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Abstract The P–T partition function in statistical
thermodynamics can be used to derive semi-empirical
formulations of the Gibbs free energy G for minerals
and fluids. Parameterization of these equations in-
cludes simultaneous regression of experimental heat
capacity and molar volume data, allowing fitting, ap-
praisal and optimization of various data sources, as
required in the construction of internally consistent
petrological data bases. This approach can also be
extended to minerals with k-transitions and to fluids by
considering the Gibbs free energy as a function of
pressure P, temperature T and an ordering parameter
Xa, so that accurate modelled representation and
extrapolation of the thermodynamic properties of large
numbers of petrologically significant minerals and
coexisting fluids can be attained. The ordering
parameter is chosen to denote the equilibrium mole
fraction (thermodynamic probability) of ordered clus-
ters (structural units) in a substance when G(T,P,
Xa) ¼ min. The procedure is tested on existing experi-
mental data for the system MgO–SiO2–H2O. The
proposed Gibbs free energy formulation permits ther-
modynamic properties of minerals, fluids and phase
equilibria to be described and extrapolated over a
wide range of pressure (0–800 kbar) and temperature

(20–3000 K), thus allowing effective use in thermody-
namic data bases of petrological interest.

Keywords Equations of state � Thermodynamic data
bases � Partition function � Ordering–disordering
processes � Molecular clusters in fluids

Introduction

Internally consistent thermodynamic databases (e.g.
Karpov et al. 1976; Helgeson et al. 1978; Dorogokupets
and Karpov 1984; Berman 1988; Grevel 1995; Holland
and Powell 1990, 1998; Chatterjee et al. 1994, 1998;
Berman and Aranovich 1996; Gottschalk 1997; Saxena
et al. 1993) are widely used for the construction of
petrologically relevant phase diagrams, as well as for the
modelling of the compositional and physical properties of
rocks and minerals at the high pressures and tempera-
tures. In petrological systems, where reactions at depth in
the Earth are of foremost interest, pressure, temperature
and composition generally are the independent variables
of choice, making the Gibbs free energy the most useful
stability criterion. In thermodynamic data bases the
Gibbs free energy is usually cast in the form

GP ;T ¼ DHo � T � So þ
ZT

To

½CpoðT Þ�dT

� T �
ZT

To

½CpoðT Þ=T �dT þ
ZP

Po

½VðP ;T Þ�dP ; ð1Þ

where P is pressure, T is temperature, GP,T is the molar
Gibbs free energy at given P and T; DHo and So are the
enthalpy of formation and third-law entropy, respec-
tively, of a substance at standard pressure Po and tem-
perature To; Cpo(T) is the heat capacity as a function of
temperature at standard pressure Po; V(P,T) is the molar
volume of a substance as a function of pressure and
temperature.
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Equation (1) can lead to a direct representation of
the Gibbs potential as a function of P and T when
Cpo(T) and V(P,T) data are available for integration.
Such data are still a major problem, however, and
various empirical and semi-empirical power expansion
series for Cpo(T) and V(P,T) have been suggested (see,
for example, the reviews of Richet et al. 1992 and
Saxena et al. 1993) that attempt to systematize the
available, usually limited experimental data. Of par-
ticular importance is the fact that the form of the fitted
polynomial should ideally have a physical significance
(e.g. Dubrovinskaya et al. 1997), in order to allow
realistic extrapolation beyond the range of the available
data base. As discussed in detail by Richet et al. (1992),
Saxena et al. (1993) and Dubrovinskaya et al. (1997),
this limitation is particularly critical with respect to
Cpo(T). While experimental calorimetric measurement
leads to isobaric heat capacity Cpo(T), existing models
for calculating calorimetric properties of minerals
based on lattice dynamics lead instead to the isochoric
heat capacity Cv. In addition, the vibration spectra of
many of the minerals necessary for a useful petrological
data base are still extremely complex and poorly
understood. Thus, these models are limited in their
effectiveness for providing a physical description of
the temperature dependence of Cpo. All available
polynomial fits for Cpo(T) of either experimental data
or analogy-based estimates (cf. Richet et al. 1992),
although widely used in petrological circles (Berman
1988; Holland and Powell 1990, 1998), are at present
entirely empirical.

Theoretical approaches for modelling CV turn to
spectroscopic data and statistical thermodynamics. Mo-
lar volume and temperature are taken as independent
variables and the Helmholtz free energy FV,T is chosen as
the equilibrium potential for minerals (e.g. Kieffer 1985;
Polyakov and Kuskov 1994; Dubrovinskaya et al. 1997)
and fluids (e.g. Stewart and Jacobson 1989; Saul and
Wagner 1989; Hill 1990). Theoretically derived equations
for the Helmholtz free energy of solids (e.g. Kieffer 1985;
Polyakov and Kuskov 1994; Dubrovinskaya et al. 1997)
are primarily based on a statistical mechanical approach
employing the canonical partition function in terms of
molar volume and temperature that treats minerals as
systems of quantum oscillators (e.g. Kubo 1965; Toda
et al. 1992; Landau and Lifshitz 1959). Parameterization
of these equations is based on either vibration spectra (e.g.
Polyakov and Kuskov 1994) or data on isochoric heat
capacity and volume (e.g. Dubrovinskaya et al. 1997) at
different pressure and temperature. Analytical expres-
sions for any other thermodynamic parameters (e.g. iso-
baric heat capacity, Gibbs free energy, entropy etc.) can
then be derived using standard thermodynamic relations.
Thus theGibbs free energy of a substance at givenVandT
can be calculated asGV,T ¼ FV,T )VÆ¶FV,T/¶V. However,
this approach does not lead to a direct formulation of the
Gibbs free energy as a function ofP andT, as is preferable
for a system of petrological interest, nor does it provide a
basis for directly fitting experimental Cpo(T) data.

It has recently been shown that an analogous statis-
tical approach (Kut’in and Pyadushkin 1998; Gerya
et al. 1998) can be based on a partition function in
pressure and temperature (e.g. Kubo 1965; Toda et al.
1992) to obtain expressions for the Gibbs free energy of
solids as a function of P and T rather than V and T.
Parameterization includes simultaneous regression of
Cpo(T) and V(P,T) data, allowing fitting and optimi-
zation of various data sources, as required in the con-
struction of an internally consistent petrological data
base. This semi-empirical approach can also be extended
to minerals with k-transitions (e.g. Gerya et al. 1998)
and to fluids (Gerya and Perchuk 1997), by considering
the Gibbs free energy G as a function of pressure, tem-
perature and an ordering parameter, so that accurate
modelled representation and extrapolation of the ther-
modynamic properties of large numbers of petrologi-
cally significant minerals and coexisting fluids can be
attained. The present paper is intended to summarize
this new approach and to test it against well-established
data on both the thermodynamic properties of some
critical phases of petrological interest and on phase
equilibria at high pressures and temperatures.

Summary of the basic method

Derivation of basic equations

For a substance in a crystalline state considered as a
system of independent quantum oscillators (e.g. Landau
and Lifshitz 1959), the Gibbs free energy can be
expressed using the P–T partition function of statistical
thermodynamics (Toda et al. 1992). Using a set of
approximations for the calculation of the statistical sum
over states, the following expression of the molar Gibbs
free energy can be obtained (Appendix 1)

Gs ¼ Hs � TS o
s þRT

Xn

i

ci lnf1� exp½DHsi=RT �g; ð2Þ

where R is the gas constant, Hs and Ss
o are, respectively,

molar enthalpy and entropy for a state of zero-point
vibrations, n is the number of groups of oscillators
considered, ci is a statistical weight of the i-th group
equal to the number of oscillators in the i-th group
divided by NA (Avogadro’s number), and DHsi is the
system enthalpy change related to transition between
neighbouring energy levels in the i-th group (taken for
NA oscillators). The effects of pressure on Hs and DHsi

are given by

Hs ¼ H o
s þ

ZP

Po

VsdP ; ð3Þ

DHsi ¼ DH o
si þ

ZP

Po

DVsidP ; ð4Þ
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where Po is standard pressure, Hs
o is molar enthalpy at 0

K and Po, DHsi
o is the DHsi value at Po, Vs is molar

volume at 0 K as a function of pressure, DVsi is the
system volume change due to transition between neigh-
bouring energy levels for the i-th group of oscillators as
a function of pressure (taken for NA oscillators).
Theoretical forms of the pressure dependence of Vs and
DVsi are unknown, and thus some well-established
semi-empirical functions must be employed. One of the
possible choices is the Murnaghan equation, which
demonstrates good extrapolation properties in a wide
region of pressure at a given temperature (e.g. Zharkov
and Kalinin 1971; Saxena et al. 1993):

Vs ¼ V o
s ðPo þ /Þ1=5=ðP þ /Þ1=5; ð5Þ

DVsi ¼ DV o
si ðPo þ /Þ1=5=ðP þ /Þ1=5; ð6Þ

where V o
s is molar volume at 0 K and Po, DVo

si is the DVsi

value at Po, and / is an empirical parameter approxi-
mating the mean effect of attractive interaction between
the atoms in the whole pressure range. From Eq (3)–(4),
the effect of pressure on Hs and DHsi is given by

Hs ¼ Ho
s þ V o

s W; ð7Þ

DHsi ¼ DHo
si þ DV o

si W; ð8Þ
where W ¼ 5=4ðP0 þ /Þ1=5½ðP þ /Þ4=5 � ðP0 þ /Þ4=5�:

Standardizing Eq. (2) relative to To and Po with a
reduced number of empirical terms (n £ 5, Gerya et al.
1998), and taking into account Eq. (7)–(8), yields

Gs ¼ HToPo � TSToPo þ V o
s Wþ

Xn�5
i¼1

ci½RT1nð1� eiÞ

� DHo
sið1� T=ToÞeoi=ð1� eoiÞ �RT1nð1� eoiÞ�;

ð9Þ

SToPo¼�ð@Gs=@T ÞToPo

¼ So
s þ
Xn

i

ci½DHo
si=Toeoi=ð1� eoiÞ�R1nð1� eoiÞ�;

ð9aÞ

HToPo ¼ Ho
s þ

Xn

i

ciDHo
sieoi=ð1� eoiÞ; ð9bÞ

ei ¼ expð�DHsi=RT Þ (9c)

and

eoi ¼ expð�DHo
si=RToÞ; (9d)

where GToPo, HToPo, and SToPo are, respectively, the
molar Gibbs free energy, enthalpy and entropy of the
substance at standard To and Po. If To is taken to be 0
K, the terms in Eq. (9) containing To are equal to zero.
Equation (9) directly expresses the Gibbs potential of a
condensed substance as a function of P and T.

An empirical parameterization of Eq. (9) can now
be done using experimental data on isobaric heat

capacities and volume measurements. Analytical expres-
sions forCp andV can be obtained fromEq. (9) as follows

Cp ¼ �T ð@2Gs=@T 2Þ ¼
Xn�5
i¼1

ciDH2
si=RT 2½ei=ð1� eiÞ2�;

ð10Þ

V ¼@Gs=@P ¼ ½
Xn�5
i¼1

ciDV o
si ei=ð1� eiÞ

þ V o
s �ðPo þ /Þ1=5=ðP þ /Þ1=5: ð11Þ

Calculated examples

As an example of the applicability of Eqs. (9)–(11) for
the description of the thermodynamic properties of
crystalline substances, data for periclase, brucite, coesite
and stishovite (Table 1) are considered. With n=3,
So

s =0 (according to Nernst’s law), Po=1 bar and
To=298.15 K, an equation of molar Gibbs free energy
for these minerals takes the form (Gerya et al. 1998):

Gs ¼ H298;1 þ V o
s Wþ

X3
i¼1

ci½RT 1nð1� eiÞ

� DHo
sieoi=ð1� eoiÞ�; ð12Þ

where ei ¼ exp½�ðDHo
si þ DV o

si WÞRT �; eoi ¼ expð�DHo
si=

R298:15Þ; W ¼ 5=4ðPo þ /Þ1=5½ðP þ /Þ4=5 � ð1þ /Þ4=5�:
Entropy SToPo is absent from Eq. (12) since So

s=0 and
all other terms in Eq. (9a) are cancelled by corre-
sponding terms in Eq. (9). Third-law entropy can be
calculated according to Eq. (9a) assuming that low-
temperature heat capacity (20–298 K) is accurately
represented by Eq. (10).

The results for the parameters of Eq. (12) are listed
in Table 2. The derivation of these internally consistent
thermodynamic data was performed by a non-linear
least-squares method. Processing of the experimental
data was done in cyclic fashion with quality control of
the refined parameters. The measured parameters are
reproducible within experimental error. To illustrate
this, the calculated results for isobaric heat capacity
and volume are plotted against the original experi-
mental data in Figs. 1–4. It is seen that by comparison
to the power expansion formulations used in petro-
logical data bases (e.g. Berman 1988; Holland and
Powell 1998), Eq. (12) allows a better fit of isobaric
heat capacities and volumes over a very wide region of
pressure (0–800 kbar) and temperature (20–3000 K).
Equation (2) requires that ci in Eq. (12) should sum to
3v, where m is the number of atoms in the formula unit.
This is fulfilled for coesite and stishovite (the sum is 9),
but not quite for brucite (the sum is 14.6 instead of 15)
and periclase (the sum is 6.6 instead of 6). These dis-
crepancies are due to the relatively low value of n (= 3)
chosen in Eq. (12), which may not be sufficient to
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reflect the actual number of different groups of oscil-
lators.

Modification to include minerals with k-transitions

Derivation of basic equations

Some petrologically important phases such as quartz
demonstrate specific changes in thermodynamic prop-
erties that are related to a k-transition not accounted for
in Eq. (9). Most approaches attempt to describe this
effect in terms of the formalism of Landau theory (e.g.
Carpenter et al. 1998; Dove 1997; Holland and Powell
1998). Landau theory (e.g. Landau and Lifshitz 1959)
suggests that the Gibbs potential of a crystalline phase in
the region of the k-transition can be considered as a
function of P, T and an order parameter g. The equi-
librium order parameter corresponds to a minimum of
the Gibbs free energy G(T,P,g) ¼ min. This general

formalism is consistent with thermodynamic concepts of
homogeneous equilibria in crystals (Thompson 1969)
widely developed for phases of petrological interest (e.g.
Holland and Powell 1996). A similar approach has
recently been applied to the k-transition in quartz
(Gerya et al. 1998).

A thermodynamic process related to a k-transition in
a one-component mineral can be viewed as an internal
ordering reaction (transition)

aA ¼ a; ð13Þ
where A is a disordered cluster (structural unit) , a ¼ Aa

is an ordered cluster (structural unit), a is the stoichi-
ometric coefficient. The thermodynamic equilibrium for
Reaction (transition) 13 is given by

DGord ¼ RT lnðKordÞ þ DGo
ord þ DGe

ord ¼ 0; ð14Þ
where Kord ¼ Xa/(XA

a) and XA+Xa ¼ 1. XA and Xa are
the mole fractions (thermodynamic probabilities) of the
disordered and ordered clusters (structural units),

Table 1 Source of experimental data used in this study

Starting data References

Isobaric heat capacity of quartz Gurevitch and Khlyustov (1979); Watanabe (1982); Hemingway (1987); Grønvold et al.
(1989); Hemingway et al. (1991); Akaogi et al. (1995)

Molar volume of quartz Jay (1933); Ackermann and Sorell (1974); Danielsson et al. (1976); Lager et al. (1982);
Olinger and Halleck (1976); Jorgensen (1978); d’Amour et al. (1979); Levien et al.
(1980); Hazen et al. (1989); Kihara (1990); Vaidya et al. (1973); Glinnemann et al.
(1992)

Adiabatic modulus of quartz, (¶T/¶P)S Boehler et al. (1979); Boehler (1982)
Relative molar enthalpy of quartz Richet et al. (1982)
Isobaric heat capacity of coesite Holm et al. (1967); Akaogi et al. (1995)
Molar volume of coesite Bassett and Barnett (1970); Levien and Prewitt (1981) Galkin et al. (1987); Smyth et al.

(1987)
Relative molar enthalpy of coesite Holm et al. (1967); Akaogi and Navrotsky 1984; Akaogi et al. (1995)
Isobaric heat capacity of stishovite Holm et al. (1967); Akaogi et al. (1995)
Molar volume of stishovite Bassett and Barnett (1970); Liu et al. (1974); Olinger (1976); Sato (1977); Endo et al.

(1986); Doroshev et al. (1987); Tsuchida and Yagi (1989); Ross et al. (1990) Suito et al.
(1996)

Enthalpy of phase transition quartz-coesite Holm et al. (1967); Akaogi and Navrotsky (1984); Kuskov et al. (1991); Akaogi et al.
(1995)

Phase transition a-quartz - b-quartz Gibson (1928); Yoder (1950); Cohen and Klement (1967); Koster van Groos and Ten
Heege (1973); Mirwald and Massone (1980b); Shen et al. (1993)

Phase transition quartz—coesite Boyd and England (1960); Kitahara and Kennedy (1964); Mirwald and Massone
(1980a,b); Akella (1979); Bohlen and Boettcher (1982); Ishbulatov and Kosyakov
(1990); Bose and Ganguly (1995)

Phase transition coesite–stishovite Akimoto and Syono (1969); Yagi and Akimoto (1976); Suito (1977); Zhang et al.
(1993), (1996); Serghiou et al. (1995)

Water: tabulated data on molar Gibbs
free energy, molar entropy and molar
volume of water at T = 0–1000 �C and
P = 1–10 000 bar; tabulated P–V–T data
on liquid-gas transition

Saul and Wagner (1989)

Isobaric heat capacity of periclase Giauque and Archibald (1937); Barron et al. (1959); Glushko et al. (1979); Krupka et al.
(1979); Watanabe (1982)

Molar volume of periclase Reeber et al. (1995); Fiquet et al. (1999); Fei (1999) Dewaele et al., (2000); Zhang (2000)

Adiabatic modulus of periclase (¶T/¶P)S Boehler (1982)
Relative molar enthalpy of periclase Richet and Fiquet (1991)
Isobaric heat capacity of brucite Giauque and Archibald (1937); Glushko et al. (1979)
Molar volume of brucite Chakoumakos et al. (1997); Catti et al. (1995); Parise et al. (1994); Fei and Mao (1993);

Nagai et al. (2000); Xia et al. (1998)
Phase transition brucite = periclase + water Franz (1982); Schramke et al. (1982); Johnson and Walker (1993); Aranovich and

Newton (1996)
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respectively. DGo
ord and DGe

ord are changes of the
standard and excess Gibbs free energy, respectively, due
to Reaction (13). According to our formalism, ordered/
disordered clusters need not always be static (long-lived)
structural features, but may reflect dynamic (short-lived)
variations due to the thermal vibration of atoms (e.g.
Kihara 1990). This does not preclude a uniform ther-
modynamic treatment, but instead changes the inter-
pretation of the ordering parameter Xa. For static
features this parameter represents the mole fraction of
ordered clusters, while for dynamic variations it stands
for the thermodynamic probability of finding the given
structural units in the ordered state. The additional
molar Gibbs free energy relative to the ordered state
(Xa ¼ 1) is defined as (Gerya et al. 1998):

Ga ¼fRT ½ð1� XaÞ lnð1� XaÞ þ Xa lnðXaÞ�
� DGo

ordð1� XaÞ=aþ DGe
ordg=½1þ Xaða� 1Þ�;

ð15Þ
where DGo

ord ¼ DHo
ord + DVo

ordY, Ge
ord ¼WG(1 )Xa)

(Xa) , W
G ¼WH + WVY.

Ge
ord is the integral excess Gibbs free energy of

mixing of ordered and disordered clusters expressed
using the Margules formalism (e.g. Thompson 1969),
with the expressions for DGo

ord and WG formulated by
analogy to Eq. (7).

If the k-transition leads to significant changes in the
thermal vibrations of atoms, this must be taken into
account in the vibrational part of the Gibbs potential.
The corresponding formulation derived from the P–T
partition function by analogy to Eq. (9) takes the form
(see Appendix 2)

Gs¼HToPo�TSToPoþV o
s

þ
Xn�5
i¼1

cifRT lnfð1� eaiÞð1�ebiÞ=½ð1� ebiÞ

þ ekiðebi� eaiÞ�g�DH o
sia ð1�T =ToÞeoai=ð1� eoaiÞ

�RT lnð1� eoaiÞg; ð16Þ

where SToPo ¼ �ð@Gs=@T ÞToPo

¼ S o
s þ

Xn

i

ci½DH o
si =To eoai=ð1� eoaiÞ �R lnð1� eoaiÞ�;

HToPo ¼ Ho
s þ

Xn

i

ciDH o
si eoai=ð1� eoaiÞ;

eai ¼ expð�DHsia=RT Þ; ebi ¼ expð�DHsib=RT Þ;

eki ¼ expð�DHsik=RT Þ; eoai ¼ expð�DH o
sia =RToÞ;

DHsia ¼ DH o
sia þ DV o

sia W; DHsib ¼ DH o
sib þ DV o

sib W;

and DHsik ¼
X2
k¼0
ðDH o

sikk þ DV o
sikk WÞ ðXaÞk:

DHsia and DHsib are values of DHsi for ordered and
disordered substances, respectively; DHsik is the apparent
enthalpy parameter dependent on Xa and related to the
order–disorder transition for the i-th group of oscilla-
tors.

Under isothermal-isobaric conditions, an equilibrium
in a non-reacting phase is given by

Table 2 Calculated parameters of Eqs. (12), (20) and (30) for the molar Gibbs free energy of minerals and water

Parameter Coesite Stishovite Brucite Periclase Quartz Water

H298,1, J )907051.35 )870123.92 )925267.08 )601500.00a )910712.59a )286831.56a

S298,1, J K)1 – – – – – 65.188
Vs

o, J bar)1 2.05333 1.40010 2.43162 1.12228 2.25888 1.71382
/, bar 217664 612340 98040 301795 71662 6209
c1 1.44913 0.28816 1.87663 1.96612 1.42569 7.23576
c2 3.71385 2.73177 8.55012 4.12756 3.50283 0.31482
c3 3.83702 5.98007 4.16639 0.53690 4.07148 –
DHs1

o, J 1435.64 1179.01 1637.57 2966.88 1278.08 4586.46
DHs2

o, J 4099.77 3845.99 4403.89 5621.69 3911.05 –
DHs3

o, J 10479.16 8042.74 11614.44 27787.19 10469.21 –
DVs1

o, J bar)1 0.00158600 0.00233400 0.00541752 0.00352971 0.00312581 0.04310884
DVs2

o, J bar)1 =DVs1
o =DVs1

o =DVs1
o =DVs1

o =DVs1
o –

DVs3
o, J bar)1 =DVs1

o =DVs1
o 0.07026587 0.19849568 =DVs1

o –
DHo

ord, J – – – – –2636.90 )44838.80
DSo

ord, J K)1 – – – – – )122.397
DCpoord, J K)1 – – – – – 21.486
DVo

ord, J bar)1 – – – – )0.127829
WH

1, J
)1 – – – – 14255.08 )28793.19

WS
1, J K)1 – – – – – )11.704

WCp
1, J K)1 – – – – – 5.086

WV
1, J bar)1 – – – – 0.633504 –

DHsk
o, J – – – – 12947.71 –

DVsk
o, J bar)1 – – – – 0.242077 –

aThe H298,1 value has been adjusted to obtain the enthalpies of formation at 298.15 K and 1 bar, as recommended by CODATA (1978)
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Gsþa ¼ Gs þ caGa ¼ min; ð17Þ

@Gsþa=@Xa ¼ 0; ð18Þ
where Gs+a is the molar Gibbs free energy of a sub-
stance with a k-transition, Gs is given either by Eq. (7)

when changes in thermal vibrations are insignificant, or
by Eq. (16), when these changes must be taken into
account, and ca is the number of degrees of freedom
corresponding to the ordering Reaction (13). Xa can be
considered to be equivalent to the ordering parameter g

Fig. 1a–c Comparison of
calculated isobaric heat
capacity (a) and molar
volume (b,c) of coesite with
measured data
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above, which tends to a maximum (Xa
max £ 1) in

the ordered phase with decreasing temperature, while,
with increasing temperature, it tends to a minimum
(Xa

min ‡ 0) in the disordered phase.

Application to quartz

As an example of the applicability of Eqs. (13)–(18),
to the description of the thermodynamic properties of

Fig. 2a–c Comparison of cal-
culated isobaric heat capacity
(a) and molar volume (b,c) of
stishovite with measured data
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minerals with a k-transition, the results of their
parameterization can be considered for quartz.
Ordering–disordering phenomena in quartz are well

studied over a wide range of P–T conditions and
manifest themselves in anomalous behaviour of heat
capacity and thermal expansion, thus providing tight

Fig. 3a–c Comparison of
calculated isobaric heat
capacity (a) and molar vol-
ume (b,c) of periclase with
measured data
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constraints on the proposed model (e.g. Dorogokupets
1995). The data for quartz were treated using Eqs.
(15)–(18), with ordering represented by the following
homogeneous ordering reaction

3SiO2ðQtzbÞ ¼ Si3O6ðQtzaÞ; ð19Þ

where Qtzb and Qtza are, respectively, disordered and
ordered quartz clusters (e.g. Castex and Madon 1995;

Fig. 4a–c Comparison of
calculated isobaric heat
capacity (a) and molar
volume (b,c) of brucite with
measured data
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Spearing et al. 1992). Using ca ¼ 1 in Eq. (17) and n ¼ 3,
Vsia

o ¼ Vsi
o, Vsib

o ¼ 0, Ss
o ¼ 0 (according to Nernst’s

law), Po ¼ 1 bar and To ¼ 298.15 K in Eq. (16), the
Gibbs free energy equation for quartz takes the follow-
ing semi-empirical form (Gerya et al. 1998)

Gsþa ¼ H298;1 þ V o
s W

þ
X3
i¼1

ci
�
RT lnfð1� eaiÞð1� ebiÞ=½ð1� ebiÞ

þ ekðebi � eaiÞ�g � DH o
si eoi=ð1� eoiÞ

�
þ fRT ½Xa lnðXaÞ þ ð1� XaÞ lnð1� XaÞ�
� ðDHo

ord þ DV o
ordWÞð1� XaÞ=3

þ ðW H
1 þ W V

1WÞð1� XaÞXag=ð1þ 2XaÞ; ð20Þ
where eai ¼ exp[)(DHsi

o + DVs
oY)/RT], ebi ¼ exp()D

Hsi
o/RT), eoi ¼ exp()DHsi

o/R298.15), ek ¼ exp[)(DHsk
o

Xa
2 + DVsk

oY)/RT], Y ¼ 5/4(Po+/)1/5[(P+/)4/5)
(1+/)4/5]. Xa is the mole fraction of ordered Si3O6

clusters. The empirical parameters obtained for Eq. 20
are presented in Table 2.

Equation (20) allows an accurate description of both
experimental heat capacity and volume of a- and b-
quartz over a wide region of P and T that includes the k-
transition (Fig. 5). By comparison with the formulations
of Berman (1988), Dorogokupets (1995) and Holland
and Powell (1998), Eq. 20 demonstrates a superior fit of
the available experimental data (Fig. 5).

Gibbs potential of fluids

Derivation of basic equations

Fundamental, precise descriptions of the thermody-
namic properties of fluid over a wide P–T interval,
including the two-phase region, are traditionally based
on the Helmholtz potential and related P ¼ f(V,T)
equations of state (e.g. Stewart and Jacobson 1989; Saul
and Wagner 1989; Hill 1990). However, it was recently
shown (Gerya and Perchuk 1997) that a similar
description can be based on the Gibbs potential. The
phenomenological approach suggested by Gerya and
Perchuk (1997) uses the concept of an internal reaction
of association of molecules to form dynamic (short-
lived) clusters in fluids. Such an approach is well devel-
oped theoretically for describing the hydrogen bonding
in supercritical fluids (e.g. Luck 1980; Gupta et al. 1992)
and its potential applicability to any fluid has been
demonstrated (Barelko et al. 1994; Gerya and Perchuk
1997).

According to Barelko et al. (1994), the dynamic
process of association of molecules in any supercritical
fluid can be considered as a chain clusterization reaction

A1 þAn ¼ Anþ1; ð21Þ
where A1 stands for a monomer, and An and An+1

denote clusters of dimensions n and n+1. The thermo-
dynamic equilibrium of Reaction (21) is given by

DGcls ¼ RT ln½KclsðnÞ� þ DGo
clsðnÞ þ DGe

clsðnÞ ¼ 0; ð22Þ

where Kcls(n) ¼ Xn+1/(X1 Xn) and
P1
n¼1

Xn ¼ 1; X1, Xn, and

Xn+1 are the mole fractions (thermodynamic probabili-
ties) of clusters of dimension 1 (i.e. monomers), n and
n + 1, respectively; DGo

cls(n) and DGe
cls(n) are changes of

the standard and excess Gibbs free energy, respectively,
due to Reaction (21). The additional molar Gibbs free
energy relative to the associated (X1 ¼ 0, X¥ ¼ 1) state is
given by

Ga ¼
X1
n¼1

Xn½RT lnðXnÞ þ nðGo
1 þ Ge

1Þ

þ
Xn�1
m¼1
ðDGo

clsðmÞ þ DGe
clsðmÞÞ�=

X1
n¼1

nXn � ½Go
1

þ
X1�1
m¼1

DGo
clsðmÞ=1�; ð23Þ

where Go
1 and Ge

1 are standard and excess Gibbs free
energy of monomers, respectively. When the equilibrium
constant of Reaction (22) is assumed to be independent
of n, summation in Eq. (23), using Eq. (22), yields

Ga ¼ fRT ½ð1� X1Þ lnð1� X1Þ þ X1 lnðX1Þ�
� DGo

clsX1 þ Geg; ð24Þ
where DGo

cls is the change of standard Gibbs free energy
in Reaction (21) (independent of n), Ge is the excess
molar energy of mixing, related to the presence of dif-
ferent clusters in the fluid. A similar equation was ob-
tained by Gerya and Perchuk (1997) by treating the
dynamic association process as a simple, short-term
‘‘ordering’’ transition

Gas ¼ Liq; ð25Þ
where Gas stands for a molecule in the ‘‘gas-like’’ (free,
‘‘disordered’’) mode, and Liq denotes a molecule in the
‘‘liquid-like’’ (associated, ‘‘ordered’’) mode. According
to Reaction (25) the additional molar Gibbs free energy
relative to the associated (XGas ¼ 0, XLiq ¼ 1) state is
given by

Ga¼RT ½XLiq lnðXLiqÞþXGas lnðXGasÞ��DGo
ordXGasþGe;

ð26Þ
where DGo

ord is a change of standard Gibbs free energy
in ‘‘ordering’’ Reaction (25). Thus, from the viewpoint
of thermodynamics, both considerations are equivalent
and yield similar results.

A semi-empirical formulation of the last two terms in
Eq. (26) yields (see Appendix 3)

Ga ¼ RT ½XLiq lnðXLiqÞ þ ð1� XLiqÞ lnð1� XLiqÞ�
þ ð1� XLiqÞRT ln½ðP þ /X 2

Liq Þ=Po�
� ð1� XLiqÞfDHo

ord � TDSo
ord

þ DC o
P ord½T � To � T lnðT=ToÞ�g

þ fW H
1 � TW s

1 þ W Cp
1 ½T

� To � T lnðT=ToÞ�gXLiqð1� XLiqÞ; ð27Þ

438



where DHo
ord, DSo

ord , DCP
o
ord are standard enthalpy,

entropy and heat capacity effects of Reaction (25), WH
1,

WS
1, W

Cp
1 are enthalpy, entropy and heat capacity Mar-

gules parameters.

By analogy with minerals, a standard Gibbs free
energy, Gs, of fluid in fully associated ‘‘liquid-like’’ state
(XGas ¼ 0, XLiq ¼ 1), considered as a system of quantum
oscillators, can be approached by Eq. (9). Under

Fig. 5a–c Comparison of
calculated isobaric heat
capacity (a) and molar vol-
ume (b,c) of quartz with
measured data
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isothermal-isobaric conditions, equilibrium in a one-
phase fluid is given by

Gsþa ¼ Gs þ Ga ¼ min ð28Þ

@Ga=@XLiq ¼ 0: ð29Þ
where Gs+a is the molar Gibbs free energy of a fluid, and
Gs is given by Eq. 9.

Fig. 6a–c Comparison of
calculated volume (a), en-
tropy (b) and Gibbs energy
(c) of water with tabulated
data (Saul and Wagner
1989)
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Thermodynamic properties of aqueous fluid

As an example of the applicability of Eqs. (26)–(29) for
describing the thermodynamic properties of compressed
gases, the results of parameterizing an aqueous fluid can
be considered. The tabulated data for water (Saul and
Wagner 1989) in the experimentally well-studied region
T ¼ 0–1000 �C and P ¼ 1–10 000 were treated using
Eqs. (9) as well as (27)–(29) on the basis of a non-linear
least-squares method.

Using n ¼ 2 in Eq. (9), Po ¼ 1 bar and To ¼ 298.15 K
in Eqs. (9) and (27), the Gibbs free energy equation for
aqueous fluid takes the following semi-empirical form,
which is also applicable to other gases (e.g. Ar, CO2,
CH4; Gerya and Perchuk 1997)

Gsþa¼H298;1�TS298;1þV o
s WþRT ½c1 lnð1�e1Þ

þc2 lnð1�e2Þ��ðc1þc2Þ½DH o
s1ð1�T =ToÞeo=ð1�eoÞ

þRT lnð1�eoÞ�þRT ½ð1�XLiqÞlnð1�XLiqÞ

þXLiq lnXLiq�þð1�XLiqÞRT ln½/X 2
LiqþP �

�ð1�XLiqÞfDHo
ord�TDSo

ordþDC o
P ord½T �298:15

�T lnðT=298:15Þ�gþfW H
1 �TW S

1

þW Cp
1 ½T �298:15�T lnðT=298:15Þ�gXLiqð1�XLiqÞ;

ð30Þ
where e1 ¼ exp[)(DHs1

o+DVs1
oY)/RT)], e2 ¼ exp[)DHs1

o

/RT)], eo ¼ exp[)DHs1
o/R298.15)], Y ¼ 5/4(Po+/)1/5

[(P+/)4/5)(1+/)4/5]. Table 2 lists the calculated
parameters of Eq. (30). This equation allows an accu-
rate, continuous description of the thermodynamic
properties of water in both the two-phase and super-
critical P–V–T region (Fig. 6), i.e. without the need to

separate the P–V–T field into sub-regions (e.g. Holland
and Powell 1998). The most significant errors were
detected for the molar volume of the aqueous gas in the
vicinity of the critical point (Fig. 6a). Problems in
describing the molar volumes of fluids near the critical
region have long been known, and empirical switch
functions are commonly used to improve the description
in this region without disturbing the continuity of the
far-field P–V–T equations (e.g. Hill 1990). Taking into
account that the related errors in the Gibbs free energy
are not large (Fig. 6c), we decided not to introduce this
additional complexity to our model. Figure 7 shows a
comparison of the molar volumes of water, calculated
according to Eq. (30), with those recommended by
IAPWS-95 for scientific use (Wagner and Pruß 1997).
The comparison shows that our equation demonstrates
more consistency with internationally approved
tabulated properties of water than other calibrations
(Duan et al. 1996; Holland and Powell 1998), especially
at high P and T.

Figure 8 shows the results of extrapolating the molar
volumes of water to high P–T. It is seen that Eq. (30)
shows good extrapolation properties in terms of both
pressure and temperature, and better coincides with the
results of independent shock-wave and volumetric
experiments than calibrations suggested by Duan et al.
(1996) and Holland and Powell (1998).

Combined applications: phase equilibria in the system
MgO–SiO2–H2O

Phase equilibria in the MgO–SiO2–H2O system have
been experimentally studied to very high P and T,
thus providing the opportunity to test the equations of

Fig. 7 Comparison of calcu-
lated molar volume of water
at high pressure and temper-
ature with thermodynamic
data (Wagner and Pruss
1997) recommended for
scientific use (IAPWS-95)
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Gibbs free energy described here over a wide range
of pressures and temperatures. The extrapolation
properties of the above equations can be simulta-
neously tested for both minerals and the coexisting
aqueous fluid. All calculations are inherently based on

internally consistent data on the basis of non-linear
least-squares analysis.

We considered several experimentally studied equi-
libria involving aqueous fluid, quartz, coesite, stisho-
vite, periclase, and brucite. Figure 9 show the results

Fig. 8a–c Comparison of
the extrapolated molar vol-
umes of water with results of
the independent volumetric
(Bridgeman 1942; Brodholt
and Wood 1994) and shock-
wave (Rice and Walsh 1957)
experiments. Different
diagrams show the volumes
calculated using Eq. (30) (a),
and PVT formulations sug-
gested by Holland and
Powell (1998) (b) and Duan
et al. (1996) (c)
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obtained for the a–b transition in quartz (Fig. 9a) and
the liquid–gas transition in water (Fig. 9b), calculated
with the use of Eqs. (20) and (30), respectively. Along
the phase boundaries, mole fractions of the ordered/
associated clusters (Xa / XLiq) in the coexisting phases
correspond to the conditions of equilibrium for both
the internal ‘‘ordering’’ transition in each phase and
the heterogeneous reaction between them. This is
exemplified by Fig. 10, showing the Gibbs potential
of quartz (Fig. 10a) and water (Fig. 10b) in the region
of the phase transitions. Along these curves, two

analogous minima occur in both cases, corresponding
to the two stable phases differing in the degree of
ordering/association. Figure 9 shows that the derived
Gibbs energy equations allow an accurate description
of experimental data. However, the critical point of
water calculated using Eq. (30) appears to be 25 K
higher than the experimentally determined datum
(Fig 9b). This discrepancy is related to the difficulties
discussed above in describing the continuous thermo-
dynamic properties of fluid in the region of the critical
point.

Fig. 9a, b Comparison of
phase boundaries calculated
for quartz (a) and water (b)
with experimental data
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Figure 11 shows some mineral equilibria calculated
using the data of Table 2. Comparison of the calculated
phase boundaries with experimental data shows that the
equations of Gibbs free energy derived here lead to
accurate descriptions of the various phase boundaries,
including the dehydration reaction brucite ¼ peri-
clase + water to very high pressures and temperatures
(1250 �C, 150 kbar).

Discussion and conclusions

The equations for Gibbs free energy described here
are sufficiently accurate to describe and extrapolate

thermodynamic properties and phase equilibria on the
basis of experimental data on isobaric heat capacity and
molar volume. This implies that they can be effectively
used in thermodynamic data bases of petrological
interest. Moreover, they are relatively simple and lead to
a uniformity of representation of the Gibbs potential as
a direct function of P and T for very different phases (the
software implementing the equations discussed in this
paper for thermodynamic calculations is available by
request from the corresponding author). It should be
noted that the proposed model employs not more than
16 adjustable parameters. By comparison, the Helm-
holtz free energy equations that allow reasonable

Fig. 10a, b Diagram illus-
trating the method for
determining the equilibrium
ordering parameter corre-
sponding to the Gibbs en-
ergy minimum. The
diagrams are calculated for
quartz under pressure of 10
kbar (a) and water under a
pressure of 86 bar (b).
Arrows relate minima of the
Gibbs energy at a given
temperature
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descriptions of a one-component fluids over a wide P–T
range, including the two-phase region, normally contain
30–80 empirical parameters (e.g. Altunin 1975; Sychev

et al. 1979; Saul and Wagner 1989;Stewart and Jacobson
1989; Hill 1990). The Gibbs free energy equation
for quartz proposed by Dorogokupets (1995) for a

Fig. 11a–c Comparison of
selected calculated phase
transitions in the system
MgO–SiO2–H2O with the
experimental data
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description of the k-transition contains 26 parameters.
In the case of simple phases, Equation (12) with 10–12
adjustable parameters allows an accurate description
of the heat capacity and volume over a wide range of
P–T conditions (20–3000 K, 0–800 kbar), including the
important low-temperature (20–200 K) region relevant
for correct representation of the third-law entropy
according to Eq. (9a).

On the other hand, the approach presented here also
leads to novel insights into the structure of crystalline
phases with k-transitions and fluids. The derived Gibbs
free energy equations for such phases require the calcu-
lation of an equilibriumordering parameter to satisfyEqs.

(19) and (21), as illustrated by Fig. 10. Figure 12 shows
the calculated P and T dependence of the ordering
parameter for quartz (Fig.12a) and for water (Fig.12b).
For quartz, the calculated miscibility gap widens with
increasing pressure (the calculated critical point corre-
sponds to T ¼ 553 �C, P ¼ )880 bar). A hypothetical
homogeneous silica phase, with the ordering parameter
Xa changing continuously with temperature, would exist
below this point (Fig. 12a). These relationships are very
similar to those in the aqueous fluid above the critical
point (Fig. 12b). Accordingly, the heat capacity and
coefficient of thermal expansion show maxima at the
maximum value of the derivative ¶X/¶T (Figs. 13, 14).

Fig. 12a, b Isobars of the
themperature dependence of
ordering parameters for
quartz (a) and water (b)

446



Comparison of the thermodynamic functions and order-
ing parameters of quartz and those of aqueous fluid
(Figs. 13, 14) thus reveal a clear analogy, demonstrating
the thermodynamic similarity of ordering phenomena in
fluid and crystalline states (Landau and Lifshitz 1959). It
should alsobenoted that the possible existence of a critical
point for a crystalline substance with a k-transition was
predicted theoretically by Landau (e.g. Landau and
Lifshitz 1959). Our test calculations have also shown that
a similar thermodynamic approach can be applied to treat
order/disorder transitions in binary alloys with
pronounced k-anomaly.

An important question concerns the physical
meaning of the ordering parameters Xa and XLiq used
for the description of the Gibbs free energy of quartz
and aqueous fluid, respectively. For both water and
quartz, this parameter cannot be directly obtained from
physical measurement, and therefore appears entirely
abstract. However, a correspondence between XLiq and
the number of clusters follows from the similarity of
Eqs. (22) and (24). Therefore, XGas ¼ 1)XLiq may be
interpreted as an apparent mole fraction (thermody-
namic probability) of the monomers, X1, in the fluid,
and XLiq is the bulk mole fraction (thermodynamic

Fig. 13a, b Isobars of the
temperature dependence of
isobaric heat capacities for
quartz (a) and water (b)
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probability) of the clusters with n ‡ 2. The concept of
the existence of two distinct states of molecules in a
fluid appears consistent with investigations of the water
structure by Gorbaty and Demianets (1983), who
demonstrated that the near-critical fluctuations are
preserved at elevated P–T conditions above the critical
point to a pressure of 1 kbar and temperatures of
500 �C. In the supercritical region, there are short-term
space fluctuations that correspond to the liquid-like
and gas-like states. Presence of clusters of water in the
supercritical region is found in molecular dynamics
experiments, even at densities of less than 0.2 gcm)3

(Churakov and Kalinichev 1999), thus validating our
thermodynamic formalism.

Further examples of the correspondence between the
calculated ordering parameters and physical measure-
ments are demonstrated in Fig. 15. Figure 15a presents
the negative linear correlation of the estimated ordering
parameter Xa with the sum of mean-squares displace-
ments (MSD) of the oxygen atoms in the quartz struc-
ture, as determined for the k-transition by Kihara
(1990). The high correlation coefficient (r ¼ )0.987)
shows that the calculated decrease of Xa with increasing
temperature reflects the real mechanism of disordering.

Fig. 14a, b Isobars of the
temperature dependence of
the coefficient of thermal
expansion for quartz (a) and
water (b)
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In Fig. 15b, the mole fraction of molecules in the liquid-
like state XLiq is compared to the mole fraction of
hydrogen bonds XH, calculated by Gorbaty and Kalin-
ichev (1995) from experimental data (the association of

molecules in an aqueous fluid is mainly determined by
hydrogen bonds). Figure 14c presents a comparison of
the mole fraction of molecules in the liquid-like state
XLiq with the mole percent of monomers NM (Luck

Fig. 15a–c Comparison of
the ordering parameters with
experimentally determined
structural parameters for
quartz (a) and water (b),(c)
a A negative correlation (r
= )0.987) between Xa and
sum of mean-squares dis-
placements (MSD) of oxy-
gen atoms along axes 1–3
(Kihara 1990) at P ¼ 1 bar
and T ¼ 600–1100 K.
b A positive correlation (r =
0.942) between XLiq and
mole fraction of hydrogen
bonds XH (Gorbaty and
Kalinichev 1995) at a P ¼ 1
kbar and T ¼ 0–550 �C.
(c) A negative correlation
(r = )0.997) between XLiq

and content of monomers
NM (mol%) (Luck 1980)
in the liquid phase along the
boiling curve
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1980). High coefficients of linear correlation between XH

and XLiq (r ¼ 0.942) and between NM and XLiq

(r ¼ )0.997) suggest that XLiq quantitatively character-
izes the degree of association of molecules in an aqueous
fluid. Thus, it can be concluded that our relatively ab-
stract ordering parameter reflects physical processes in
minerals and fluids.

Figure 16 shows the results of modelling the mixing
properties of an H2O–CO2 fluid with Eq. (27) and
parameters linearly dependent on fluid composition, i.e.
BH2O-CO2

¼ BCO2
XCO2

+ BH2O
XH2O

, where XCO2
¼ CO2

/(CO2 + H2O), XH2O
¼ H2O/(CO2 + H2O); BH2O-CO2

are parameters of Eq. (27) for the binary fluid of given
composition; BH2O

and BCO2
are, respectively, empirical

parameters of Eq. (27) for pure H2O (Table 2) and pure
CO2 (DHo

ord ¼ )20608.153 J, DSo
ord ¼ )138.42315 J/K,

DCP
o
ord ¼ 10.0415201 J/K, WH ¼ )20859.049 J,

WS ¼ 36.8658607 J/K, WCp ¼ 0, and / ¼ 6551.312 bar,
Gerya and Perchuk 1997). Our results coincide well with
the empirical mixing models of Aranovich and Newton
(1999) and Holland and Powell (2003) based on exper-
imental data. This suggests that simple linear mixing
rules can be used to extend our model on fluid mixtures
without introducing any additional parameters. This
also implies that non-ideality of mixing in multicompo-
nent fluids is primarily related to changes in the degree
of association of fluid molecules (XLiq) with changing
fluid composition, as directly accounted for by Eq. 27.
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Appendix 1. Derivation of Eq. (2)

The derivation of Eq. (2) follows standard logic of sta-
tistical mechanics (e.g. Hill 1956; Kubo 1965; Toda et al.
1992; Landau and Lifshitz 1959), but is based on an
ensemble not treated in standard textbooks on statistical
mechanics.

Let us first consider a substance in a condensed state,
solid or liquid, at a relatively low temperature, when its
atoms are close to each other and vibrate mainly around
equilibrium positions. A system with N atoms will have
3N vibrational degrees of freedom, and, from the view-
point of mechanics, can be referred to as a system of 3N
independent quantum oscillators (e.g. Landau and Lif-
shitz 1959). The Gibbs free energy of a system of
quantum oscillators in equilibrium at constant P and T
can also be expressed with the P–T partition function
(Toda et al. 1992)

G ¼ �kBT lnðY Þ; ðA1Þ

Y ¼
X

i

Z1

0

expf�½EiðV Þ þ PV �=kBT g dV ðA2Þ

where Y is the statistical sum over states, kB is Boltz-
mann’s constant, V is the system volume and Ei(V) is the
system energy for the i-th quantum state as a function of
the volume. Theoretical expressions for Ei(V) are

unavailable and empirical approximations are used in-
stead. For integration of Eq. (A2) we take into account
that at given P and T the fluctuation of volume of
condensed substance is insignificant. If for an i-th state
at a given P only one system volume Vi(P) refers to a
non-zero probability, then

Z1

0

expf�½EiðV Þ þ PV �=kBTgdV ¼ exp½�HiðP Þ=kBT �;

ðA3Þ
where Hi(P) ¼ Ei(P)+PVi(P) and Ei(P) ¼ Ei[Vi(P)].

Hi(P), Ei(P) and Vi(P) are enthalpy (or, more spe-
cifically, its microscopic analogue), energy and volume
of the system, respectively, in an i-th state as functions of
P. If the apparent volume Vi(P) and corresponding
Hi(P) and Ei(P) in Eq. (A3) are valid for a case of the
i-th quantum state at given P with insignificant fluctu-
ations of the system volume V relative to Vi(P), then Eq.
(A2) can be simplified to

Y ¼
X

i

exp½�HiðP Þ=kBT �: ðA4Þ

Equation (A4) differs from equations normally given in
statistical mechanics (e.g. Hill 1956) in that the volume
integral is taken before summation of the quantum
states of the oscillators.

Normalizing the partition function relative to zero-
point vibrations gives

G ¼ G0ðP Þ � kBT lnðY0Þ; ðA5Þ
where Y0 =

P
i

exp[-DHi(P)/ kBT], G0 ¼ H0(P) - TS0,
DHi(P) ¼ Hi(P) ) H0(P) ¼ DEi(P) + PDVi(P),H0(P) =
E0(P) + PV0(P), DEi(P) ¼ Ei(P) ) E0(P),
DVi(P) ¼ Vi(P) ) V0(P).Y0 is the statistical sum nor-
malized relative to the state of zero-point vibrations.
G0(P), H0(P), E0(P) and V0(P) are, respectively, the
pressure-dependent Gibbs free energy, enthalpy, energy
and volume of the system for the state of zero-point
vibrations. S0 is entropy of the system for the state of
zero-point vibrations (in case of ordered crystalline
phases, it is equal to zero according to Nernst’s law).
DHi(P), DEi(P) and DVi(P) are, respectively, the pres-
sure-dependent changes of enthalpy, energy and volume
due to transition from the state of zero-point vibrations
to the i-th quantum state. Taking into account 3N
independent oscillators:

Y0 ¼
Y3N

i

Y0i ; ðA6Þ

where Y0i ¼
PM

j
exp½�DHijðP Þ=kBT �;

DHijðP Þ ¼ DEijðP Þ þ PDVijðP Þ:

Y0i is the statistical sum for the i-th oscillator normalized
relative to the state of zero-point vibrations, M is the
number of energy levels for the i-th oscillator, DHij(P)
DEij(P) and DVij(P) are, respectively, pressure-dependent
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changes in enthalpy, energy and volume due to transi-
tion of the i-th oscillator from the state of zero-point
vibrations to the j-th energy level. To calculate Y0i, it is
assumed that every oscillator has an infinite number of
energy levels and that DHij(P), DEij(P) and DVij(P) are
proportional to j (e.g. Landau and Lifshitz 1959). Then

DHijðP Þ ¼ jDHi0ðP Þ; ðA7Þ

Y0i ¼ 1=f1� exp½�DHi0ðP Þ=kBT �g; ðA8Þ

DHi0ðPÞ ¼ DEi0ðP Þ þ DVi0ðPÞ: ðA9Þ

G¼H0ðP Þ�TS0þkBT
X3N

i

lnf1� exp½�DHi0ðP Þ=kBT �g;

ðA10Þ
where DHi0(P), DEi0(P), and DVi0(P) are, respectively,
pressure-dependent changes in enthalpy, energy and
volume due to transition of the i-th oscillator between
neighbouring energy levels. The form of Eq. (A10) is
similar to a standard equation for the Helmholtz free
energy of the system of independent quantum oscillators
(e.g. Landau and Lifshitz 1959; Kubo 1965; Toda et al.
1992), and the only difference is that the statistical sum
over states is expressed in terms of enthalpy changes (not
energy changes) related to the transitions of the oscil-
lators.

If N ¼ mNA (NA is Avogadro’s number, m is the
number of atoms in a substance molecule) and functions
DHi0(P) have similar values for n big groups of oscilla-
tors, then Eq. (A9) can be rewritten in the form of Eq. (2)

Appendix 2. Derivation of Eq. (16)

The derivation of Eq. (16) is also based on the P–T
partition function (Toda et al. 1992) and follows the
same logic as the derivation of Eq. 2 (see Appendix 1).

If the k-transition leads to notable changes in the
thermal vibrations of atoms, this must be taken into ac-
count in a description of the energy transitions of oscil-
lators; i.e. Gs in Eq. (2) depends on Xa. Suppose that for a
certain oscillator energy levelm, whose energy depends on
Xa, the enthalpy effect of the transition DHsi changes.
Then, the statistical sums Y0i in Eq. (A6) take the form

Y0i¼f½1�expð�DHib=kBT Þ�þexpð�DHik=kBT Þ
�½expð�DHib=kBT Þ�expð�DHia=kBT Þ�g=
f½1�expð�DHia=kBT Þ��½1�expð�DHib=kBT Þ�g;

ðA11Þ

where DHia is the enthalpy change of the energy transi-
tions (DHi0) beginning with the zero level to the level
(m-1) in the ordered phase, DHib is the enthalpy change
of the energy transitions beginning with the level m in
the disordered phase, DHik is the enthalpy change of the
transition from the zero level to the level m as a function
of Xa and can be expressed by a power series expansion:

DHik ¼
Xu

k¼0
DHikkðXaÞk; ðA12Þ

where DHikk denotes the expansion coefficients. Then
Eq. (A10) can be transformed to:

Gs¼Hs�TSo
s þ
Xn

i¼1
ciRT1nfð1� eaiÞð1� ebiÞ=½ð1� ebiÞ

þ ekiðebi� eaiÞ�g; ðA13Þ
where eai ¼ expð�DHsia =RT Þ; ebi ¼ expð�DHsib =RT Þ;
eki ¼ expð�DHsik =RT Þ; eoi¼ exp ð�DH�sia =R ToÞ;DHsia ¼
DH�sia þDV �sia W;DHsib ¼ DH�sib þDV �sib W; and DHsik ¼Pu
k¼0
ðDH�sikk þDV �sikk WÞðXaÞk:

DHsia, DHsib, and DHsik are values of DHia, DHib and
DHik taken for NA oscillators. Equation (16) is derived
from Eq. (A13) by using u ¼ 2, n £ 5 and Eqs. (5)–(6).

Appendix 3. Derivation of Eq. (27)

The last two terms in Eq. (26) can be expressed as

�XGasDGo
ord þ Ge ¼ GP þ GT ; ðA14Þ

where GP ¼
RP
Po
ð�DV o

ordXGas � V eÞdP ; and GT ¼ �XGas

ðDHo
ord � TDSo

ordÞ þ He � TSe þ
RT
To

½�DCo
P ðT Þord XGasþ

Ce
P ðT Þ�dT� T

RT
To

½ð�DCo
P ðT ÞordXGasþ Ce

P ðT ÞÞ=T �dT :

DV o
ord and Ve are the standard volume change of

short-term ‘‘ordering’’ transition 25 (Gas = Liq) and
the excess volume of the fluid, respectively, both being
functions of P and T, DHo

ord and DSo
ord are the standard

enthalpy and entropy changes of Reaction (25) at Po and
To, H

e and Se are, respectively, contributions to excess
enthalpy and entropy not related to Ve at Po and To,
DCo

P (T)ord and Ce
P (T) are, respectively, the standard

heat capacity change of ‘‘ordering’’ transition (25) and
the excess heat capacity of the fluid, both dependent on
temperature at Po.

To quantify GP from Eq. (A14) it can be assumed
that the volume of a phase that contains only molecules
in the gas-like (free) state can be expressed as two terms,
namely, the conventional volume of the molecules Vs

and the free volume Vf (Prigogine and Defay 1954).
Then

V o
Gas ¼ Vs þ Vf ¼ Vs þRT=P : ðA15Þ

The volume of one mole of a substance that contains
only molecules in the liquid-like (associated) state is
solely determined by the conventional volume of the
molecules

V o
Liq ¼ Vs: ðA16Þ

Hence, the standard volume change of Reaction (25) is
DV o

ord ¼ V o
Liq � V o

Gas ¼ �RT=P :

454



Considering Eqs. (A15) and (A16), the total volume
V of a mixture consisting of molecules in both the liquid-
like and the gas-like states

V ¼ XGasV o
Gas þ XLiqV o

Liq � V e ¼ Vs � XGasDV o
ord � V e

¼ Vs þ XGasRT=P � V e: ðA17Þ
The negative sign of Ve corresponds to a decrease in the
free volumeVf caused by attraction between molecules of
any type. Then, in line with the van der Waals equation

P ¼ RT=ðV � bÞ � /a;

where b is the correction for molecular volume, i.e. b =
Vs, and /a = const/V2 is the correction for the attractive
interaction between the molecules. Equation (A17) can
be rewritten as

V ¼ Vs þ XGasRT=P � V e ¼ Vs þ XGasRT=ðP þ /aÞ:
ðA18Þ

Apparently, /a depends on the average distance between
molecules in a fluid. Taking into account the volume
change of Reaction (25), this distance is a function of
XLiq. As the external pressure decreases, the volume of
the system approaches that of the ideal gas, RT/P, and
both XLiq and /a tend to zero. As the pressure increases,
XLiq and /a also increase. Hence, /a can be expressed as
a function of XLiq in the form

/a ¼ /a1XLiq þ /a2X 2
Liq þ � � � þ /aqX q

Liq; ðA19Þ

where/a1,/a2, . . ., and/aq are coefficients independent of
XLiq. Evidently, with XLiq approaching 1, /a approaches
/ (Eq. 5), because both corrections characterize the same

attractive interaction between molecules. Then, in accor-
dance with Eq. (A19)

/ ¼ /a1 þ /a2 þ � � � þ /aq: ðA20Þ

For a transition from the liquid-like state to the gas-like
one, when distances between the molecules increase
significantly, Eqs. (A18)–(A19) provide an additional
correction for the attractive interaction. Taking for the
standard state /a ¼ 0, integration of Eq. (A17) in
accordance with Eq. (A14) yields the following equation
for GP

GP ¼ XGasRT ln½ðP þ /aÞ=Po; ðA21Þ
where /a ¼ /a1XLiq þ /a2X 2

Liq þ � � � þ /aqX q
Liq:

Using the Margules expansion to express the integral
excess Gibbs free energy of mixing of liquid-like and gas-
like molecules in a fluid and assuming DCo

PordðT Þ and
Ce
PðT Þ constant, GT in Eq. (A14) can be defined as

GT ¼�XGasfDHo
ord�TDSo

ordþDCo
Pord½T �To

�T 1nðT=ToÞ�gþ
Xm

j¼1
W G

j XGasX
j
Liq; ðA22Þ

where W G
j ¼ W H

j � TW S
j þ W Cp

j ½T � To � T 1nðT=ToÞ�:
Co

Pord is the standard heat capacity effect of Reaction
(25) at Po and To, and the Ws are the Margules
parameters.

Equation (27) is derived from Eqs. (A14), (A21) and
(A22) using q ¼ 2, m ¼ 1 and XGas+XLiq ¼ 1.
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