temperature changes),
vectors and tensors from the corresponding Eulerian
nodal points (see different types of Eulerian nodes
in Fig. 1) back to the markers and other geometrical
points (e.g., other nodes). The values of a parameter
B defined in four Eulerian nodes surrounding a given
marker Eig. 20 are used for calculating an effective
value of the parametd for mth-marker as follows:

A A
B, — [1_ &] “ [1_ i} % B
Ax(i-1/2) Az(j-1/2)
[ Ax Az
=+ —m:| X |:1— —m:| X B(i—l,j)
L AX(i-1/2) Az(j-1/2)
i AX Az
+ 11— i ]X|: i :|XB(,',j_1)
Ax(i-1/2) Az(j-1/2)
e[
L AX(i-1/2) Az(j-1/2)
X B(i-1,j-1), (6)
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where B,, denote the value of parametd for
mth-marker. Scheme (6) is used uniformly, when we

interpolate the velocity, stresses, strain-rates, pressure,

temperature and other properties from nodal points to
markers. Since our staggered grid represents, in fact,
the superposition of four simple rectanugular grids
corresponding to different scalar fields, vectors and
tensor (see four different symbols for gridpoints in
Fig. 1), these Eulearian grids are used individually
for interpolating the respective field variables.

The standard first-order interpolation schemes yield
equally good results in cases (1)—(4) comparing to
more complex, higher-order (e.gornberg, 199pin-
terpolation schemes.

2.4. Finite-difference schemes for discretizing the
momentum and continuity equations

Apart of the stability and superior accuracy by com-
parison to the non- and half-staggered grids staggered
grid shown inFig. 1 is ideally suitable for the dis-
cretization of the momentum and continuity equations
(e.g.,Fornberg, 199b We used a standard formal pro-
cedure (e.g.Patankar, 1980; Oran and Boris, 1987;
Fornberg, 1995; Albers, 209@or the formulation of
FD scheme representing momentigs. (1) and (2)
in a conservative form: (i) momentum equation is for-
mulated in term of derivatives of stress components,
(ii) these derivatives are discretized by using first-order
accurate schemes, (iii) different stress components are
ascribed to the specifie,,/o,,/P- and o,,-nodes of
the grid (see respedtely, open ard solid squars in
Fig. 1) located between pairs af,- andv,-nodes of
the grid (see respedtvely, solid and open circles in
Fig. 1) and (iv) identical formulations of stress compo-
nents are used in discretizing momentto. (1) and
(2) in v,- andv;-nodes. The following FD scheme is
a discretized form for representiriggs. (1)—(3)to a
first-order accuracy in the control volume representa-
tion (e.g.,Patankar, 1980; Albers, 200@vhich allows
for the conservation of the viscous stresses between
the v,- and v;,-nodes (sed-ig. 1 for the indexing of
the grid points):

I I
W Jaj+12 L 02 Jajrap LOXJa a2
1
= _E[p(i, »+ a6, j+0] X &xi, j+1/2) (7)
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|

GGXX:|
i Jij+1/2
2[oxx(i+1/2,j+1/2) — Oxx(i—1/2,j+1/2)]

AX(i-1/2) + AX(i+1/2)

)

[%xz} _ Oxai,j+1) — Oxati, )

9z 1 j+1/2) Az(j+1/2)

[ P ] _ 2APi+1/2,j+1/2) = Pi-1/2,j+1/2)]
i ], j+1/2) AX(i-1/2) + AX(i+1/2)

wherei, i +1/2 andj, j+ 1/2 indexes denote, respec-

tively, the horizontal and vertical positions of nodal

points corresponding to the different physical param-
eters Fig. 1) within the staggered gridWesseling,

1992.
|:80’zzi| n I:agxz:| I:ap:|
0z (i+1/2, ) 0x (i4+1/2,)) 9z (i+1/2, j)

®)

1
—E[Poyj) + pa+1.p)] X 8zi+1/2.))

_3022} _ 2[ozai+1/2,j+1/2) — Ozzi+1/2,j-1/2)]
L 9z Jt1/2.) Az(j-1/2) + Az(j11/2) ’
_8sz:| _ Oxzli+1,j) — Oxai, )

L 9% Jit1/2,)) AX(i+1/2)

[P _ 2[Pi+1/2.j+1/2) — Piv1y2.j-1/2)]

]

L 92 J(it1/2,)) Az(j-1/2) + Az(iv1/2)

and

K 0

ﬂ] + [_} _o (9
L Ox Ji—1/2,j-1/2) 9z Ji—1/2,j-1/2)

where

Oxx(i—1/2, j+1/2)
1
= 5[nG-1.j) + ni-1.j+1 + 1. + n6.j+v]

X Exx(i—1/2, j+1/2)

OXX(i+1/2, j+1/2)
=[0G + 16 j+1) + N6+1 ) + NG+ j+0)]
X Exx(i+1/2, j+1/2)
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oxati, j) = 2N, j)Exati, j)»
Oxzi, j+1) = 20, j+1) Exzli, j+1)»

OXZi+1, j) = 20(i+1, j)Exxi+1, j)»

O72i+1/2.j-1/2)
1
= 3[na.j-1 + 16 + n6+1.-1) + N6+1.5]
X Ez24i+1/2, j—1/2)

O22i+1/2, j+1/2)
= 3[nG.jp + N6.j+1 + N6+ ) + N6t j+]
X E24i4+1/2, j+1/2)
0V
Exx(i—1/2, j+1/2) = a
(i—1/2,j+1/2)
Uy

Exx(i+1/2,j+1/2) = [al V2
i+1/2,j+

1] vy I v,

exdij) = 5| 5 T o ’
X2ij) = 5 0z ax 1, j)

1 8”){ 8Uz
i j+D) = 5 | 5 T oo ’
XD = 5 5 T e (i, j+1)

1 avx sz
Exdi+l.j) = 5| 57 T o ’
xai+l)) = 5 9z 0x | (i11,j)

v,
E74i+1/2,j—1/2) = r.
< 1(i+1/2,j—1/2)

|:8vz]

€24i+1/2,j+1/2) = | =

0z (i+1/2,j4+1/2)

In the FD formulation ofEqgs. (7) and (8}he stress

is decomposed into a product of the viscosity and the
strain-rate. The latter is formulated, using an arbitrary
order accurate FD schemé&drnberg, 199bfor the
derivatives of velocity. This formulation is also used
in finite difference treatment of seismic wave propaga-
tion (Virieux, 1986. First-order accurate FD scheme
for these derivatives most suitable for problems with
sharply varying viscosity are written as

Ux(i, j—1/2) = Ux(i—1,j—1/2)
Ax(i-1/2) ’

k4 -
x i-1/2,j-1/2)
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[ 0vx | _ Ux(i,j+1/2) — Vx(i—1,j+1/2)
L Ox Ji—1/2, j+1/2) AX(i-1/2) 7
[ 9vx |  Ux(+1,j+1/2) — Ux(i,j+1/2)
L X J(iv1/2, j41/2) AX(it+1/2) ’
[ov]  _ 2[oxj+1/2) = Ui j-1/2)]

Lz 16y Azg-y2 + AZ(+1/2)

[y ] _ 2[vx(, j+3/2) = Ux(i,j+1/2)]

L 9z 1 jv1) Az(j+1/2) + Az(j+3/2)

[ 9vx ] _ 2uxi+1,j+1/2) — Vai41,j-1/2)]
L 92 J1.)) Az(j-1/2) + Az(j+1/2)

[ove | 2lveayz ) = vai-1/2,)]

L ox 1 ) Ax(i-1/2) + AX(i+1/2)

[ v ] _ 2fvei1/2,j+1) — Vai-1/2,j+1)

L 0x 1 j41) Ax(i-1/2) + AX(i+1/2)

[ v ] _ 2fveit3/2.)) — vat1/2.))]

L 0x (41, AX(i+1/2) + AX(i+3/2)

[ v ] _Uz(i=1/2,)) — Vz(i-1/2,j-1)
L 92 Ji—1/2,j-1/2) Az(j-1/2) ’
[ v ] _ U(41/2,)) ~ Va(i+1/2,j-1)
L 92 J(it1/2,j-1/2) Az(j-1/2)

[ v ] _ Un+1/2,j4D) ~ Vz(i+1/2,))
L 92 J(it1/2,j+1/2) Az(j+1/2)

We invert for the global matrix by a highly accu-
rate, direct (Gaussian) method for the simultaneous
solution of momentunEgs. (7) and (8)and conti-
nuity Eq. (9) also combined with linear equations
describing the boundary conditions for the velocity.
We would like to emphasize that continuigg. (9)
with the velocity vectors as the variables is solved
directly to machine accuracy with the direct matrix
inversion method, thus obviating the usual need of
using the streamfunction formulation or other means
of incompressibility. In what follows, the momen-
tum Egs. (7) and (8)are solved forv, j+1/2) and
vi+1/2, j), respectively, while the continuitig. (9)

is solved forP;_1/2, j—1/2). Incompressible continuity
Eq. (9) does not initially contairP;_1/2 ;-1/2) and

the solution is guaranteed by the order of processing
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during the inversion of the global matrix (sééy. 1

for indexing):Eq. (9)for pressure in a given cell (e.g.,
Pa-1/2,j-1/2), seeFig. 1), is processed afteEqs. (7)
and (8) for all surroundingv,- and v,-nodes (e.g.,
Vx(i—1,j—1/2)» Vx(i,j—1/2)s Vz(i—1/2,j—1) andvzi-1/2 j),
seeFig. 1). Accordingly, the overall numbering of
Pi—1/2,j-1/2), Vx(, j+1/2) @ndv,it+1/2, j for the global
matrix defining the order of processing of respective
equations is done as follows:

Mmatrix = 3(i X Niines+ /) for Pi_1/2 j-1/2),
Mmatrix = 3(i X Niines+ j) +1  for vy j+1/2),
Mmatrix = 3(i X Niines+ ) +2  forv;iy1/2,j).

where Mpmatrix IS the parameter index in the global
matrix andNjines is the total number of horizontal lines
for the grid (sed-ig. 1for the positions of these lines).

The relative accuracy of solving the momentum and
continuity equations commonly vary from 1 to
10~13 depending on the viscosity variations. However,
in several cases lower (10) accuracy has been ob-
tained, as a result of strong sharp variations in the
viscosity (e.g., for some models with10® viscosity
contrast for the adjacent nodes).

2.5. Numerical techniques for solving temperature
equation

Malevsky and Yuen (1991developed a characteri-
stics-based method for solving the temperature
equation to avoid the numerical oscillations from
advection at the high Rayleigh number regime. This
method, however, requires an increasing amount of
operations for tracing characteristics back to an ini-
tial temperature distribution in the case of strongly
chaotic advection pattern. To avoid this problem,

we have implemented a characteristics based marker1

technique commonly used for advection of material
field properties, such as the density, viscosity, chem-
ical composition etc. (e.gklockney and Eastwood,
1981; Weinberg and Schmeling, 1992; Schott and
Schmeling, 1998; De Smet et al., 2000; Gerya et al.,
2000. According to this approach the temperature
field is represented by temperature valuég)(as-
signed for the multitudinous markers initially dis-
tributed on a fine marker mesh (sBection 2.3. The
effective temperaturé; ; field at the Eulerian nodes
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is then interpolated from the markers at each time
step, using relation (5). The effective temperatures
at the boundary nodes are then replaced by values
satisfying the thermal boundary conditions.

We used a standard formal procedure (e.g.,
Patankar, 1980; Oran and Boris, 1987; Fornberg,
1995; Albers, 200pfor the formulation of FD scheme
representing temperatuféq. (4) in a conservative
form: (i) temperature equation is formulated in term
of derivatives of heat fluxes, (ii) these derivatives are
discretized by using first-order accurate schemes, (iii)
different heat fluxes are ascribed to the spegcjficand
g.-nodes of the grid (see, respectively, open and solid
circles inFig. 1) located between the pairs Bfnodes
of the grid (see solid squareshig. 1) and (iv) identi-
cal formulations of heat fluxes are used in discretizing
temperaturdeq. (4)in T-nodes. The calculation of the
temporal changes in the temperature at the Eulerian
nodes is based on the following implicit first-order FD
scheme representingg. (4) in a conservative (e.g.,
Oran and Boris, 1987form, which allows for the
conservation of the heat fluxes between Thaodal
points (sed-ig. 1for the indexing of the grid points):

coir o), Lo, L5
PG ) Crii ) | = ol o
Dt i, Loxlay Ldzla)
= Hi,j) + Hai.j) + Hsi. j)» (10)
'D_T] _ My —Tap
LDt 1)) At
[d 208 iv1/2. ) — Y172,
ﬂ} _ 20axt1/2.) = “dxi-1/2.5)]
L ax 1G5 Ax(i—1/2) + Ax(iy1/2)
EA } _ 2lz6.j+1/2) — 4x.j-1/2)
L 9z ) Az(j-1/2) + Az(j+1/2)
1 KGN
Gxi-1/2,)) = E[ko’—l,j) + ki, ] x ;
L Ji-1/2,))
1 (9D T
Yrir1j2p = E[k(i, B F kit p] x ;
L Ox Jq1/2,))
1 KGN
Y172 = E[k(i, j—1) + kg, pl x ;
L 92 1 j-1/2)
1 KGN
Y2 4172 = E[k(i,j) + kg, j+1] x ;
L 92 1 j+1/2
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Hag, jy = Tt j i PG p[Vx(i ) 8xtij) + V2 8z ]:

Hs(i, j) = oxxi,j)éxx, j) T Ozai, j)€z4i, j)
+ 20%ai, jExati, s

where indexes 1 denote values for the next time in-
stant to be reached by the time-stepping axtdis
the optimal time step (see above, 8ection 2.2,
Hrii.j)» Haajys Hsigys @ijyr £y Cotgyy Oxxiig
Exx(ij)r Ozzlij)r E22(ij)r Oxzij) Exz(ij)r Ux(ij)» and
v;(;,j) are values of the corresponding parameters for
the ij-node: scalar properties are interpolated from

the markers using relation (5), vectors and tensors are AT(; ;) = T »—Ta -

also interpolated from the corresponding surrounding
nodes fronEg. (6) In the FD formulation oEq. (10)
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the order of processing of respective equations is done
as follows:

Mmatrix = i X Niines + J,

where Mpmatrix iS the parameter index in the global
matrix andNjines the total number of horizontal lines
for the grid (sed-ig. 1for the positions of these lines).
The relative accuracy of the inverted solution spans
between 101° and 10713,

The changes in the effective temperature field for
the Eulerian nodes are calculated as

11

Correspondent temperature increments for markers

the heat fluxes are decomposed into a product of the AT, are then interpolated from the nodes using rela-

thermal conductivity and the temperature gradients.
These quantities are formulated by using an arbitrary
order accurate method FD-drnberg, 199bfor the
derivatives of the temperature. First-order accurate
FD schemes for these derivatives most suitable for
problems with strongly varying thermal conductivity
are

(9D My =iy
L 0x Ji—1/2.)) AX(i-1/2)
[9CD] _ My = Tap
L x fit1/2)) AX(it+1/2)
(9D R Ay
L 92 lgj-172 Azj-y2)
(9D ] _ M =i
L 9z 1Gj+1/2) Az(j+1/2)

In the absence of strong heat sour¢g, ), Hag, )
and Hg;, ;) implicit scheme ofEq. (10)is uncondi-
tionally stable (e.g.Qran and Boris, 1987 If strong
heat sources are present timesteps optimized us-
ing standard (e.gQran and Boris, 199Tcriteria (see
Step 4 inSection 2.2

For solving the temperature equations with
non-linearities present we invert directly by a global
matrix with a high accuracy direct (Gaussian) method.

The matrix also contains the linear equations associ-

ated with the thermal boundary conditions. The over-
all numbering oflT(i,j) for the global matrix defining

tion (6) in order to calculate new marker temperatures
1
T, as

"Iy = Tpp + AT, (11a)

The interpolation of the calculated temperature
changes from the Eulerian nodal points to the mov-
ing markers prevents effectively the problem of nu-
merical diffusion. This feature represents one of the
highlights of our computation strategy for solving
the temperature equation using markers. This method
does not produce any smoothing of the temperature
distribution between adjacent markefsSig. 3, dia-
gram for Step 6), thus resolving the thermal structure
of a numerical model in much finer details.

However, the main problems with treating advec-
tion diffusion methods using this incremental update
scheme is that all manner of stirred-structures and
instabilities on a subgrid (marker) scale cannot be
damped out by grid-scale corrections. For example, in
case of strong chaotic mixing of markers, our method
may produce numerical oscillations of thermal field
ascribed to the adjacent markers. These oscillations
do not damp out with time on a characteristic heat
diffusion timescale. The introduction of a consistent
sub-grid diffusion operation, which does not change
the convergence of the grid scale diffusion solution
is the way around this. We use here a weak numer-
ical diffusion occurring over a characteristic heat
diffusion timescale. This is implemented by correct-
ing the marker temperaturéd,, according to the
relation
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Toipy = iy _ [le T, x exp( ) ical solutions in or_der to vgrn‘y the efficacy of our
Afo methods for a variety of circumstances relevant to
(12) geothermo-mechanics. These will include

= Cpé"’o’” 5 (a) sharply discontinuous viscosity distribution (test
{km[2/(Axi-1/2)) + 2/(Az(j-1/2))°]} 1 and 2);

where Atg is a characteristic timescale of the local (b) strain-rate dependent viscosity (test 3);
heat diffusion defined for the corresponding cell of (C) non-steady development of temperature field

Aty

the grid Fig. 2); 'T,,(p) the mth-marker temperature (test 4);

corrected for the numerical diffusio the dimen- (d) shear heating for temperature dependent viscosity
sionless numerical diffusion coefficient (we use em- (test 5);

pirical values in the range of & d < 1); 17}, Com, (e) advection of a sharp temperature front (test 6);
om andk,, are interpolated, respectively, fro-'lﬁﬂ"(i’j), (f) heat conduction for temperature-dependent ther-
Coii.j)» PG.j) and kg j values for nodes using the mal conductivity (test 7);

relation (6).Eq. (12)require decay of a difference be- (g) thermal convection with a large viscosity con-
tween!7,, and’7;, values within the time comparable trast in the temperature-dependent viscosity and
with the characteristic timescale\tp) of local heat for both constant and temperature-dependent ther-
diffusion. mal conductivity (tests 8 and 9).

Compensating temperature correctiaxis; a are
first calculated at the Eulerian nodes according to re- Numerical experiments discussed iBections
lation (5) as 3.1-3.9show stability and high accuracy of the algo-
Y (Toioy — To) Wi rithm at low to moderate resolution for both Eulerian

m 2 M v (13) nodes £ x (10?—10%)) and markersi x (10°-10%)).

2 Wi, These experiments require small computation time
These nodal corrections values are then used for com-of several minutesSections 3.1-3)7to several tens
pensating correction of temperatures for markers by of minutes Sections 3.8-3)9on ordinary PC. The
using relation (6) as follows: method allows for the highogesolution ok (10°*-10°)

" ¢ Eulerian nodes and x (10°—10") markers for vari-
Tnp—4) = Tm() — ATm(a)- (133) ous types of 2D numerical experiments (e@erya
where'T,,(p-a) is the final correctedith-marker tem- et al., 2004 requiring computation time varying from
perature AT, a) iS compensating temperature correc- several hours to several days on single processor
tion interpolated formth-marker fromAT; ;a values depending on the type of the computer used.

for Eulerian nodes using relation (6).

Introducing the numerical diffusion operation re-
moves unrealistic subgrid oscillations ($kection 3.8
over the characteristic local heat diffusion timescale
without affecting the accuracy of numerical solution
of the temperature equation (seections 3.4 and 3)6
Realistic subgrid oscillations will, however, be pre-
served by this scheme been related for example to the
rapid mixing by advection dominating flows.

AT jpa =

3.1. Rayleigh—Taylor instabilities involving a
two-layer cross-section and gravity

A series of tests have been carried out for a
two-layer model with a non-slip condition on the top
and at the bottom and symmetry conditions along the
vertical walls. An initial sinusoidal disturbance of the
boundary between the uppeyi( p1) and the lower
(n2, p2) layer of thicknessh has a small amplitude
(y) and a wave lengthaj. This produces favorable
conditions for studying the velocity of the diapiric
growth (v;) given by the relationRamberg, 19811

3. Verification of the numerical schemes by
calibrating various cases

In this section we will display results taken from 2,12

carrying out several calibrating tests of the numer- = — y(p1 — p2)hg’ (14)
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0.40
M4o=10"%, b,=0.5, b ,=0.2
0.35 4
T]1I'|']2=1, b1=1, b2=0.15
0.30 -
.QN 0.25 4 n4/m2=10, b =5, b,=0.1
+
:c_ N1im2=100, b =50, b ,=0.05
LQ 0.20 4
1 T‘|1/’I‘]2=500, b 1=250, b2=0
0.15 -
A
0.10 4 — Analytical
O Numerical, y=h/150
o Numerical, y=h/30
0.05 4 T y T T T T
0.5 1 1.5 2 2.5 3 3.5 4

a=2nh/An

Fig. 4. Numerical solutions for the case of the Rayleigh—Taylor instability of a two-layer cross-section in the gravity field. Numerical and

analytical solutions are compared for the factor of groWthat different viscosity contrast between the upper) (and the lower #2)
layer and different wave numbes & 27h/, whereh is the layer thickness, and the wavelength) and amplitudg)(of initial sinusoidal
disturbance at the layer boundary. Grid resolution of the modek 32 nodes, 23,250 markers.

whereK is a dimensionless factor of growtkig. 4 not depend on the absolute value of the viscosity of
compares both the numerical and analytical solutions the block. This test proves the accurate conservation
for the factor of growth of the diapir estimated at dif- properties of our numerical procedure in terms of pre-
ferent values ofy, A and n1/n2. Good accuracy of  serving the geometry at large deformation and high
+2-5% is determined at large variations of the distur- (10°—1P) viscosity contrast between the harder block
bance wave length and the layers viscosity contrasts and the softer surroundings.

(n1/n2 = 108 to 5x 10%). This result shows the cor-

rect numerical solutions d&gs. (1)—(3)in the case of  3.3. Channel flow with non-Newtonian rheology
sharp changes in density and viscosity across a bound-

ary layer. This test is conducted to check the numerical solu-
tion of Egs. (1)—(3)or flows with a strong strain-rate

3.2. Sinking of a hard rectangular block into a dependent rheology, which is characterisic of disloca-
medium with a lower viscosity tion creep Ranalli, 199%. The computation is carried
out for vertical flow of a viscous non-Newtonian (with
The results of this test are displayedFiy. 5. Ac- a power-law index: = 3) medium in a channel of the

cording to our physical intuitions, the deformation of width L in the absence of gravity. Boundary conditions
the block vanish with increasing viscosity contrast and are taken as follows: given vertical pressure gradient,
dynamics of sinking at high viscosity contrast does 0dP/dz, along the channel and non-slip conditions at
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Fig. 5. Results of numerical experiments for the sinking of rectangular block at different viscosity contrast between the block and the
surrounding soft medium (see text for discussion). Boundary conditions: free slip at all boundaries. Black and white dots represent positions
of markers for the block and the medium, respectively. Grid resolution of the modelxs531nodes, 22,500 markers.
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Fig. 6. The results of test of numerical solution for the case of power-law flow in the channel of lwidth is the velocity in the center
of the channelyy the viscosity at the walls (seeg. (17). Different symbols show the numerical results for the different lateral resolution

of the model (31 nodes/150 markers and 16 nodes/75 markers).

the walls. The viscosity of the non-Newtonian flow is
defined by the following rheological equation

oxz = M(dv, /ox)3, (15)
whereM is rheological constant in P&S. The an-
alytical solution for the horizontal profile of vertical
velocity v, and effective strain-rate dependent viscos-
ity n = oxz/(dv;/dx) across the channel is derived
from Eqgs (2) and (15) as foll ows:

4
v, = V0 |:1 - <%—1> i|, (16)
_ 10
1= oL -2 (7)

aP/dz)/ M]3
vsp = — 4L /62/ g

am3

0= 1G6P/an L2

wherev,q is the velocity in the center of the channel,
no the viscosity at the walld=ig. 6 compares the nu-
merical and analytical solutions for the horizontal dis-
tribution of velocity and viscosity across the channel.
We can see clearly that the numerical and analytical
solutions accord quite well, suggesting that our nu-
merical procedure can solve correctly the momentum
equation in the case of strain-rate dependent non-linear
rheology withn = 3.

3.4. Non-steady temperature distribution in a
Newtonian channel flow

This time-dependent test is performed to ascertain
the numerical accuracy of the temperaté® (4)in
the temporal development (heat advection coupled
with heat diffusion). The calculations are carried
out by using a model of the vertical flow of a heat-
conductive medium of constant viscosity in a chan-
nel in the absence of gravity. Boundary conditions
are taken as follows: given vertical pressure gradi-
ent, dP/az, along the channel, non-slip conditions and
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T = const and)7/dz = const at the walls. The initial . _ L
conditions arel’ = Ty and d7/ax = 0. The horizon- pCp’
tal steady-state profile for vertical velocities,, is

Y P & ¢ _ Meo(iTo/20)

defined by the equation

L2
0 2
v, = wz_x) (18) where AT(x, t) is the temperature in the channel as a
L function of the spatial coordinates and timehe con-
—L2(3P/3z) stant thermal diffusivity in ris~1. When calculating
V20 = 8—77 analytical solution an infinite summation &fg. (19)

) ) _ ) is cut afterm = 20 due to negligible contribution of
whereL is the width of the channel; the viscosity of  mempers of higher-ordeEq. (19)does not account

the channelyo the vertical velocity in the center of {1 shear heating: in this numerical test it is considered
the channel. The corresponding temperature changes,g negligible Fig. 7 shows that numerical and analyt-

in the channel as a function of time are given by the ¢ results agree very well for calculations performed
following series expansionrikhonov and Samarsky,  poth with @ = 1) and without § = 0) numerical dif-

1972; Gerya et al., 2000 fusion included (se&q. (12).

(0.¢]
. [7w(@2m — D)x
AT(x, 1) = Y Fyy EmSin [f} : (19) 3.5. Couette flow with viscous heating
m=1
where These tests are conducted to verify the numerical
8612 solution of the coupled momentum and temperature
= ;3 equations for flows with temperature dependent rhe-
[7(2m — 1)] ology in the situation of strong shear heating for
12 {1 — exp(—[m(2m — 1)/L]%1)) a moderate lateral grid resolu'tion (32 nodgs, 310
Emt= [2m — D)2 ; markers across). We have considered numerically the
mam « computation for a vertical Couette flow in the absence
tit,=0.70
1 -
0.8 -
I:<J 0.6 -
=
<
0.4 -
] — Analitycal
0.2 4 ¢ Numerical, d=0
C Numerical, d=1
0 4 T T T T T T T
0 0.2 04 ., 06 0.8 1

Fig. 7. The result of test of numerical solution for non-steady temperature changes within the Newtonian channel flow. Different symbols
show the solutions calculated withl & 1) and without § = 0) numerical diffusion (se&q. (12). 1o = pCpLzlk is characteristic timescale,

ATy = SvZO(STo/az)pCpL2/(48k) is maximal temperature change in the center of the channel corresponding to the final steady temperature
profile. Lateral resolution of the model: 31 nodes, 150 markers.
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of gravity. Boundary conditions are taken as follows: | _ Nexp[l (T - To)] exp[i] ’ (20)
zero vertical pressure gradientP/dz = 0 along the To RTo

flow, v, = v;0, T = Tp andv, = 0, 3T/ox = O at the

walls. Viscosity of the flow is given by the following  whereE is the activation energyR the gas constant
rheological equation (Turcotte and Schubert, 1982) andN the pre-exponential rheological constant, which

10 1
®1 1 |— Analytical
O Numerical
1
0.1 4
0.01 T T T —TTTTT T T T T T
a) 0.01 01 1
(@ Br
O- Br=0.03 _
o
5 - o2
P Br=0.21
4] 7~ i
% o
& -
A e Br=0.47
3 1 &) 55 ‘==:==3
"’4 55 ’===‘
7 =z 5"
2 1 ’4‘5% .5=
7 o e Br=0.86
"’5 55 o—-0
& o 2 A oo 6-CF
14 7 o o o8-
or > A0 ,.::3"
0 S RN os
0 HET —, . T T . . . . r
by o 0.2 04 0.6 0.8 XIL 1

Fig. 8. Results of test of a numerical solution for the case of steady Couette flow with a temperature dependent viscBsjtfZ8pand

shear heating® = E(T — To)/[R(To)?] is non-dimensional temperature change; BRox.L/To)? x exp(—E/RTo)/(RKG) is Brinkman

number. (a) Reproducing of analytical relations (Turcotte and Schubert, 1982) of maximal temperature change within ¢heaffalv
Brinkman number Br and (b) comparison of analytical and numerical solutions for the distribution of temperature across the flow at
different Brinkman number. Lateral resolution of the model: 32 nodes, 310 markers.
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— Initial
W 10 revolutions, d=0
O 10 revolutions, d=1

0951 | t/t,=310°

0.75 1

0.15 1
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t/t 0=0.1 A 10 revolutions, d=0
0.55 A A 10 revolutions, d=1

— 0 revolutions, d=0
J ® 10 revolutions, d=0
. . O 10 revolutions, d=1

ATIAT,

© -3 -2 - 0 xiL 1 2 3

Fig. 9. The results of test of numerical solution for the solid body rotation of a square temperature wave. Figure shows the horizontal
profiles across temperature wave at different tinadter given number of revolution& Ty and AT are initial and calculated amplitude of
temperature waive, respectively;= pCpL?/k is the characteristic timescale;the numerical diffusion parameter (sEq. (12). Resolution

of the model: 31x 31 nodes, 15& 150 markers.
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depends on the materidfig. 8 compares the results suggesting that adopted numerical technique allows
of numerical modeling of steady temperature pro- us to solve accurately the coupled momentum and
files with analytical solution given by Turcotte and temperature equations in the case of temperature de-
Schubert (1982). Both solutions merge together for a pendent rheology accompanied by significant shear
wide range of variations in the flow parameters, thus heating.

3.5 1
4 — Analytical
TIT, ] O Numerical, 31 nodes
| ® Numerical, 61 nodes T/To
3 o
] - 0.8
2.5 4
i [+]
] L 0.6 X
E x
2 .
k k/ko - 0.4
1.5 4
1 T T T

(a) 0 0.2 0.4
100
A
10
1 4 - e
0.1 -
0.01
0.001 . . . —~ . . r .
(b) 0 0.2 0.4 0.6 038 1

x/L

Fig. 10. Numerical solution for the case of steady channel flow with a temperature-dependent thermal conductivity des&ripd@1)y

(a) Distribution of temperaturd and thermal conductivitk and (b) distribution of parametek, characterizing temperature equation

(Ax = |[(8k/dT)(VT)?]/[k AT]|, see text for more details)y is the temperature at the walls of the chanfglthe thermal conductivity at

To. Different symbols show numerical results for different lateral resolution of the model (31 nodes/150 markers and 61 nodes/300 markers).
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3.6. Advection of sharp temperature front In case of intermediata={g. 9b and diffusion dom-
inated Fig. 99 heat transport final temperature dis-

Verification of the ability to advect a temperature tribution does not depend notably on the number of
front is fundamental in many numerical tests (e.g., revolutions. This point suggests a good conservation
Malevsky and Yuen, 1991and we have carried this properties of adopted numerical scheme when ad-
out to check whether or not our scheme can meet this vecting diffusing temperature fronts. Introducing of
challenge of being capable to preserve a sharp front for numerical diffusion Eq. (12) slightly affects tem-
a long time, as demonstrated Malevsky and Yuen perature distribution in case of intermediakeg; 9b
(1991) for the characteristics based method. In this and diffusion dominatedHig. 99 heat transport. Ob-
connection we urge the reader to consult also the pa- viously, this numerical diffusion, which gives a small
pers byl enardic and Kaula (199&ndSmolarkiewicz addition to the physical diffusion, exerts little influ-
and Margolin (1998Yor the monotone treatment of ence in the case of advection dominated heat transport
the advective scheme. Numerical solutions are calcu- (Fig. 99. Thus, our suggested characteristics based
lated for the solid body rotation of a two dimensional method of solving temperature equation using mark-
square temperature wave with width&nd an ampli- ers works very well in the different regimes of heat
tude ATyp. The results of this test are shownkig. 9 transport.
for a moderate regularly spaced lateral grid resolution
(31x 31 nodes, 22,500 markers). In case of advection 3.7. Channel flow with shear heating and variable
dominated heat transpofif). 99 the adopted numer-  thermal conductivity
ical advection scheme is obviously not diffusive, even
for very many revolutions, as far as the initial positions ~ We have conducted this test for verifying the ac-
of markers (with the corresponding values of initially curacy of the code in flow situations where there are
prescribed temperature field been negligibly affected strong variations in temperature from shear heating
by the heat diffusion) are reproduced extremely well and variable thermal conductivity for a moderate lat-
by the fourth-order Runge—Kutta integration scheme. eral grid resolution (31-61 nodes, 150-300 markers
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Fig. 11. Results of tests for stationary thermal convection in square box with temperature dependent visgog@$) and constant
thermal conductivityk. Ray = agp(T1 — To)/(kn1) is the Rayleigh numbelu = 1/L [ 3T/dzdx is the calculated value of Nusselt number
(in brackets are the values interpolated frédibers (2000)for given grid resolution). The effects of adiabatic and shear heat production
are neglected. (a and b) Demonstrate numerical results for varying viscosity contrasts. Rectangle in (b) show area zZéigméda in
Model resolution: 43« 43 nodes, 63504 markers.
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across the channel). For this purpose we use verti- strong temperature gradierfi¢. 109 resulted from

cal Newtonian channel flow (same as for test 4 but significant shear heating. In this test a conductivity
without temperature gradient along the channel) with variation of a factor of 3 across the channel is obtained
a velocity distribution defined b§q. (18)and shear  (Fig. 109. The maximum value ofy, exceed 19
heating, which provides a strong but linear heat-source (actually, goes to infinity due to the change in the sign
term in the temperature equation, which is non-linear of 32T/ax?) close to the walls where heat transport is
because of the temperature-dependent thermal con-mainly defined by the variations in thermal conductiv-
ductivity. The thermal conductivity is taken to be de- ity (Fig. 109. Fig. 10demonstrates the high accuracy
creasing with temperature, characteristic of phonons in of numerical solution, suggesting that adopted conser-

crystal latticesKlofmeister, 199Paccording tothe fol-  vative FD scheme correctly treats the heat transport
lowing relation (see als8chatz and Simmons, 1972 in case of strong variations in thermal conductivity.
ko

k= , (21)
1+ b(T — To)/ To
whereTy is a constant temperature applied at the walls
of the channelkp the thermal conductivity alp; b
the dimensionless coefficient.
Taking Eq. (18)for the velocity profile across the

channel we calculate then shear heating tdtQ) {or
Eq. (4) andsolve this equation analytically for steady
case DT/Dt = 0) usingEq. (21) The steady temper-
ature profiles across the chanfiék) are then defined -
by equation (T" O)I(Tl s 0)

To[C(x) + (b — 1)]
0 T 22 : 0;7°:0.8:09

C(x) = exp(L*b(1/20P/07)?
x [1 — (2x/L — 1)*/ (48koTon)},

wheredP/ozis the pressure gradient applied along the
channel.

We define then dimensionless parameigrchar-
acterizing temperature equation in case of a strong
temperature dependence of thermal conductivity as
follows:

(9k/9T)(VT)?
kAT
When A; « 1 the temperatur&q. (4) is parabolic

T-T T T
and whenA; > 1 this equation become non-linear ( O) ( 1 0)

and hyperbolic-like Barenblatt, 1996 In case of the
aforementioned channel flow the formulation &f 0.7.:0.8: 0.9
gives

3 ‘ (0k/T) (9T 0x)?

Ar = (23)

(24)

Fig. 12. Marker structure for zoomed-in area of the numerical

k(82T/ 8x2)
Ei 10 ical d Ivtical It model shown inFig. 11h Different colors of markers correspond
9. compares numerical and analytical resuits to different value of temperature ascribed to the markers. (a and

and shows strong (several orders of magnitude) varia- ) show the results calculated without £ 0) and with ¢ = 1)
tions (Fig. 100 in paramete®y in marginal zones of  numerical diffusion (se€q. (12), respectively.
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3.8. Thermal convection with a large viscosity box. The boundary conditions correspond to free-slip
contrast and constant thermal conductivity along all boundaries, a specified temperature on the
top (To) and at the bottomTj) anda7/dx = O at the
Thermal convection with a large viscosity con- walls. Variable temperature-dependent viscosity, ac-
trasts from temperature dependent viscosity is cording to the Frank-Kamnetzky approximation (e.g.,
regarded as a challenging probleMidresi and  Moresi and Solomatov, 1995; Albers, 200& used
Solomatov, 1996 We have conducted tests to check 0 T—Tp
the efficacy of our numerical scheme in coping 7 =10 exp[—ln ( ) T ] )
ably with the temperature and momentum equations 1=
for convection with strong variations in tempera- whereng andn; are maximal and minimal values of
ture dependent viscosity. First, we study steady-state viscosity, the defining giveno/n1. Benchmark results
convection with a strong temperature-dependent vis- are shown irFig. 11 ComparisonFig. 11, values in
cosity in a square box of length for a moderate  brackets) of our results with those éibers (2000)
irregularly-spaced lateral grid resolution (4343 shows a good accuracy for large £2aCP) viscosity
nodes, 63,504 markers). A factor of two compression contrast variations.
in the FD grid has been applied to both the verticaland  Fig. 12 compares the marker structure obtained
horizontal thermal boundary layers surrounding the without (Fig. 129 and with Fig. 1289 numerical

(25)
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Fig. 13. Effects of shear and adiabatic heating on thermal convection. Model design and resolution correspandlfdy box
size—L = 423 km, pressure change from the top to the bottom of the modet-= 12 GPa, dissipation numberB—= 0.12 (D = agL/Cy).

(a) Temperature structure of the model; (b) temperature differeAdesompared to the model neglecting shear and adiabatic heating
(Fig. 11B; (c and d) thermal effects of adiabatldd) and shearHs) heat production (seq. (4), respectively. The valuBly = k(T1—Tp)/L?

is used for normalization.
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(T - Td(Ty - To)
04 06

08

Fig. 14. Results of tests for stationary thermal convection in square box with temperature dependent visqogi2p) and thermal
conductivity Eq. (26). Model design and resolution correspondrig. 13a Rayleigh number is calculated Bsy = ago(T1 — To)/(k1n1),
wherek; andn; are, respectively, thermal conductivity and viscosity at bottom temper&jur&ll models include the effects of adiabatic
and shear heatingy, ¢ and e—thermal structure of the modelb, d and f—A; = |[(3k/0T)(VT)?]/[k AT]| structure of the models. The
patchy pattern of théy, distribution corresponds to the Step 9Rig. 3 and is caused by the curvature of the Laplacian operator in the
temperature field in the denominator Af and not by the gradient term in the numerator.



T.V. Gerya, D.A. Yuen/Physics of the Earth and Planetary Interiors 140 (2003) 293-318 315

diffusion for the selected area of the model shown  According to Eq. (26) the thermal conductivity
in Fig. 11b Introducing the numerical diffusion contrast for studied upper mantle convection type
with d = 1 (seeEq. (12) removes unrealistic sub- models isko/k1 = 2.6, whereky andk; are thermal
grid temperature oscillations present on markers (see conductivity in the top and at the bottom of the model,
Section 2.p without affecting the accuracy of numer- respectively. Shear and adiabatic heating effects are
ical solution of the temperature equation (see also also taken into account in this extended-Boussinesq
Figs. 7 and % model.Fig. 14demonstrate temperature afgdstruc-
The numerical simulations shown Figs. 11 and tures of these models. Regions of high = 10°-1¢?
12 do not account for the effects of both shear and values, which indicate a strong departure from the
adiabatic heating to provide comparison with other parabolic nature of the heat equation, are found in
authors who employed only the Boussinesq approx- the upper portion of all studied modelgig§. 14b, d
imation (e.g.,Albers, 2000; Moresi and Solomatov, and f) characterizing zones of strong vertical gradi-
1995. However, these non-Boussinesq effects in the ents in temperatureF{g. 14a, ¢ and )e Therefore,
energetics can be very significant for modeling of local changes in the parabolic character of tempera-
mantle convection problemsYien et al., 2000a ture equation to a non-linear hyperbolic-like partial
Fig. 13ashows the temperature field resulting from differential equation due to the variable thermal con-
the influence of adiabatic and shear heating on the ductivity are relevant for the mantle convection mod-
thermal convection model shown Fig. 11bfor the els. Obviously, the correctness of numerical solution
same moderate regularly spaced lateral grid resolutionin the high A; regions crucially depends on conser-
(43 x 43 nodes, 63,504 markers). The changes in the vation nature of finite-difference formulation of the
temperature field at characteristic values of the box temperature equation. Another interesting feature of
size (L = 423 km), pressure changes (0-12 GPa) and the Ay maps is the capture of the great details in the
dissipation numbery = 0.12, whereD = agL/Cyp) temperature advection pattern, which shows up much
are quite significant (8—12%jg. 13h. These changes clearer than the temperature maps. This property can
are mainly resulted from adiabatic heating and cool- be exploited for visualization purposes for study-
ing (Fig. 139. The effects of shear heating appeared ing strongly time-dependent mantle convection with
to be one-order of magnitude small&ig. 139. variable thermal conductivity.

3.9. Thermal convection with temperature dependent
thermal conductivity and viscosity 4. Discussion and conclusions

These calculations are conducted to study 2D spa- In this paper, we have described a recently con-
tial distribution of parameted; (seeEq. (23) char- structed numerical code, which is based on active or
acterizing the nature of the heat transport process in passive markers within the framework of a conserva-
case of temperature dependent thermal conductivity tively based finite-difference code (I12VIS) written in
for the moderate regularly spaced lateral grid reso- the C-language. There are several new features of this
lution (43 x 43 nodes, 63,504 markers). This ratio code worth emphasizing here. They include the fol-
measures the degree of non-linearity of heat transfer lowing new capabilities with the following features:
from variable thermal conductivity and indicates the
local nature of the partial differential equation involv- 1. The code can conserve stresses with strong varia-
ing the temperature. The model setup is the same as  tions of viscosity.
in Section 3.8&nd the variable thermal conductivityis 2. It can conserve heat-fluxes in time-dependent

defined by the following equation applicable for the problems with sharply varying thermal conduc-
ultramafic rocks of the upper Earth’s mantle account- tivity, temperature gradients and shear heating.
ing for the phonon-dependence of the thermal conduc- 3. It can conserve scalar fields, such as temperature
tivity (Hofmeister, 1999; Clauser and Huenges, 1995 field, density, chemical composition, and viscosity.

1293 4. 1t can handle non-uniform FD grid with different
k=0.73+ (26)

T +77 stretching and compression factors.
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These features are needed because of the increaséor large shared-memory computeSh@andra et al.,
in complexity in the physics of convection and other 2002, (ii) testing of very high resolution in 2D in term
modeling problems in geothermal-mechanics. For of both Eulerian (50 501 nodes) and Lagrangigan
example, we have delineated the regions in which (50 million markers) grids, (iii) adding viscoelastic
the non-linear nature of the variable conductivity in rheology (e.g.Moresi et al., 200Band (iv) introduc-
heat-transfer problem is most obviously manifested ing of an Eulerian grid allowing automated arbitrary
(see Figs. 10 and 1% Previous codes can handle resolution (e.g., Albers, 200Masilyev et al., 1998
some of these non-linear aspects, but not all of them. The same marker technique can also be applied
For example, this is one of the first code to use mark- for advecting other scalar fields, such as composition
ers as a variant of a characteristics based methodand also vector and tensor quantities (eByackbill
(Malevsky and Yuen, 1991for solving the temper-  and Ruppel, 1986; Brackbill et al., 1988; Brackbill,
ature equation. De Smet et al. (1999) employed a 1991, which would have direct applications in
variant of this characteristic method for composi- thermal-chemical convectionHansen and Yuen,
tional field in melting dynamics. We have also used 2000, the geodynamoQlatzmaier, 200R and vis-
the direct matrix inversion technique for solving both coelastic stress-transfeleglini et al., 2002; Moresi
the momentum and temperature equations in 2D, et al., 2003 problems. Similar approach using many
thus obtaining more stable and higher accuracy solu- tracers can be utilized for modeling high Deborah
tions. This is made possible because of the increasednumber compaction driven flows in poro-viscoelastic
memory now available on shared-memory parallel media {asilyev et al., 1998 By using a rotating
computer architecture. Solving directly a matrix asso- Lagrangian frame of reference one can also solve
ciated with a 1006 1000 grid points, which amounts  efficiently the momentum equation in the dynamo
to around 100 Gbytes, is feasible on a single node problem with extremely large number markers in ex-
of a shared-memory machine today. In the case of cess of 189, which are feasible in shared-memory
the temperature equation the implicit method allows architecture. This may help to resolve better the Ek-
for a much larger timestep than the commonly used man boundary layer (e.gDesjardins et al., 2001
explicit timestepping. Implicit methods are more de- The work set out here lays the foundation for future
sirable because of the non-linearities present in both in these aforementioned areas.
the variable thermal conductivity and viscous heating
terms, which are normally not included in many con-
vection studies with the Boussinesq approximation Acknowledgements
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