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bstract

We have extended our previous 2D method [Gerya, T.V., Yuen, D.A., 2003. Characteristics-based marker-in-cell method with
onservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth
lanet. Interiors 140, 295–320], which is a combination of conservative finite-differences with marker-in-cell techniques to include

he effects of visco-elasto-plastic rheology, self-gravitation and a self-consistently derived evolving curvilinear planetary surface.
his code is called I2ELVIS and can solve a new class of computationally challenging problems in geodynamics, such as shear

ocalization with large strains, crustal intrusion emplacement of magmas, bending of realistic visco-elasto-plastic plates and core-
ormation by vigorous shell tectonics activities related to a global Rayleigh–Taylor instability of a metal layer formed around
ilicate-rich lower density (primordial) core during planetary accretion. We discuss in detail the computational strategy required
he rheological constraints to be satisfied at each time step and spatial location. We show analytical benchmarks and examples

rawn from comparing between numerical and analogue experiments in structural geology, subducting slab bending with a visco-
lasto-plastic rheology and equilibrium spherical configurations from self-gravitation. We have also tested possibilities of future
pplications by addressing 3D geometries based on multigrid method and including inertial effects in the momentum equation with
racers in order to simulate meteoritic impact events and eventually earthquake instabilities.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Numerical modelling of geodynamics is now recog-
ized as a truly challenging problem in computational

cience because of the complex non-linear nature of
rustal and mantle rheologies and their coupling to multi-
omponent systems and other thermodynamic variables.

∗ Corresponding author. Tel.: +41 44 6336623; fax: +41 44 6331065.
E-mail address: taras.gerya@erdw.ethz.ch (T.V. Gerya).

031-9201/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2007.04.015
ee curvilinear surface; Inertial effects

In the past we (Gerya and Yuen, 2003) have studied
viscous flows with variable viscosity and other vari-
able properties such as thermal conductivity, with a
mixed Lagrangian–Eulerian numerical scheme based
on conservative finite-differences and marker-in-cell
techniques. In this present work we will extend our
previously designed methodology to modelling plate

processes involving a more realistic rheology which
takes into account visco-elasto-plasticity. This new
endeavour will open up many new vistas in geolog-
ical phenomena. We need to consider geodynamical

mailto:taras.gerya@erdw.ethz.ch
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situations involving large deformation simultaneously
together with thermo-mechanical coupling. We will
extend our methodology for advection schemes origi-
nally designed for scalars to tensor fields (Schmalholz et
al., 2001; Moresi et al., 2003; Muhlhaus and Regenauer-
Lieb, 2005), which is crucial in visco-elasticity and
plasticity. In this paper we do not want to solve any
peculiar geophysical problems but rather demonstrate
the ability of our method to maintain a grip on challeng-
ing geodynamical situations involving strong contrast of
rheological properties, large deformation and the con-
sequent multi-scale phenomena. We will also describe
a novel method of using a Cartesian code to calculate
the non-linear dynamics of a deforming self-gravitating
spherical body. This would be extremely important for
modelling planetary dynamics.

In Section 2 we will write down the constitutive
equations for the visco-elasto-plastic rheology and the
accompanying thermo-mechanical equations. We will
also lay out the mathematical formulation of the defor-
mation involving a spherical model, using a Cartesian
code. In Section 3 we give some analytical benchmarks
and illustrative examples of visco-elasto-plastic defor-
mation and shear localization along with results from
the coupling of the thermo-mechanics to self-gravitation.
Finally, we summarize the novel features of the new code
and give some future perspectives, such as addressing
issues of 3D geometries and including inertial effects in
the momentum equation.

2. Basic background of the scheme for numerical
modelling

2.1. Rheological constitutive equations

In the present study we employed a visco-elasto-
plastic rheology (e.g., Ranalli, 1995) with the deviatoric
strain rate ε̇ij including the three respective components:

ε̇ij = ε̇ij(viscous) + ε̇ij(elastic) + ε̇ij(plastic), (1)

where

ε̇ij(viscous) = 1

2η
σij, (1a)

1 Dσij

ε̇ij(elastic) =

2μ Dt
, (1b)

ε̇ij(plastic) = 0 for σII < σyield,

ε̇ij(plastic) = χ
∂G

∂σij
= χ

σij

2σII
for σII = σyield, (1c)
Planetary Interiors 163 (2007) 83–105

G = σII, (1d)

σII = ( 1
2σijσij)

1/2
, (1e)

where Dσij/Dt is objective co-rotational time derivative
of the deviatoric stress component σij, σyield is plastic
yield strength for given rock, G is plastic potential of
yielding material (e.g., Hill, 1950; Vermeer, 1990), σII
is second deviatoric stress invariant and χ is plastic mul-
tiplier, which can be determined locally at each time step
and satisfies the plastic yielding condition:

σII = σyield. (2)

Our plastic flow rule formulation (Eq. (1c)) includes
deviatoric stress and strain rate components only and
consequently our plastic potential formulation (Eq. (1d))
is the same for both dilatant and non-dilatant materials.
In the case of plastic deformation of dilatant materials
this formulation is, therefore combined with the equa-
tion describing volumetric changes computed in 2D in
the form of

−D ln ρ

Dt
= div(v̄) = 2 sin (ψ)ε̇II(plastic),

ε̇II(plastic) = ( 1
2 ε̇ij(plastic)ε̇ij(plastic))

1/2
(3)

where ψ is dilatation angle which generally depends on
plastic strain (e.g., Hill, 1950) and ε̇II(plastic) is the second
invariant of deviatoric plastic strain rate tensor.

The plastic strength σyield of a rock generally depends
on mean stress on solids (Psolid = P) and on pore fluid
pressure (Pfluid) such that (Ranalli, 1995):

σyield = C + sin(ϕ)P, (4)

sin(ϕ) = sin(ϕdry)λ, λ = Pfluid

Psolid
, (5)

where C is the cohesion (residual strength at P = 0), ϕ is
effective internal friction angle (ϕdry stands for dry rocks)
and λ is the pore fluid pressure factor. For dry fractured
crystalline rocks sin(ϕ) is independent of composition
and vary from 0.85 at P < 200 MPa to 0.60 at higher pres-
sure (Brace and Kohlstedt, 1980). The plastic strength of
dry rocks would strongly increase with pressure to a limit
of ∼9 GPa according to the Peierls mechanism for low
temperatures (Kameyama et al., 1999).

The effective viscosity of solid rocks essentially
depends on the stress, pressure and temperature. It is
defined in terms of the second deviatoric stress invariant

(Ranalli, 1995) as

η =
(

2

σII

)(n−1)
Fn

AD
exp

(
E + PV

RT

)
, (6)
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Table 1
Abbreviations and units

Symbol Meaning

AD Material constant (MPa−n s−1)
C Cohesion (Pa)
c Composition
Cp Isobaric heat capacity (J kg−1 K−1)
E Activation energy (kJ mol−1)
G Plastic potential (Pa)
gx, gz Horizontal and vertical components of

gravitational acceleration (m s−2)
Hr, Ha, Hs, HL Radioactive, adiabatic, shear and latent heat

production (W m−3)
k Thermal conductivity (W m−1 K−1)
n Stress exponent
P, Psolid Dynamic pressure (mean stress on solids) (Pa)
Pfluid Pore fluid pressure (Pa)
R Gas constant (J mol−1 K−1)
t Time (s)

t, 
tm, ΔtT Computational, displacement and thermal time

step (s)
T Temperature (K)
V Activation volume (J MPa−1 mol−1)
vx, vz Horizontal and vertical components of velocity

(m s−1)
x, z Horizontal and vertical coordinates (m)
Z Visco-elasticity factor
α Thermal expansion coefficient (K−1)
β Compressibility coefficient (Pa−1)
χ Plastic multiplier (s−1)
ε̇II Second invariant of the deviatoric strain rate

tensor (s−1)
ε̇ij Components of the deviatoric strain rate tensor

(s−1)
Φ Gravitational potential (J kg−1)
η Viscosity (Pa s)
ηvp Viscosity-like parameter (Eq. (16)) (Pa s)
ϕ Internal friction angle (◦)
γ Gravitational constant (N m2 kg−2)
λ Pore fluid pressure coefficient: λ= Pfluid/Psolid

μ Shear modulus (Pa)
ρ Density (kg m−3)
σII Second invariant of the deviatoric stress tensor

(Pa)

where ρ(T,P,c) is local density dependent on pressure
T.V. Gerya, D.A. Yuen / Physics of the Ea

here AD, E, V and n are experimentally determined flow
aw parameters (AD is the pre-exponential factor, E and

are the activation energy and volume) and R is the gas
onstant. F is a dimensionless coefficient depending on
he type of experiments on which the flow law is based
Ranalli, 1995). For example:

=
⎧⎨
⎩

2(1−n)/n

3(1+n)/2n for triaxial compression and

2(1−2n)/n for simple shear.

.2. Conservation equations and numerical
mplementation

We have considered 2D creeping flow wherein both
hermal and chemical buoyant forces are included, along
ith mechanical heating from adiabatic compression and
iscous dissipation in the heat conservation equation.

We have adopted a Lagrangian frame (Gerya and
uen, 2003) in which the heat conservation equation
ith a variable thermal conductivity k(T,P,c) depend-

ng on rock composition (c), pressure and temperature
akes the form:

ρCp

(
DT

Dt

)
= −∂qx

∂x
− ∂qz

∂z
+Hr +Ha +Hs +HL,

qx = −k(T, P, c)
∂T

∂x
, qz = −k(T, P, c)

∂T

∂z
,

Ha = Tα

(
vx
∂P

∂x
+ vz

∂P

∂z

)
,

Hs = σxx(ε̇xx − ε̇xx(elastic)) + σzz(ε̇zz − ε̇zz(elastic))

+ 2σxz(ε̇xz − ε̇xz(elastic)), (7)

here D/Dt represents the substantive time derivative,
r, Ha, Hs and HL are the radioactive, adiabatic, shear

nd latent heating, respectively; other notations are given
n Table 1.

The conservation of mass is approximated by the
ompressible time-dependent 2D continuity equation:

D ln ρ

Dt
+ ∂vx

∂x
+ ∂vz

∂z
= 0. (8)

he 2D Stokes equations for creeping flow with position
nd time-dependent gravitational acceleration vector

¯ (x, z, t) take the form:

∂σxx + ∂σxz − ∂P = −ρ(T, P, c)gx(x, z, t),

∂x ∂z ∂x

gx(x, z, t) = −∂Φ
∂x
, (9)
σij Components of the deviatoric stress tensor (Pa)
ψ Dilation angle (◦)

∂σzx

∂x
+ ∂σzz

∂z
− ∂P

∂z
= −ρ(T, P, c)gz(x, z, t),

gz(x, z, t) = −∂Φ
∂z
, (10)
(P) temperature (T) and composition (c); gx(x,y,t), and
gz(x,y,t) are components of local gravitational accelera-
tion vector (Fig. 1) andΦ(x,z,t) is gravitational potential
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Fig. 1. Schematic representation of non-regular rectangular staggered
Eulerian grid used for numerical solution of Eqs. (7)–(11). gx and gz

are components of position-dependent gravitational acceleration vector
which can vary in the x–z coordinate frame. Different symbols corre-
spond to the nodal points for different scalar properties, vectors and
tensors. i, i + 1/2, etc. and j, j + 1/2, etc. indexes represent the staggered
grid and denote, respectively, the horizontal and vertical positions of
four different types of nodal points. Many variables (vx, vz, gx, gz,
σxx, σxz, σzz, ε̇xx,ε̇xz, ε̇zz, P, T, η, μ, ρ, k, Cp, etc.), up to around 25
per one grid cell, are part of the voluminous output in this code. Note
that viscosity (η) and shear modulus (μ) are defined in different points

when used for computing of normal (σxx, σzz, and, respectively, ηn,
μn) and shear (σxz, and respectively, ηs, μs) components of deviatoric
stress tensor (σ).

computed according to the Poisson equation:

∂2Φ

∂x2 + ∂2Φ

∂z2 = 4Kπγρ(P, T, c), (11)

where γ is gravitational constant and K depends on
geometry of self-gravitating body modeled in 2D (K = 1
and 2/3 stand for cylindrical and spherical geometry,
respectively). We note that the density is also a time-
dependent quantity, because T and c depend on time
(t).

The deviatoric stress components σij in Eqs. (9) and

(10) are formulated from the visco-elasto-plastic con-
stitutive relationships (Eq. (1)) by using an explicit
first-order finite-difference scheme in time in order
to represent objective time derivatives of visco-elastic
Planetary Interiors 163 (2007) 83–105

stresses (e.g. Moresi et al., 2003):

Dσij
Dt

= σij − σ0
ij


t
(12)

σij = 2ηvpε̇ijZ + σ0
ij(1 − Z), (13)

Z = 
tμ


tμ+ ηvp
, (14)

ηvp = η when σII < σyield, (15)

ηvp = η
σII

ηχ+ σII
, for σII = σyield, (16)

ε̇xx = −ε̇zz = 1

2

(
∂vx

∂x
− ∂vz

∂z

)
,

ε̇xz = ε̇zx = 1

2

(
∂vx

∂z
+ ∂vz

∂x

)
,

in which 
t is the computational time step, σ0
ij is the

deviatoric stress tensor from the previous time slice
corrected for advection and rotation by using a non-
diffusive marker-in-cell technique (e.g. Moresi et al.,
2003; Gerya and Yuen, 2003). Z is the visco-elasticity
factor (Schmalholz et al., 2001) and ηvp is a viscosity-
like local Lagrangian parameter computed iteratively at
each time step for every marker point to satisfy the plastic
yielding condition everywhere (ηvp = ηwhen no plastic
yielding occurs) and then interpolated from markers to
respective computational grid nodes (cf. open and solid
squares in Fig. 1). We note here that the mean stress and
not the depth-dependent lithostatic pressure is consis-
tently used in all rheological models by including the
yielding condition, which is particularly important for
capturing the variations in shear band orientation (e.g.
Vermeer, 1990; Poliakov and Herrmann, 1994; Buiter et
al., 2006).

2.3. Computational strategy with markers

In order to implement visco-elasto-plastic rheology,
compressibility and self-gravitation in our numerical
code I2VIS (Gerya and Yuen, 2003), we have modi-
fied our conservative finite-difference and marker-in-cell
scheme defined over an irregularly spaced staggered grid
(Fig. 1) by introducing time dependence of stresses (Eqs.
(12)–(14)) and the density (Eqs. (3) and (8)). Schmalholz
et al. (2001) and Moresi et al. (2003) also developed a

method for calculating visco-elasticity using tracers, but
they did not couple it to the energy equation. We show
in Fig. 2 a schematic flow-chart for updating at each
time step the evolutionary equations contained in Eqs.
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F d in the
s from th
S is used

(
o

ig. 2. Flow chart representing the adopted computational strategy use
cheme for interpolating the calculated tensor and temperature changes
tep 3 can be omitted when prescribed gravitational acceleration field

7)–(11). The steps are as follows (detailed explanation
f these steps is given in Sections 2.4–2.7):

1. Defining an optimal computational time step 
t
for the momentum and continuity equations. We
use a minimum time step value satisfying the fol-
lowing conditions: given absolute time step limit
on the order of a minimal characteristic timescale
for the processes being modelled; a given relative
marker displacement step limit (typically 0.01–1.0
of minimal grid step) corresponding to velocity field
calculated at previous time step (see Step 4); a given
relative fraction of Lagrangian markers reaching
locally yielding condition (Eq. (2)) for the first time
(typically 0.0001–0.01 of the total amount of mark-
ers with defined plastic yielding condition).

2. Calculating globally the physical properties (ηvp,μ,
ρ, Cp, k, etc.) for the markers and interpolating these
newly calculated properties as well as scalars and
tensors defined on markers (T, �ij, etc.) from the
markers to Eulerian nodes (Fig. 1). Plastic yielding
condition (Eq. (2)) is controlled locally on markers
by using Eq. (13) for predicting the stress changes.

This equation is solved in an iterative way for every
marker in order to compute ηvp and σ0

ij locally satis-
fying simultaneously both the viscous (Eq. (6)) and
plastic (Eq. (15) and (16)) rheological relationships.
programming of the computer code I2ELVIS. Central panel shows the
e Eulerian grid to the moving markers for Steps 6 and 10, respectively.
in the calculation (cf. Figs. 4–9).

3. Solving Eq. (11) and computing gravitational poten-
tial by directly inverting the global matrix with
a Gaussian elimination method, which is chosen
because of its programming simplicity, stability and
high accuracy because of the direct nature of the
method. This step is omitted in calculations where
prescribed gravitational acceleration field has been
used.

4. Solving 2D Eqs. (8)–(10) and computing velocity
and pressure by directly inverting the global matrix
with a direct Gaussian elimination method.

5. Defining an optimal displacement time step
tm for
markers (typically limiting maximal displacement
to 0.01–1.0 of minimal grid step) which can be gen-
erally smaller or equal to the computational time
step 
t (see Step 1).

6. Calculating (Eq. (13)) stress changes on the Eule-
rian nodes for the displacement step 
tm (see Step
5), interpolating these changes to the markers and
calculating new tensor values associated with the
markers (see central panel in Fig. 2).

7. Calculating the non-linear shear- and adiabatic heat-
ing terms H and H at the Eulerian nodes by
s(i,j) a(i,j)
using computed velocity, pressure, strain rate and
stress fields (see Step 4).

8. Calculating (DT/Dt)(i,j) values at the Eulerian nodes
by an explicit scheme and defining an optimal
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thermal time step 
tT ≤
tm (see Step 5) for tem-
perature equation. We use a minimum time step
value satisfying the following conditions: given
absolute time step limit on the order of a mini-
mal characteristic thermal diffusion timescale for
the processes being modeled; given the absolute
nodal temperature change limit (typically 1–20 K)
corresponding to calculated explicit (DT/Dt)(i,j)
values.

9. Solving the non-linear temperature Eq. (7) implic-
itly in time by a direct Gaussian inversion
method.

10. Interpolating calculated nodal temperature changes
(see central panel in Fig. 2) from the Eulerian nodes
to the markers and calculating new marker temper-
atures.

11. Using a first-order accurate in space and time
explicit Runge–Kutta scheme for advecting all
markers throughout the mesh according to the
globally calculated velocity field (see Step 4). Com-
ponents of stress tensor defined on markers are
recomputed analytically to account for local stress
rotation (e.g. Joseph, 1990; Turcotte and Schubert,
2002). The use of more accurate second-, third-
and fourth-order Runge–Kutta advection schemes
in case of visco-elasto-plastic flow requires implicit
rather then explicit formulation. In this case amount
of markers- and nodes-related storage, as well as the
CPU time, grow proportionally to the order of the
scheme. Returning to Step 1 at the next time step.

We have implemented the above computational algo-
rithm in a new computer code, called I2ELVIS, which is
written in the C—computer language. This code has been
developed on the basis of our previous viscous thermo-
mechanical code (I2VIS) also based on conservative
finite-differences and marker-in-cell technique (Gerya
and Yuen, 2003). Therefore in the following sections we
will concentrate on new modifications and do not give
some of the numerical details, which are similar to I2VIS
and described extensively in our previous paper (Gerya
and Yuen, 2003).

2.4. Interpolation of scalar fields, vectors and
tensor fields

According to our algorithmic approach the temper-
ature field and other scalar properties (η, ρ, C , C, k,
p

etc.) as well as components of tensors are represented by
values ascribed/computed for the multitudinous markers
initially distributed on a fine regular marker mesh typi-
cally (but not always) with a small (≤1/2 of marker grid
Planetary Interiors 163 (2007) 83–105

distance) random displacement (cf. marker distribution
in Fig. 4). The effective values of all these parameters at
the Eulerian nodal points are interpolated from the mark-
ers at each time step. An average number of markers per
grid cell commonly vary from n × (100–102) depend-
ing on the complexity of model configuration (e.g.,
Brackbill, 1991; Ten et al., 1999; Gerya et al., 2006a;
Gorczyk et al., 2007). We always use standard first-order
accurate bilinear interpolation schemes between nodes
and markers, which are fully described in our previous
work (cf. Eqs. (5) and (6) in Gerya and Yuen (2003)).

Our novel modification, however, is the use of more
local interpolation schemes for viscosity, shear modulus
and deviatoric stress components. In our new staggered
grid viscosity (η) and shear modulus (μ) are defined in
different points (cf. open and solid squares in Fig. 1)
when used for computing of normal (σxx, σzz and,
respectively, ηn, μn) and shear (σxz, and, respectively
ηs, μs) components of deviatoric stress tensor. Viscos-
ity, shear modulus and respective stress components for
these nodal points are then interpolated from markers
found around the nodes at a distance less than half of
the local Eulerian grid step. Test calculations show that
these new interpolation schemes allow for a better spatial
resolution of localization phenomena in case of plastic
deformation.

2.5. Finite-difference schemes for discretizing the
Poisson equation for the gravitational potential

Discretizing Eq. (11) in 2D is trivial and uses a five-
node stencil typical for approximating Poisson equation
with finite-differences:

[
∂2Φ

∂x2

]
(i+1/2,j+1/2)

+
[
∂2Φ

∂z2

]
(i+1/2,j+1/2)

= 4Kπρ(i+1/2,j+1/2),[
∂2Φ

∂x2

]
(i+1/2,j+1/2)

= 2
Φ(i+3/2,j+1/2) −Φ(i+1/2,j+1/2)

(
x(i+1/2) +
x(i+3/2))
x(i+1/2)

− 2
Φ(i+1/2,j+1/2) −Φ(i−1/2,j+1/2)

(
x(i−1/2) +
x(i+1/2))
x(i+1/2)
,

[
∂2Φ

2

]

∂z (i+1/2,j+1/2)

= 2
Φ(i+1/2,j+3/2) −Φ(i+1/2,j+1/2)

(
z(j+1/2) +
z(j+3/2))
z(j+1/2)
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− 2
Φ(i+1/2,j+1/2) −Φ(i+1/2,j−1/2)

(
z(j−1/2) +
z(j+1/2))
z(j+1/2)
,

ρ(i+1/2,j+1/2)

= 1
4 (ρ(i,j) + ρ(i,j+1) + ρ(i+1,j) + ρ(i+1,j+1)), (17)

here i, i + 1/2 and j, j + 1/2 indexes denote, respectively,
he horizontal and vertical positions of nodal points cor-
esponding to the different physical parameters (Fig. 1)
ithin the staggered grid. We invert for the global matrix
y direct (Gaussian) method for the simultaneous solu-
ion of Poisson equation (17) also combined with linear
quations describing the boundary conditions for the
ravity potential. Gravitational acceleration vector com-
onents are then defined in respective Eulerian nodes
see solid and open circles in Fig. 1) by numerical dif-
erentiation:

gx](i,j+1/2) = −2
Φ(i+1/2,j+1/2) −Φ(i−1/2,j+1/2)


x(i−1/2) +
x(i+1/2)
,

(18)

gz](i+1/2,j) = −2
Φ(i+1/2,j+1/2) −Φ(i+1/2,j−1/2)


z(j−1/2) +
z(j+1/2)
.

(19)

he coefficient matrix corresponding to the left part of
he discretized equation (17) may remain unchanged
hroughout the calculation and only right part changes
ue to the density variations. In this case the decompo-
ition of the coefficient matrix can be done only once, in
ontrast to other direct solution procedures described in
ections 2.6 and 2.7. However, this matrix may change
hen staggered grid stepping varies with time following
eformation which is an option in our code. The compu-
ational time for solving of Eq. (17) is also insignificant
ompared to that for solving of the momentum and
ontinuity equations. We, therefore, perform a matrix
ecomposition for Eq. (17) in our code at each time
tep.

.6. Finite-difference schemes for discretizing the
omentum and continuity equations

The staggered grid shown in Fig. 1 is ideally suitable
or the discretization of the momentum and continuity
quations. The following FD scheme is a discretized

orm for representing Eq. (9) to a first-order accuracy in
he control volume representation (e.g., Patankar, 1980;
lbers, 2000), which allows for the conservation of the
isco-elastic stresses between the vx- and vz-nodes (see
Planetary Interiors 163 (2007) 83–105 89

Fig. 1 for the indexing of the grid points):[
∂

∂x
(2ηε̇xxZ)

]
(i,j+1/2)

+
[
∂

∂z
(2ηε̇xzZ)

]
(i,j+1/2)

−
[
∂P

∂x

]
(i,j+1/2)

= −
[
∂

∂x
(σ0
xx(1 − Z))

]
(i,j+1/2)

−
[
∂

∂z
(σ0
xz(1 − Z))

]
(i,j+1/2)

− ρ(i,j) + ρ(i,j+1)

2
[gx](i,j+1/2), (20)

[
∂

∂x
(2ηε̇xxZ)

]
(i,j+1/2)

= 4
[ηε̇xxZ](i+1/2,j+1/2) − [ηε̇xxZ](i−1/2,j+1/2)


x(i−1/2) +
x(i+1/2)
,

[
∂

∂x
(σ0
xx(1 − Z))

]
(i,j+1/2)

= 2

[σ0
xx(1 − Z)](i+1/2,j+1/2)

−[σ0
xx(1 − Z)](i−1/2,j+1/2)


x(i−1/2) +
x(i+1/2)
,

[
∂

∂z
(2ηε̇xzZ)

]
(i,j+1/2)

= 2
[ηε̇xzZ](i,j+1)−[ηε̇xzZ](i,j)


z(j+1/2)
,

[
∂

∂z
(σ0
xz(1 − Z))

]
(i,j+1/2)

=
[σ0
xz(1 − Z)](i,j+1) − [σ0

xz(1 − Z)](i,j)


z(j+1/2)
,

[
∂P

∂x

]
(i,j+1/2)

= 2
P(i+1/2,j+1/2) − P(i−1/2,j+1/2)


x(i−1/2) +
x(i+1/2)
,

[σ0
xx(1 − Z)](i+1/2,j+1/2)

= [ηn](i+1/2,j+1/2)[σ
0
xx](i+1/2,j+1/2)


t[μn](i+1/2,j+1/2) + [ηn](i+1/2,j+1/2)
,

[σ0
xz(1 − Z)](i,j) =

[ηs](i,j)[σ
0
xz](i,j)


t[μs](i,j) + [ηs](i,j)
,

[ηε̇xxZ](i+1/2,j+1/2)
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=


t[μn](i+1/2,j+1/2)[ηn](i+1/2,j+1/2)

[ε̇xx](i+1/2,j+1/2)


t[μn](i+1/2,j+1/2) + [ηn](i+1/2,j+1/2)
,

[ηε̇xzZ](i,j) = 
t[μs](i,j)[ηs](i,j)[ε̇xz](i,j)


t[μs](i,j) + [ηs](i,j)
,

[ε̇xx](i+1/2,j+1/2)

= [vx](i+1,j+1/2) − [vx](i,j+1/2)

2
x(i+1/2)

− [vz](i+1/2,j+1) − [vz](i+1/2,j)

2
z(j+1/2)

[ε̇xz](i,j) = [vx](i,j+1/2) − [vx](i,j−1/2)


z(j−1/2) +
z(j+1/2)

+ [vz](i+1/2,j) − [vz](i−1/2,j)


x(i−1/2) +
x(i+1/2)

where σ0
xz and σ0

xx are the deviatoric stress tensor compo-
nents from the previous time step corrected for advection
and rotation which are interpolated from markers; 
t is
computational time step. Discretization of Eq. (10) is
analogous to Eq. (20).

The time-dependent compressible continuity Eq. (8)
is discretized as follows:

[vx](i+1,j+1/2) − [vx](i,j+1/2)


x(i+1/2)

+ [vz](i+1/2,j+1) − [vz](i+1/2,j)


z(j+1/2)

= −
[

D ln ρ

Dt

]
(i+1/2,j+1/2)

, (21)

where D ln ρ/Dt is density changes (e.g. Eq. (3)) inter-
polated from markers.

We invert for the global matrix by a highly accurate,
direct (Gaussian) method for the simultaneous solution
of both the momentum Eq. (20), and the continuity
equations Eq. (21) which are also combined with the
linear equations describing the boundary conditions for
the velocity and pressure. We would like to empha-
size once again that we directly solve for the primitive
variables (pressure–velocity formulation, e.g. Tackley,
2000; Albers, 2000) rather than for stream-function used

in earlier two-dimensional numerical models based on
finite-differences (e.g., Weinberg and Schmeling, 1992).

After defining material displacement time step 
tm
the changes in the effective stress field for the Eulerian
Planetary Interiors 163 (2007) 83–105

nodes are calculated in respective nodal points according
to Eq. (13) as


σxx = (2ε̇xxηn − σ0
xx)

μn
tm

ηn + μn
tm
, (22)


σxz = (2ε̇xzηs − σ0
xz)

μs
tm

ηs + μs
tm
. (23)

Correspondent stress increments for markers are then
added from the nodes using standard first-order interpo-
lation schemes (cf. Eq. (6) in Gerya and Yuen (2003))
and new updated values of stress components (tσm) are,
thus obtained for markers.

The interpolation of the calculated stress component
changes from the Eulerian nodal points to the mov-
ing markers is similar to our temperature interpolation
strategy developed before (Gerya and Yuen, 2003) and
prevents effectively the problem of numerical diffu-
sion. This feature represents one of the highlights of
our computation strategy for solving the time depen-
dent momentum equation using markers. This method
does not produce any smoothing of the stress distri-
butions between adjacent markers (cf. central panel in
Fig. 2), thus allowing us to resolve the stress structure of
a numerical model in much finer details.

However, similar to the advection of temperature
field, the main problem with treating advection and rota-
tion of stresses using this incremental update scheme is
that all the stirred-structures and instabilities on a subgrid
(marker) scale cannot be damped out by grid-scale cor-
rections. For example, in case of strong chaotic mixing
of markers, our method may produce numerical oscil-
lations of stress field ascribed to the adjacent markers.
These oscillations do not damp out with time on a charac-
teristic Maxwell visco-elastic relaxation timescale. The
introduction of a consistent sub-grid numerical stress
relaxation operation, which does not change the conver-
gence of the grid scale stress values is a possible solution
to this problem. We use here a weak numerical stress
relaxation occurring over a characteristic Maxwell time
for visco-elastic relaxation. This is implemented by cor-
recting the updated marker stresses (tσm) according to
the relation:

tσm(D) = 1σm − [1σm − tσm] exp

(
−d
tm

t0

)
,


t0 = ηm

μm
(24)
where 
t0 is a characteristic Maxwell timescale of the
local visco-elastic relaxation defined for the correspond-
ing marker; tσm(D) is mth-marker stress corrected for
the numerical relaxation; d is dimensionless numerical
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σij = 2ε̇ijη(1 − e−μt/η), (25)

where t is time from the beginning of the deformation
and η and μ is the constant viscosity and shear modu-

Fig. 3. Numerical solutions for the case of viscoelastic stress build-up
due to pure shear (x–z direction) with constant normal strain rate and
in the absence of gravity. Numerical and analytical (Eq. (25)) solu-
tions are compared for ε̇zz = 10−14 s−1, η= 1022 Pa s and μ= 1010 Pa.
T.V. Gerya, D.A. Yuen / Physics of the Ea

elaxation coefficient (we use empirical values in the
ange of 0 ≤ d ≤ 1); 1σm, is updated stress interpolated
rom surrounding nodes for the given marker position;
m and ηm are shear modulus and viscosity-like param-
ter (ηvp) for given marker, respectively. As in the case
or treating the temperature field, we also introduce com-
ensating corrections (cf. Eqs. (13) and (13a) in Gerya
nd Yuen, 2003) for the marker stresses to conserve
riginal (i.e. before numerical relaxation) nodal stress
alues.

Introducing the numerical relaxation + compensation
peration removes the unrealistic subgrid oscillations
ver the characteristic local Maxwell visco-elastic relax-
tion time scale without affecting the accuracy of
umerical solution of the momentum equation. Realistic
ubgrid oscillations will, however, be preserved by this
cheme been related for example to the rapid mixing by
dvection dominating flows.

.7. Numerical techniques for solving the
emperature equation

Numerical techniques for discretizing and solving
emperature equation are exactly the same as in the vis-
ous version of our numerical code (I2VIS) and these
echniques are fully described in our previous paper
Gerya and Yuen, 2003). The only new modification is

possibility to have multiple thermal time steps 
tT
er single material displacement time step 
tm when
tT <
tm condition has to be satisfied. Obviously, in

his case the sum of the multiple thermal time steps is
qual to one material displacement time step. We note
hat the time steps will be smaller because of the pres-
nce of thermo-mechanical coupling with visco-elastic
nd visco-plastic rheologies (Regenauer-Lieb and Yuen,
004).

. Results from specific examples

In this section we will display results taken from
arrying out several calibrating tests of the numerical
olutions in order to verify the efficacy of our methods
or a variety of circumstances relevant to geodynamics
nd planetary processes. These will include:

(a) elastic stress build-up and advection (tests 1 and 2);
b) localization of visco-elasto-plastic deformation

(tests 3 and 4);

(c) large simultaneous deformation of materials with

contrasting rheological properties (test 5);
d) deformation of self-gravitating bodies with thermo-

mechanical coupling (test 6);
Planetary Interiors 163 (2007) 83–105 91

Numerical experiments discussed in Sections 3.1–3.6
show stability and high accuracy of the algorithm at
moderate to high resolution for both Eulerian nodes
(n × (104–105)) and markers (n × (105–106)). These
experiments require moderate computation time of sev-
eral hours (Sections 3.1–3.2) to several days (Sections
3.3–3.6) on an ordinary PC/workstation with a 2.4 GHz
clock.

3.1. Stress build-up for visco-elastic Maxwell body

In case of uniform deformation of an initially
unstressed, incompressible visco-elastic medium with a
constant strain rate ε̇ij elastic deviatoric stress σij grows
with time according to the equation:
(a) Numerical results for the complete experiment (strain = 0–0.3). (b)
Zoom-in of initial stages of the experiment (strain = 0–0.03). Panel
with numerical setup is shown in the right part of the diagram (a).
Staggered grid resolution: 101 × 101 basic nodes (cf. solid rectangles
in Fig. 1), 250,000 randomly distributed markers.
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lus of the medium, respectively. Based on this equation,
we performed numerical test of stress build-up shown
in Fig. 3. The numerical experiment was designed on
a rectangular model (cf. panel in Fig. 3a) by prescrib-
ing time dependent convergence velocity vx for the right
boundary and divergence velocity vz for the bottom of
the model computed as

vx = −ε̇Lx(t), vz = ε̇Lz(t),

where ε̇ is prescribed deviatoric strain rate, Lx(t) and
Lz(t) are, respectively, horizontal and vertical dimensions
of the model at given time t. Model dimensions were
changing at each time step 
t as

Lx(t +
t) = Lx(t)(1 − ε̇
t),
Lz(t +
t) = Lz(t)

1 − ε̇
t
.

Grid spacing was also changing, respectively. At each
time step all the deviatoric stress components were inter-

Fig. 4. Results of numerical experiments for the recovery of original shape o
embedded in the weak medium (yellow, ρ = 1 kg/m3, η= 1019 Pa s and μ= 1
deformed elastically during 2 Kyr due to the constant horizontal gravity (g
switching off gravity (i.e. after gx = gz = 0 condition is applied at 2 Kyr) sinc
Maxwell time (32,000 Kyr). In contrast, weak medium is subjected to irrever
Boundary conditions: no slip at the lower boundary and free slip at all other bo
slab and the medium, respectively. Grid resolution of the model is 101 × 51 nod
of markers. (b) Experiment with initially random distribution of markers. (F
reader is referred to the web version of the article.)
Planetary Interiors 163 (2007) 83–105

polated from randomly distributed markers to nodes and
stress increments were then interpolated back to mark-
ers (Fig. 2) after numerically solving the momentum and
continuity equations for the entire model domain. Fig. 3
demonstrates the high accuracy of numerical solution,
which overlaps with the analytical one properly describ-
ing transition from the dominant elastic regime to the
prevailing viscous deformation.

3.2. Recovery of the original shape of an elastic
slab

Fig. 4 shows results of numerical experiments for
the recovery of original shape of the elastic slab sur-
rounded by the weak medium with a much lower

viscosity and density. The initially unstressed slab is
attached to the bottom of the box and is spontaneously
deformed within 2 Kyr under a purely horizontal grav-
ity field (gx = 9.81 m/s2, gz = 0). The slab is deformed

f the elastic slab (blue, ρ = 3300 kg/m3, η= 1025 Pa s and μ= 1010 Pa)
010 Pa). The slab is attached to the bottom of the box and is initially

x = 9.81 m/s2, gz = 0). The slab fully recover its original shape after
e the time of initial elastic deformation (2 Kyr) is much less then the
sible viscous deformation since its Maxwell time is low (0.032 Kyr).
undaries. Blue and yellow dots represent positions of markers for the
es, 125,000 markers. (a) Experiment with initially regular distribution

or interpretation of the references to colour in this figure legend, the
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lmost purely elastically due to the large Maxwell time
32,000 Kyr) of slab material compared to the deforma-
ion time (2 Kyr). In contrast, the low viscosity medium
s subjected to irreversible viscous deformation since its

axwell time (0.032 Kyr) is much lower than the defor-
ation time. The degree of elastic deformation is high

Fig. 4, at 2 Kyr) and stresses stored on markers are,
herefore, subjected to significant advection and rota-
ion under dominating simple shear deformation. After
he no gravity condition (gx = gz = 0) is applied to the

odel, the slab fully recover its original shape (Fig. 4,
00 Kyr). Results appear equally good for both regular
Fig. 4a) and random (Fig. 4b) distribution of markers.

.3. Numerical sandbox benchmark

Numerical modelling of sandbox experiments poses
ignificant computational challenges requiring that
umerical code is able to (1) calculate large deforma-
ions along spontaneously forming narrow shear zones,
2) represent complex boundary conditions, including
rictional boundaries and free surfaces, and (3) include

complex rheology involving both viscous and fric-
ional/plastic materials. These challenges reflect directly

he state-of-the-art requirements for numerical mod-
lling of large-scale tectonic processes. We participated
n numerical sandbox benchmark conducted by Buiter et
l. (2006) for both shortening (Figs. 5 and 6) and exten-

(c) models for the shortening sandbox experiments (Buiter et al.,
2006). (a) Code I2ELVIS, Fig. 5; (b) University of Parma; (c) IFP
Rueil–Malmaison. See Buiter et al. (2006) for further details of numer-
ical and analogue experiments and material properties.

ig. 5. Results for the shortening numerical sandbox experiment (Buiter et al., 2006). 60 × 8 cm numerical model with non-uniform numerical
rid (944 × 165 nodes, 2,000,000 randomly distributed markers) employ internal mobile wall (black) moving to the left with constant velocity
f 2.5 cm/h. Initial size of deforming part of the model shown here is 45 cm; grid resolution in this part is 0.5 mm × 0.5 mm (910 × 165 nodes,
,500,000 markers). See Buiter et al. (2006) for further details of numerical experiment and material properties.
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Fig. 7. Results for the extension numerical sandbox experiment (Buiter
et al., 2006). 35 cm × 4.5 cm numerical model with non-uniform
numerical grid (539 × 95 nodes, 650,000 randomly distributed mark-
ers) employ internal mobile wall (in the right part of the model)
with attached 10 cm wide and 1 mm-thick bottom layer moving to
the right with constant velocity of 2.5 cm/h. Initial size of deforming
part of the model shown here is 20 cm; grid resolution in this part is
0.5 mm × 0.5 mm (400 × 95 nodes, 350,000 markers). (a) Experiment

◦

Fig. 8. Results of numerical test for visco-elasto-plastic slab bend-
ing during spontaneous initiation of subduction (Gerya et al., 2006b).
640 × 300 km high-resolution (320 × 90 nodes, 120,000 markers) area
of original 3000 km × 2500 km model with non-uniform numerical
grid (520 × 164 nodes, 4,570,000 randomly distributed markers) is
shown. Two plates of different ages (1 and 70 Myr for the left and
right plate, respectively) are juxtaposed together along the transform
fault. Initial zone of wet fractured rocks (c.f. light blue zone in (a))
with low plastic strength (sin(ϕ) = 0) was present along the fault that
created favorable conditions for spontaneous initiation of subduction
(Hall et al., 2003) and slab bending. (a) Distribution of different rock
types (color code) and isotherms (white lines); (b) strain rate (color
code) and velocity (black arrows) distribution, zoom-in shows slab
bending area; (c) deviatoric stress distribution (color code) and stress
principal axis orientation (elongated crosses, long and short branches
with dilatant sand (ψ =ϕ = 36 ); (b) experiment with non-dilatant sand
(ψ = 0, ϕ = 36◦). Note steeper angle of inclination of shear bands for (a)
compared to (b). See Buiter et al. (2006) for further details of numerical
experiment and material properties.

sion (Fig. 7) settings. In this benchmark the I2ELVIS
code showed the ability to hold up for large deformation,
thus demonstrating strong localization of deformation
along with spontaneously forming narrow (one to two
grid cell wide) shear zones and reproduced structural
pattern for both forward and reverse faults (Fig. 5),
thus closely matching results of analogue experiments
(Fig. 6). The difference between numerical and ana-
logue modelling results occurred on the same order
as the differences between analogue models from the
different laboratories (cf. Fig. 6a–c). Our plasticity
treatment approach allows for modelling both dilatant
(Fig. 7a) and non-dilatant (Fig. 7b) materials. The dip
angle (α) of shear bands in extensional setting ranges
between 45◦ (Roscoe angle) and 45◦ +ϕ/2 (Coulomb
angle) (Vermeer, 1990), typically following the relation
α= 45◦ + (ϕ +ψ)/4 (Fig. 7). This dip angle is not explic-
itly “chosen” by the code but forms spontaneously during
the propagation of shear bands involving markers for
which yielding condition given by Eq. (2) is satisfied
locally.

3.4. Visco-elasto-plastic slab bending

Modelling of slab bending is of crucial importance
for geodynamics since this process is always associated
with subduction and is related to the structural and seis-

mic features at the trench area (e.g. Ranero et al., 2003,
2005). Of special interest is bending-related faulting of
the incoming plate creating a pervasive tectonic fabric
that cuts across the crust, penetrating deep into the man-
of the crosses show extension and shortening directions, respectively).
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of the article.)

tle (Ranero et al., 2003, 2005). Faulting is active across
the entire ocean trench slope, promoting hydration of
the cold crust and upper mantle surrounding these deep
active faults. The along-strike length and depth of pene-
tration of these faults are also similar to the dimensions
of the rupture area of intermediate-depth earthquakes.

Fig. 8 shows the results of numerical test for spontaneous
bending process of incoming plate during subduction
(Gerya et al., 2006b). In the beginning of this experiment
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wo plates of different ages are juxtaposed together along
he transform fault (cf. light blue zone in Fig. 8a) with
ow plastic strength (sin(ϕ) = 0) creating favorable con-
itions for spontaneous initiation of subduction (Hall et
l., 2003) and the concurrent slab bending. Deformation
attern in slab bending area is quite distinct (Fig. 8b): the
op of the slab is subjected to intense plastic deforma-
ion with localized faults zones while the bottom of the
lab is deformed in a ductile way by dislocation creep
cf. Eq. (6)) with enhancement of the deformation (cf.
oom in Fig. 8b) due to high stresses (Fig. 8c) in the
ending area. The plastic deformation and dislocation
reep fields are, respectively, characterized by extension
nd compression in a horizontal direction (cf. orienta-
ion of stress principal axes in Fig. 8c). These two fields
re clearly separated by the narrow non-deforming area
n the core of the slab (cf. zoom in Fig. 8b) character-
zed by low deviatoric stresses (Fig. 8c). The depth of
enetration of localized faults (10–50 km) and their pref-
rential dip direction toward the trench (Fig. 8b) are in
ine with the natural observations (Ranero et al., 2003,
005). Results of our experiments suggest that in case of
ree surface condition atop the slab it can be easily bent

y its own weight triggering spontaneous retreating sub-
uction. The bending process is facilitated (i) by lowered
ressure in the extension region favouring deep penetra-
ion of faults and (ii) by high stresses in the compression

ig. 9. Major types of culminate shapes of dike-like magmatic bodies obtained
Gerya and Burg, 2007). Enlarged 65 km × 40 km areas of the original 1100
, funnel-shaped; I, finger-shaped; S, sickle-shaped; T, nappe(sill)-shaped;
= sediments; 3 and 4 = upper crust (3, solid; 4, molten); 5 and 6 = lower
eridotite; 9 = crystallized gabbro. See Gerya and Burg (2007) for further deta
eferences to colour in this figure legend, the reader is referred to the web ver
Planetary Interiors 163 (2007) 83–105 95

region resulting in local lowering of slab viscos-
ity due to the power-law nature of dislocation creep
(Eq. (6)).

3.5. Magmatic dike injection into the elasto-plastic
crust

Thermo-mechanical modelling of magma intrusion
is numerically challenging because it involves simulta-
neous and intense deformation of materials with very
contrasting rheological properties, especially in the
formation of dikes. The country crustal rocks are visco-
elasto-plastic while the intruding magma is a very low
viscosity, complex fluid. Gerya and Burg (2007) have
recently employed the code I2ELVIS for modelling of
ultramafic magma intrusion process and have found dike
intrusion. It has been demonstrated that this code cope
well (Fig. 9) with free surface condition and large con-
trast of rheological properties of involved materials and
allows reproducing of basic shapes of intrusive mag-
matic bodies. It has also been demonstrated that the
general shape of the pluton is sensitive to the magma vis-
of the crustal rheology. In particular, magmatic dikes
(Fig. 9) are formed in case of lowered magma viscosity
and elasto-plastic rather then viscous deformation of the
crust (Gerya and Burg, 2007).

in numerical simulations of mafic–ultramafic intrusions emplacement
km × 300 km models are shown. Red letters denote intrusion shapes:
a, asymmetric; n, narrow. Color code: 1 = weak layer (air, water);
crust (5, solid; 6, molten); 7 = lithospheric mantle; 8 = crystallized

ils of numerical experiments and discussion. (For interpretation of the
sion of the article.)
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3.6. Deformation of a self-gravitating body

Numerical modelling of deformation of self-
gravitating planetary body requires computing of the
gravity field which changes with time in response to vari-
ations in mass distribution inside the planet. Changes in
shape of the planet and related planetary surface defor-
mation should also be considered. In order to tackle these
requirements, I2ELVIS uses novel “spherical-Cartesian”
approach allowing computing of self-gravitating body of
arbitrary form on Cartesian grid and satisfying closely
free surface condition:

(1) The body is surrounded by the weak medium (e.g.
Fig. 4) of very low density (≤1 kg/m3) and low vis-

cosity allowing high (101 to 106) viscosity contrast
at the planetary surface.

(2) The gravity field is computed (Fig. 10) by solving
the Poisson equation for the gravitational poten-

Fig. 10. Numerical solution of the Poisson equation for gravity potential (Eq

mantle) density distribution. (a) Gravity potential, Φ; (b) gravity vector magn
vector components, respectively. Numerical grid resolution is 201 × 201 node
Planetary Interiors 163 (2007) 83–105

tial (Eq. (11)) associated with the mass (density)
distribution portrayed by the tracers at each time
step.

(3) During the solution of the momentum equation, the
components of gravitational acceleration vector are
computed locally by numerical differentiation of the
gravitational potential (Eqs. (18) and (19)) at the
corresponding nodal points.

As shown from our test experiments
(Figs. 11, 12 and 15), the spontaneously formed
planetary surface is numerically stable under conditions
of very strong internal deformation inside the planet.
Also, spontaneously forming spherical/cylindrical
shape of the body is characteristic for stable density

distribution (i.e. when density increases toward the core
of the body cf. final stages of Figs. 11, 12 and 15). No
evidence for non-spherical Cartesian grid dependence
of this stable shape was discerned.

. (11)) in case of radial two-layered (high-density core + low density

itude, (g2
x + g2

z )
1/2

; (c) and (d) horizontal, gx, and vertical, gz, gravity
s.
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Fig. 11. Results of 2D numerical test for “soft shell tectonics” (Gerya et al., 2007): destabilisation of global high density (red) layer (Stevenson,
1981) under self-gravitation (cf. Fig. 10) for the case of dominating viscous deformation of planetary materials. Constant viscosity (η= 1022 Pa s)
of both silicate (dark to medium blue, ρ = 4000 kg/m3) and metal (red, ρ = 10,060 kg/m3). Low viscosity contrast (101) at the planetary surface at
t 3 s used
4 ences to
o

t
(
1

he contact with weak low density medium (light blue, ρ = 1 kg/m ) i
90,000 randomly distributed markers. (For interpretation of the refer
f the article.)
We also performed numerical tests for destabilisa-
ion of global metal layer formed around silicate-rich
primordial) core during planetary accretion (Stevenson,
981) for the cases of dominating (i) viscous (Fig. 11)
in this experiment. Grid resolution of the model is 141 × 141 nodes,
colour in this figure legend, the reader is referred to the web version
and (ii) plastic (Fig. 12) deformation of planetary mate-
rials. As follows from our recent experiments (Gerya
et al., 2007) this destabilization breaks the spheri-
cal symmetry of the planet and, therefore, cannot be
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Fig. 12. Results of 2D numerical test for “hard shell tectonics” (Gerya et al., 2007): destabilisation of global high density (red) layer (Stevenson,
1981) under self-gravitation (cf. Fig. 10) for the case of dominating plastic deformation of planetary materials. Temperature dependent viscosity
(dry olivine flow law, (Ranalli, 1995)) and lowered plastic strength are applied for both silicate (sin(ϕ) = 0.1, C = 10 MPa) and metal (sin(ϕ) = 0,

iscosity 5

e refere

C = 10 MPa). Thermal feedback from shear heating (Fig. 13) and high v
Other parameters are the same as for Fig. 11. (For interpretation of th
version of the article.)
addressed properly in existing 1D models (e.g. Senshu
et al., 2002) of planetary accretion. Metal layer desta-
bilisation causes rapid planetary scale reshaping that
we call “shell tectonics” (Gerya et al., 2007) as the
contrast (up to 10 ) at the planetary surface is used in this experiment.
nces to colour in this figure legend, the reader is referred to the web
units involved in rearrangements are planetary shells.
The gravitational redistribution process lasts within
few Myr, which depends on the effective rheology,
and is completely dominated in this period by shear
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ig. 13. Development of the temperature field due to shear heating al
xperiment for “hard shell tectonics” (Fig. 12).

eating (Fig. 13) and thermal advection. Internal grav-
tational redistribution processes result in planetary
hape-changing revealing significant transient aspher-
cal deviations from the original perfectly spherical

eometry (Fig. 11, 0.55 Myr; Fig. 12, 2.72 Myr). Dur-
ng this stage the central silicate-rich core can become
xposed at the planetary surface making possible its
eworking during ongoing accretion processes. Most of
ntaneously forming localised deformation zones in case of numerical

the enormous amount of heat is produced during this
very short time span associated with the metallic core-
formation and is then chaotically distributed throughout
both the core and the mantle (Fig. 13, 3 Myr). Gravita-

tional energy dissipation along the localized deformation
zones (Fig. 13, 2.70–2.75 Myr) dramatically increases
the rates of rearrangement and can potentially result
in thermal runaway (Gruntfest, 1963) processes inside
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the planet and sudden central silicate-rich primordial
core fragmentation (Fig. 12, 2.70–2.81 Myr) (Stevenson,
1981). The magnitude of thermal perturbations can reach
several thousand degrees, which cataclysmically raises
the effective Rayleigh number for the planetary man-
tle to a very large number and possibly results in the
formation of a magma ocean with the molten man-
tle rocks rising from the deep planetary interior. In
future work, such instabilities should be considered in
the context of ongoing planetary accretion first in 2D
and then in 3D rather than starting from the equilib-
rium state of a 1D accretion model (e.g. Ida and Lin,
2004).

4. Discussion and future perspectives

In this paper we discuss further developments of our
mixed Lagrangian-Eulerian numerical scheme based on
conservative finite-differences and marker-in-cell tech-

niques. We should really mention that the marker-in-cell
technique is now broadly used in geodynamical mod-
elling (cf. review Zhong et al., 2007) been combined
with other numerical approaches such as

Fig. 14. Development of small-scale avalanche due to the spontaneous slope d
910 × 165 nodes, 1,500,000 markers) numerical sandbox shortening experim
Planetary Interiors 163 (2007) 83–105

• finite volume method for pressure-velocity formula-
tion (e.g. Tackley, 2000);

• finite-difference method for stream function formula-
tion (e.g. Weinberg and Schmeling, 1992);

• finite-element method for pressure-velocity formula-
tion (e.g., Moresi et al., 2003).

Important difference of our method compared to
above marker-in-cell implementations is the use of mark-
ers for transport of all physical properties including the
temperature advection and elastic stress rotation.

Using our previous code based on purely viscous rhe-
ologies (I2VIS) (Gerya and Yuen, 2003), we have since
then pushed to the edge of present computational lim-
its by breaking the one billion tracers mark and even
exceed ten billion (Rudolph et al., 2004; Gorczyk et
al., 2007). This very dense aggregate of tracers can be
translated into an unprecedented resolution of a few
meters in the regional problem of subduction dynamics.

With a medium resolution of up to few tens of million
tracers, we have also solved a number of important geo-
dynamical problems, such as slab detachment (Gerya et
al., 2004a,b), plumes in a mantle wedge (Gerya et al.,

estabilization in high-resolution (grid resolution is 0.5 mm × 0.5 mm,
ent (Fig. 5).
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006a; Gorczyk et al., 2006) and the role of shear heat-
ng in orogenic metamorphism (Burg and Gerya, 2005).

e have also developed coupled petrological–thermo-
echanical numerical modelling approach that takes

nto account dynamical rheological, thermal and den-
ity effects of phase transformations (including melting)
ased on the Gibbs free energy minimization (Gerya
t al., 2004a,b, 2006a; Vasilyev et al., 2004). We have
ecently applied (Gerya et al., 2006a; Gorczyk et al.,
006) this approach for numerical modelling of the
eismic structure of thermal–chemical plumes beneath
olcanic arcs.

Following the same “all-in-one” methodology (i.e.
rogramming all various physical features in one numer-
cal code) now we have developed a new version of this
nite-difference, tracer code, coined I2ELVIS, which
an handle visco-elasto-plastic rheology together with
elf-gravitation in a spherical body. We will emphasize
he various new features, which were not present in the
revious version of I2VIS. We include the following new

apabilities:

1.) The code can handle complex non-linear rheol-
ogy with time-derivatives of various order, such as

ig. 15. Results of 3D numerical test with the code I3ELVIS using Cartes
ontinuity and momentum equations. Spherical planetary body (blue) is spon
eformation of this body related to the rising of the buoyant core (red) does no
rid resolution of the model is 53 × 53 × 53 nodes, 9,000,000 randomly distr
gure legend, the reader is referred to the web version of the article.)
Planetary Interiors 163 (2007) 83–105 101

Maxwell visco-elastic and visco-elasto-plastic. The
rheological constitutive equations are integrated in
time by an explicit scheme. Tracers are used to
delineate the spatial boundaries separating the var-
ious flow regimes at each time step.

(2.) The conservation of mass equation is coupled to
both the momentum and energy equations. Time-
dependence is present in all three conservation
equations, allowing thermo-mechanical–chemical
and mass coupling at each time step. Multiple
timescales associated with each equation are then
linked together in this non-linear framework.

(3.) Self-gravity is taken into account by solving the
Poisson equation for the gravitational potential
associated with the mass (density) distribution
portrayed by the tracers at each time step. The
gravitational vector whose direction depends on the
mass distribution then governs the shape of the body
embedded within a Cartesian coordinate system.
All three features hold within the framework of a 2D
Cartesian geometry. As far as we know, there exists at
present no single code, which can satisfy all of these
three demands.

ian grid, prescribed spherical gravity field and multigrid solver for
taneously formed from initial unstable cubic geometry. Large internal
t destabilise numerical solution and planetary surface remains stable.
ibuted markers. (For interpretation of the references to colour in this
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Here we address briefly the issue concerning the
machine architecture and the non-linear-coupling in our
“all-in-one” approach. The implementation of our sys-
tem of non-linear equations, which couple all of the
governing PDEs, would be facilitated by a shared-
memory machine with a large RAM using Open-MP
(Gorczyk et al., 2007), rather than by a distributed sys-
tem using MPI, which could be less efficient in achieving
the same error bounds because of problems in communi-
cations among the different domains during the iterative
process.

In Fig. 14 we emphasize the importance of the sensi-
tivity of the local convergence method used in satisfying
the plastic-yield criterion (Eq. (2)) at each Lagrangian

point and at every time step. If these strenuous criteria are
not satisfied, it is then impossible to generate these clean-
cut shear bands resulting from small-scale avalanches
being zoomed in Fig. 14. One would obtain instead rather

Fig. 16. Results of 3D numerical test with the code I3ELVIS using Cartesian g
and momentum equations. Three-dimensional petrological–thermo-mechanic
for free surface development, spontaneous slab bending and back-arc sprea
al., 2006a; Gorczyk et al., 2006). Four different vertical slices throughout th
finite-difference nodes, 10,000,000 randomly distributed markers.
Planetary Interiors 163 (2007) 83–105

diffused broad deformation zones. Further progress can
be achieved in this direction by combining large amount
(up to tens of billions, Gorczyk et al., 2007) of mark-
ers with computational grid refinement algorithms (e.g.,
Albers, 2000; Bergdorf and Koumoutsakos, 2006) and
compressed wavelet-based representation and storage
(Vasilyev et al., 2004) of continuous–discontinuous
scalar, vector and tensor fields defined in Eulerian nodal
points (Fig. 1) and on Lagrangian markers.

What is next in store for us? To make the code par-
allel using a combination of MPI and Open-MP and
also the implementation of multigrid for the solving the
momentum and continuity equations in 3D will be fore-
most on our agenda. We have already developed the

3D multigrid-based version of a “spherical-Cartesian”
model and the preliminary results are displayed in
Fig. 15. We can observe that the timescale for the evo-
lution to a spherical equilibrium is defined by effective

rid, prescribed vertical gravity field and multigrid solver for continuity
al (Gerya et al., 2006a) model of intra-oceanic subduction accounts
ding as well as mantle wedge hydration and melting (e.g. Gerya et
e model are shown. Grid resolution of the model is 261 × 101 × 101
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iscosity of the body and is around 100,000 years when
21
he viscosity is on the order of 10 Pa s. This new code is

lso applicable for Cartesian geometry with prescribed
ertical gravity field allowing to model regional tec-
onic processes in 3D. Fig. 16 shows example of the 3D

ig. 17. Results of preliminary numerical experiments on a planetary accretio
xperiment is performed for self-gravitating Mars-size body with the use of
lso treats inertial terms in momentum equations. Accretion process lasts fo
lastic waves propagating along the planetary surface and elasto-plastic deform
40,000 randomly distributed markers.
Planetary Interiors 163 (2007) 83–105 103

petrological–thermo-mechanical (Gerya et al., 2006a)

model of intra-oceanic subduction which accounts for
the dynamics of free surface, spontaneous slab bending,
back-arc spreading and thermal–chemical plumes prop-
agation (e.g. Gerya et al., 2006a; Gorczyk et al., 2006).

n process associated with large meteorite (planetesimal) impacts. The
new developing version of visco-elasto-plastic code I2ELVIS which
r around one hour and associates with large amount of ejects, large
ation of the interior. Grid resolution of the model is 161 × 161 nodes,
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Using the tracers, we can also solve the momentum
equation with the inertial terms taken into account. This
operation is accomplished by an averaging process to cal-
culate the effective momentum produced by the swarm
of tracers within a given control volume. The temporal
changes in the linear momentum give rise to the local
inertial force within this volume, according to Newton’s
second law. We show in Fig. 17 the preliminary results
for a swarm of large meteorites (planetesimals) hitting a
planetary body with a visco-elasto-plastic rheology. We
can see that penetration process is followed by the exca-
vation and subsequent rebound dynamics in the crater
created by the impact. Of course, in these extreme cir-
cumstances we must employ realistic equation of state
for rocks (Kieffer, 1975; Cohen, 2000). This type of
demand would create a tighter bond between modellers
and computational mineral physicists.

Our new tack of including the inertial terms would
also be very helpful in studying short-time instabilities
which may produce slow earthquakes (Regenauer-Lieb
and Yuen, 2006). We plan also to look into the problem
post-seismic deformation and stress-transfer in trigger-
ing earthquakes (Stein, 1999; Chery et al., 2001), which
are of direct societal relevance and concerns.
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