Sapphirine-bearing assemblages in the system MgO–Al₂O₃–SiO₂: a continuing ambiguity

Konstantin K. PODLESSKII1, *, Leonid Y. ARANOVICH1, 2, Taras V. GERYA3 and Natalia A. KOSYAKOVA1

1Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
2Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetny per. 35, 119017 Moscow, Russia
3Institute of Geophysics, Department of Geosciences, Swiss Federal Institute of Technology (ETH – Zürich), ETH – Hönggerberg, HPP, 8093 Zürich, Switzerland

Abstract: Based on experimental data for reactions involving sapphirine in the system MgO–Al₂O₃–SiO₂ (MAS), thermodynamic properties of the sapphirine solid solution end-members have been optimized for both ideal and non-ideal models, and internally consistent P–T grids are proposed. According to the calculated P–T relationships in MAS, the sapphirine + quartz assemblage, which is widely recognized as indicative of ultrahigh-temperature metamorphism, can be stable down to 840 °C and 0.67 GPa, i.e., at temperatures up to 150 °C lower than estimated by Kelsey et al. (2004). The sapphirine + kyanite assemblage has been found stable at temperatures below 860 °C and 1.13 GPa, whereas the sapphirine + forsterite assemblage may be stable below 800 °C only under specific conditions of a very low activity of water. Calculations of P–T relationships involving sapphirine using the THERMOCALC dataset revealed its inconsistency with both experimental and natural assemblages.

Key-words: sapphirine, MgO–Al₂O₃–SiO₂, thermodynamic data, ultrahigh-temperature metamorphism.

Introduction

This work is dedicated to the memory of Werner Schreyer, who came to an understanding about the importance of sapphirine for estimating metamorphic conditions long ago while working on the phase relationships of cordierite in the beginning of 1960s (Schreyer & Yoder, 1960; Schreyer & Schairer, 1961a and b). Schreyer later made significant contributions that illuminated different aspects of sapphirine behavior both in experimental systems and in natural rocks (Schreyer, 1967, 1968; Schreyer & Seifert, 1969a and b, 1970; Schreyer & Abraham, 1975; Schreyer et al., 1975, 1984, as well as other publications with co-workers cited below).

Assemblages of sapphirine, once considered to be a rare mineral, have in recent years been recognized as important indicators of relatively high-temperature metamorphism. Sapphirine occurs in rocks that have undergone different tectono-metamorphic histories, with the P–T range of formation being estimated from below 700 °C and 0.5 GPa to above 1100 °C and 1.5 GPa. Sapphirine associated with quartz is attributed exclusively to the highest temperature conditions of crustal metamorphism referred to as “ultra-high-temperature metamorphism” (Harley, 1998).

Although experimental data involving sapphirine extend over an even wider P–T range, the quantitative interpretation of sapphirine-bearing assemblages remains ambiguous, and thermodynamic properties of sapphirine are still poorly understood. In part, this is because experimental reversals of equilibria involving sapphirine have been obtained only in the model system MgO–Al₂O₃–SiO₂ (MAS), and only Hollis & Harley (2003) have attempted to measure the compositions of sapphirine solid solution in such experiments. Because the experimental data were insufficient to substantiate an unambiguous thermodynamic description of the MAS system, Gasparik (1994) and Podlesskii (1995) independently deduced petrogenetic grids differing from one another both quantitatively and qualitatively. Internally consistent thermodynamic datasets (Gerya et al., 1996; Holland & Powell, 1998), with their later modifications (Ouzegane et al., 2003; Gerya et al., 2004a; Kelsey et al., 2004), also imply significantly different phase relationships for key sapphirine-bearing assemblages even in this simple system.

In this contribution, we consider only MAS assemblages, because experimental studies of more complex systems, beginning with the pioneering work by Hensen & Green (1971), are restricted to synthesis or crystallization experiments, with no bracketing by reversal, which do not provide a firm foundation for thermodynamic modeling (Berman & Aranovich, 1996). It is noteworthy that those who carried out experiments involving sapphirine in more complex systems such as FeO–MgO–Al₂O₃–SiO₂ (FMAS), K₂O–FeO–MgO–Al₂O₃–SiO₂ and K₂O–Na₂O–FeO–MgO–Al₂O₃–SiO₂, did not attempt to use their own data to extract
thermodynamic characteristics of sapphirine end-members or mixing properties, but restricted application to qualitative graphical analysis of phase relations (Hensen, 1986; Hensen & Harley, 1990), although these were plotted on quantitative P–T diagrams (Harley, 1998, 2008; Das et al., 2001, 2003). Calibrations of Fe–Mg exchange reactions between sapphirine and other minerals based on experimental crystallization of complex mixtures did not provide evidence for achieving equilibrium relationships, and conflicting results were obtained in experiments using the same approach (Das et al., 2006; Sato et al., 2006).

Other components that enter sapphirine, i.e., Fe$^{3+}$, Be (Christy et al., 2002; Christy & Grew, 2004; Grew et al., 2006 and the references therein), B (Grew et al., 1990, 1992), Ca (Grew et al., 1992), Cr (Friend, 1982; Bridgida et al., 2007) and Ti (Harley & Christy, 1995; Sheng et al., 1991) undoubtedly play important roles in expanding the stability of sapphirine relative to the model system MAS, but these components are also beyond consideration in this paper.

Here we present new models of the thermodynamic properties of magnesian sapphirine. Phase relations involving sapphirine in MAS derived with these data are tested with existing experimental constraints. Our parameters differ from the data used in THERMOCALC (Kelsey et al., 2004) and seem to describe the experimentally studied reactions better. For the estimated stability of assemblages of sapphirine with quartz, kyanite and forsterite, to which we have paid special attention due to their petrologic importance, these differences are dramatic, and may change the interpretations of petrogenetic processes.

Sapphirine solid solution and its thermodynamic model in MAS

After the structure determination by Moore (1969), sapphirine has been recognized as a chain silicate with the simplified crystallographic formula $M_8T_6O_{20}$, where M and T represent octahedral and tetrahedral sites, respectively. In MAS, octahedral positions in sapphirine are occupied by Mg and Al, while tetrahedral positions belong to Al and Si, and substitutions occur along the join Mg + Si = Al + Al, as implied by Higgins et al. (1979). Following our previous publications (Podlesskii, 1995; Gerya et al., 1996, 2004), we accepted end-members $Mg_4Al_8Si_2O_{20}$ (SprS) and $Mg_3Al_{10}SiO_{20}$ (SprA) to represent the sapphirine solid solution for thermodynamic modeling in MAS. These end-members have also been chosen for the latest version of the THERMOCALC database (Kelsey et al., 2004), with which we will compare our results (earlier, THERMOCALC used end-members $Mg_4Al_8Si_2O_{20}$ and $Mg_3.5Al_{10}Si_{1.5}O_{20}$). In terms of the Tschermak type substitution $Mg + Si = Al + Al$, a wider range of the sapphirine solid solution will probably be considered in future studies, since sapphires with more than 2 Si per formula unit have been observed both in experiments (Milholland & Presnall, 1998; Liu & Presnall, 2000; Das et al., 2001, 2003; Liu & O’Neill, 2004), and in nature, namely cracks in pyrope megablasts from Dora-Maira, Italian Alps (Simon & Chopin, 2001), whereas sapphirine with less than 1 Si per formula unit has been encountered in eclogites from the South Carpathians, Romania (Sabau et al., 2002).

In our approach, sapphirine solid solution (Spr) was initially considered as an ideal mixture of end-members SprS and SprA (often referred to as “2:2:1” and “3:5:1”, respectively, in the literature). Unlike Kelsey et al. (2004), we found that describing the existing experimental data did not require non-ideality. However, non-ideality can be introduced by analogy with other minerals that demonstrate the Tschermak substitution, and we have also tried the non-ideal model, although this approach has added parameters not constrained by measurements. A composition parameter X_{SS} that denotes the mole fraction of SprS ranging from 1 to 0 has been used to represent the activity relationships. A regular solution parameter W_{Spr} has been used for the non-ideal model to express the excess energy dependence on composition as $W_{Spr} \cdot X_{SS} = 1 - X_{SS}$.

Our experience (Podlesskii, 1995) shows that variation in sapphirine composition plays a decisive role for thermodynamic modeling of sapphirine-bearing equilibria, and it is impossible to describe the whole spectrum of existing experimental data with a constant composition, as was tried by Gottschalk (1997) with sapphirine $Mg_9Al_{18}Si_3O_{40}$ (“7:9:3”) or Jung et al. (2004) with an out-of-date formula $Mg_4Al_{10}Si_3O_{23}$ (“4:5:2”) of Foster (1950) that is in conflict with the structure determinations (Moore, 1969; Higgins & Ribbe, 1979; Merlino, 1980; Barbier & Hyde, 1988).

At present, effects of polytypism and stacking disorder on stability of sapphirine (Christy, 1989a and b) cannot be considered in terms of its thermodynamic properties due to the lack of data for the experiments under consideration, and this simplification undoubtedly introduces additional uncertainties.

Experimental data and their thermodynamic description

Experimental investigations related to MAS have a long history, since this system has become important for metallurgy and the ceramic industry (Jung et al., 2004 and the references therein) and petrology (Schreyer & Seifert, 1969a; Gasparik, 1994 and the references therein). However, experiments on melting and crystallization of various mixtures widely used in ceramic studies often did not provide evidence for achieving equilibrium relationships. They always involved phases of undefined composition, like melt, with the sapphirine composition having never been determined, although sometimes claimed to be close to 2:2:1 or 7:9:3. In the absence of fluid, reactions involving MAS phases are notoriously sluggish because the phases are so refractory, and thus often proceed via metastable intermediates; so with insufficient run durations, incompatible phase assemblages may be observed even when the temperatures are relatively high. For example, Shu et al. (2002) and Menchi & Scian (2005) reported the joint appearance of sapphirine and cristobalite at temperatures between 1200 °C and 1280 °C in crystallizing cordierite ceramics. Conversely, crystallizing a
mixture of cordierite + spinel with stoichiometry of sapphirine 2:2:1 at 900 °C and 1.5 GPa, Schreyer (1967) initially obtained orthopyroxene + corundum + spinel in a 22 h long run, and only in longer runs did the mixture yield 40 % of sapphirine. Forsterite was found in metastable coexistence with pyrope or forsterite + spinel in detail and with confidence. This, in due course, resulted in a more reliable description of thermodynamic properties of orthopyroxene solid solution in MAS.

The only experimental determination of equilibrium sapphirine compositions is reported by Hollis & Harley (2003), which was not sufficient to get a confident description of the compositional variation with P and T (this issue will be addressed later in this paper). Most other authors either did not analyze product sapphirines or reported that the sapphirine grains were too small to be analyzed with the electron microprobe (e.g., Chatterjee & Schreyer, 1972; Ackerman et al., 1975). Consequently, we used _XSS_ as one of the parameters that describes sapphirine-bearing reactions while fitting the experimental brackets. This was only possible for the reactions with minerals whose thermodynamic properties had already been well constrained by measurements and determination of sapphirine-free reactions. Equilibria with phases such as melt and mullite, which have variable and undetermined compositions, had to be excluded from the treatment. For the same reason, the reversals of sapphirine breakdown reactions involving chlorite in the system MgO–Al2O3–SiO2–H2O (MASH) obtained by Seifert (1974) were also not treated, since equilibrium compositions of chlorite had not been determined in experiments and could not be constrained from thermodynamic data. The only MASH reversals treated were those of reaction orthopyroxene + sapphirine = cordierite + spinel. It is noteworthy that with the addition of water, the stability fields of MAS sapphirine-bearing assemblages either shrink dramatically towards higher temperatures or disappear, because H2O-containing phases become stable. This hampers the experimental investigations under moderate temperatures and elevated pressures, since fluid-absent crystalline mixtures either do not react or react unacceptably slowly under these conditions. Podlesskii (1996) tried to circumvent this problem by adding anhydrous MgCl2 to crystalline starting materials while investigating reaction orthopyroxene + spinel + corundum = sapphirine at 700–750 °C and 15–16 kbar. However, reaction was still slow, and sapphirine grains were still very small, so it was only possible to obtain preliminary constraints.

Thermodynamic properties of sapphirine end-members and other minerals have been estimated in terms of semi-empirical Equation (1) introduced by Gerya et al. (1996, 1998, 2004a and b) for expressing the Gibbs free energy (J/mol)

\[
G_s = H_{298.1}^s - T \cdot S_{298.1}^s + V_o^s \cdot T \cdot \ln(1 - e_1) - \Delta H_{s1}^o \cdot (1 - T/T_0) \cdot e_01/(1 - e_01) - RT \cdot \ln(1 - e_01) + c_2 \cdot RT \cdot \ln(1 - e_2) - \Delta H_{s2}^o \cdot (1 - T/T_0) \cdot e_02/(1 - e_02) - RT \cdot \ln(1 - e_02),
\]

where T is temperature (K); standard temperature _T_0 = 298.15 K; _P_ is pressure (bar); universal gas constant _R_ = 8.313 (J/mol K); _e_i_ = _exp_ [(_ΔH_i^o_ + _ΔV_i^o_ · _Ψ_)/ _RT_]; _Ψ_ = 5 · (1 + _ϕ_)/5 · [(P + _ϕ_)/4.5/(1 + _ϕ_)/4.5]/4 (bar); other parameters are shown in Table 1. In the case of non-ideal sapphirine, its end-member properties were obtained consistent with the integral and partial mixing energies.

<table>
<thead>
<tr>
<th>End-member</th>
<th>Formula</th>
<th>ΔH{298.1}^o_ J/mol</th>
<th>S{298.1}^o_ J/K mol</th>
<th>_c_1</th>
<th>ΔH{s1}^o_ J</th>
<th>V_o^s J/bar</th>
<th>ϕ bar</th>
<th>ΔV{s1}^o_ · 10^3 J/bar</th>
<th>_c_2</th>
<th>ΔH{s2}^o_ J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qtz</td>
<td>SiO₂</td>
<td>910303</td>
<td>41.59</td>
<td>4.7513</td>
<td>3074</td>
<td>2.305</td>
<td>71406</td>
<td>4.0049</td>
<td>4.1759</td>
<td>10523</td>
</tr>
<tr>
<td>En</td>
<td>MgSiO₃</td>
<td>1545471</td>
<td>64.20</td>
<td>14.3025</td>
<td>5362</td>
<td>3.124</td>
<td>250489</td>
<td>4.6603</td>
<td>2.8493</td>
<td>24657</td>
</tr>
<tr>
<td>OK</td>
<td>Al₂O₃</td>
<td>1672830</td>
<td>50.86</td>
<td>14.8854</td>
<td>5896</td>
<td>2.872</td>
<td>456483</td>
<td>3.0291</td>
<td>1.9663</td>
<td>27556</td>
</tr>
<tr>
<td>Crn</td>
<td>Al₂O₃</td>
<td>1673827</td>
<td>49.79</td>
<td>15.0305</td>
<td>5989</td>
<td>2.553</td>
<td>522202</td>
<td>3.5226</td>
<td>1.8833</td>
<td>30645</td>
</tr>
<tr>
<td>Fo</td>
<td>Mg₂SiO₄</td>
<td>2169792</td>
<td>95.14</td>
<td>20.0065</td>
<td>5144</td>
<td>4.350</td>
<td>250668</td>
<td>5.3655</td>
<td>4.2036</td>
<td>28433</td>
</tr>
<tr>
<td>Spl</td>
<td>Mg₃Al₂O₄</td>
<td>2297275</td>
<td>84.91</td>
<td>20.8017</td>
<td>5575</td>
<td>3.967</td>
<td>404263</td>
<td>3.7376</td>
<td>3.6415</td>
<td>29111</td>
</tr>
<tr>
<td>Sil</td>
<td>Al₂SiO₃</td>
<td>2583627</td>
<td>95.96</td>
<td>22.3771</td>
<td>5641</td>
<td>4.980</td>
<td>231391</td>
<td>2.1234</td>
<td>4.0337</td>
<td>26131</td>
</tr>
<tr>
<td>Ky</td>
<td>Al₂SiO₃</td>
<td>2590904</td>
<td>83.54</td>
<td>23.3306</td>
<td>5992</td>
<td>4.406</td>
<td>241723</td>
<td>4.4135</td>
<td>3.6993</td>
<td>29794</td>
</tr>
<tr>
<td>And</td>
<td>Al₂SiO₃</td>
<td>2587717</td>
<td>91.34</td>
<td>22.9572</td>
<td>5838</td>
<td>5.139</td>
<td>258753</td>
<td>4.0850</td>
<td>2.9233</td>
<td>25055</td>
</tr>
<tr>
<td>Prp</td>
<td>Mg₂Al₂Si₃O₁₂</td>
<td>6281472</td>
<td>62.60</td>
<td>56.9093</td>
<td>5384</td>
<td>11.295</td>
<td>323482</td>
<td>3.5274</td>
<td>8.1033</td>
<td>24574</td>
</tr>
<tr>
<td>Crd</td>
<td>Mg₂Al₂SiO₁₈</td>
<td>9161186</td>
<td>403.14</td>
<td>80.4590</td>
<td>5496</td>
<td>23.302</td>
<td>160366</td>
<td>0.9514</td>
<td>16.2280</td>
<td>28331</td>
</tr>
<tr>
<td>Spr³</td>
<td>Mg₃Al₂Si₂O₉</td>
<td>11018469</td>
<td>413.75</td>
<td>98.8224</td>
<td>5405</td>
<td>19.861</td>
<td>387809</td>
<td>3.3426</td>
<td>13.9675</td>
<td>22093</td>
</tr>
<tr>
<td>Spr⁴</td>
<td>Mg₅Al₁₀Si₂O₁₇</td>
<td>11168243</td>
<td>379.67</td>
<td>98.0793</td>
<td>5383</td>
<td>19.667</td>
<td>460442</td>
<td>3.3064</td>
<td>16.6157</td>
<td>20434</td>
</tr>
</tbody>
</table>

*Fictive orthopyroxene end-member; **end-member properties for the non-ideal solid solution.

Table 1. Parameters of end-members for calculating the Gibbs free energy with Equation (1).
Fig. 1. The compositional dependence of sapphireine molar volume in MAS. Rectangles represent the measurements with uncertainties ±0.2 % for molar volume and ±0.05 for Si per 20 oxygens. Heavy line – our model for the ideal solution; dashed line – our model for the non-ideal solution; thin line – Kelsey et al. (2004).

\[
G_m = RT \left[\frac{1}{X_{SS}} \ln \left(\frac{1}{X_{SS}} \right) + X_{SS} \ln \left(X_{SS} \right) \right] + \left(\frac{1}{C_0} X_{SS} \right) X_{SS} W_{Spr} \tag{2}
\]

\[
G^m_{Spr} = RT \ln \left(X_{SS} \right) + \left(1 - X_{SS} \right)^2 \cdot W_{Spr} \tag{2a}
\]

\[
G^m_{SprA} = RT \ln \left(1 - X_{SS} \right) + X_{SS}^2 W_{Spr} \tag{2b}
\]

where \(W_{Spr} = -4434 - 9.832 \cdot T - 0.06355 \cdot (P - 1) \).

We have extracted the volume characteristics of sapphireine from measurements of unit cell parameters of synthetic sapphireines by Schreyer & Seifert (1969a), Seifert (1974), Newton et al. (1974), Bishop & Newton (1975), Charlu et al. (1975), Steffen et al. (1984) and Christy et al. (2002). As no analytical data have been provided by the authors for sapphireines 2:2:1 and 7:9:3, we believe that the crystallographic parameters correspond to the nominal compositions of starting mixtures with the uncertainty of ±0.05 Si per 20 oxygens. In case of the most aluminoïd sapphireine synthesized and analyzed by Bishop & Newton (1975), the composition was calculated to correspond to 1.367 Si per 20 oxygens. The unit cell volumes were calculated for the space group \(P2_1/a \), which in some cases differed from those calculated for the space group \(P2_1/n \) by authors of the measurements (e.g., Schreyer & Seifert, 1969a). The derived \(V \)-\(X_{SS} \) dependence is shown in Fig. 1. In the case of non-ideal sapphireine, this dependence was described using a small negative volume of mixing parameter (see \(W_{Spr} \) above) consistent with the other thermodynamic properties, which were obtained by simultaneous treatment of all experimental data. Obviously, existing constraints on the \(V \)-\(X_{SS} \) dependence are relatively loose, which adds ambiguity to thermodynamic modeling.

Table 1 also presents an internally consistent set of parameters for other minerals relevant to MAS. They have been obtained by processing experimental data for the system CaO-FeO-MgO-Al2O3-SiO2-K2O-Na2O by Gerya et al. (2004a). In the treatment of experimental data and calculations with this dataset, mixing properties of En and OK, respectively, the MgSiO3 and Al2O3 end-members of orthopyroxene solid solution (Opx), were obtained as corresponding derivatives of the integral mixing energy

\[
G^m = RT \left[\left(1 - 2 \cdot X_{OK} \right) \ln \left(1 - 2 \cdot X_{OK} \right) \right. \\
\left. + 2 \cdot X_{OK} \ln \left(2 \cdot X_{OK} \right) \right] / 2 \\
\left. + \left(1 - 2 \cdot X_{OK} \right) \cdot X_{OK} \cdot \left[W_{MA} + W_{AM} \cdot (1 - 4 \cdot X_{OK}) \right] \right]
\]

\(i.e., \)

\[
G^m_{OK} = G^m + \left(1 - X_{OK} \right) \cdot \partial G^m / \partial X_{OK},
\]

\[
G^m_{En} = G^m - X_{OK} \cdot \partial G^m / \partial X_{OK},
\]

where \(X_{OK} \) is the mole fraction of OK, \(i.e., \) the number of Al atoms per 3 oxygens; \(W_{MA} = 53616.5 - 22.6953 \cdot T - 0.08454 \cdot (P - 1); \)

\(W_{AM} = -16170.5 + 3.6511 \cdot T - 0.03899 \cdot (P - 1) \). To account for the activity change of cordierite under water-saturated conditions, the model proposed by Aranovich & Podlesskii (1989) was used, \(i.e., \) \(G^m = -10099.4 + T \cdot 8.1833 - 1.55751 \cdot (P - 1) \) was added to \(G_a \) values obtained for Crd with Eq. (1). The Gibbs free energy for quartz was calculated using Eq. (1) with addition of energy relative to the ordered state (Gerya et al., 1998, 2004b) defined as:

\[
G_a = c_1 \cdot (RT \cdot \ln \left[1 - \exp(-\Delta H_{a1}/RT) \right] \\
\left/ \left[1 - \exp(-\Delta H_{a1}/RT) \right] \right) \\
+ \exp\left[-\Delta H_{a1} \cdot X_a \cdot \Delta V_{a1} \cdot \left| \Psi \right| / RT \right) \times \exp\left(-\Delta H_{a1}/RT \right) \\
- \exp\left(-\Delta H_{a1} - \Delta V_{a1} \cdot \left| \Psi \right| / RT \right) \} \right) \\
+ c_2 \cdot (RT \cdot \ln \left[1 - \exp(-\Delta H_{a2}/RT) \right] \\
\left/ \left[1 - \exp(-\Delta H_{a2}/RT) \right] \right) \\
+ \exp\left[-\Delta H_{a2} \cdot X_a \cdot \Delta V_{a2} \cdot \left| \Psi \right| / RT \right) \times \exp\left(-\Delta H_{a2}/RT \right) \\
- \exp\left(-\Delta H_{a2} - \Delta V_{a2} \cdot \left| \Psi \right| / RT \right) \} \right) \\
+ \left\{ RT \cdot \left[X_a \cdot \ln X_a + (1 - X_a) \cdot \ln(1 - X_a) \right] \\
+ (H_{ord} + V_{ord} \cdot \left| \Psi \right| \cdot X_a \\
+ (W_{H1} + W_{V} \cdot \left| \Psi \right| \cdot X_a \cdot (1 - X_a))/(1 + 2 \cdot X_a), \right)
\]

where \(X_a \) denotes the mole fraction of ordered clusters in quartz at \(G_a = \min; \Delta H_{a1} = 12594.6 \text{ J/mol}; \Delta V_{a1} = 0.21922 \text{ J/bar/mol}; \)

\(H_{ord} = -2622.8 \text{ J/mol}; \)

\(V_{ord} = -0.12889 \text{ J/bar/mol}; \)

\(W_{H1} = 14236.2 \text{ J/mol}; \)

\(W_{V} = 0.637 \text{ J/bar/mol}. \) Other minerals were treated as end-member phases.

In comparison to modeling with a sufficient set of independent reactions, a “full-scale” equation of state allows more
freedom for extrapolations. However, it also adds uncertainties related to additional parameters that are not constrained by direct determinations of individual thermodynamic properties and composition changes. Unfortunately, data on sapphirine itself are confined mostly to characterization of ordering phenomena, optical properties or spectroscopy (Burzo, 2004 and the references therein), which, at the moment, are of little help for describing the phase equilibria. Low- and high-temperature heat capacities were measured only for a natural sapphirine from Fiskenæsset that contained significant quantity of Fe$^{2+}$ and Fe$^{3+}$ and minor admixtures of Cr, Mn, Na and K (Nogteva et al., 1974; Kiseleva & Topor, 1975). Such an impure sapphirine is not suitable for calculating thermodynamic parameters. Measurements of low- and high-temperature heat capacities of synthetic sapphirines with well-determined compositions and determinations of their $P\cdot V\cdot T$ behavior could make the estimates of EOS parameters less uncertain, and hopefully will be available in the future.

Petrogenetic grids calculated with thermodynamic data of Table 1 for both ideal and non-ideal sapphirine are shown in Fig. 2. Based on our internally consistent dataset of mineral properties, they have a topology similar in many important details to that calculated by Podlesskii (1995) with the set of internally consistent reaction properties. The grids involve two phases of variable composition, Opx and Spr, and seven phases of constant composition, Crd, Crn, Fo, Prp, Qtz, Sil (Ky, And) and Spl. Modeling with the ideal sapphire produces six invariant points (named using absent-phase notation []), I$_1$ – [Crd, Spr, Qtz, Sil (Ky, And)], I$_2$ – [Crd, Fo, Qtz, Sil (Ky, And)], I$_3$ – [Crd, Fo, Qtz, Spl], I$_4$ – [Fo, Prp, Crn, Spl], I$_5$ – [Crd, Crn, Prp, Qtz, Sil (Ky, And)] and I$_6$ – [Qtz, Fo, Prp, Spl], within a P–T range of 0.0001–2.5 GPa and 500–1400 °C. The non-ideal sapphire model excludes I$_6$, because reactions Opx + Crn = Spr + Ky (Sil) (r31) and Spr + Sil = Crd + Sil (And) (r61) do not intersect since the reaction lines curve away from one another (Fig. 2), with sapphirine becoming more aluminous at lower temperatures. Reactions (r51) and (r21) involving non-ideal sapphirine must intersect at an invariant point [Crd, Prp, Qtz, Sil (Ky, And)] not far below 500 °C (actually estimated at 451 °C and 1.446 GPa), whereas with the ideal sapphire, these two reactions probably intersect at temperatures too low to be accessible in Earth’s crust.

Comparison of experimental data and calculated phase relations

Table 2 shows how our thermodynamic parameters describe experimental data on univariant reactions in MAS. Table 2 has been deposited and is freely accessible as supplementary material on the GSW website of the journal (http://eurjmin.geoscienceworld.org/). This description is also compared with calculations based on the data from Kelsey et al. (2004). Where high-pressure cells other than NaCl cells had been used in runs with piston-cylinder equipments, we applied friction corrections to the nominal pressures reported by the original authors. The corrections were made according to recommendations of Perkins et al. (1981) and Gasparik &
Newton (1984) for different types of cells. All pressure values were further adjusted by decreasing low-pressure limits and increasing high-pressure limits by 5 %, thus taking into account the uncertainties of the pressure measurements. Such an adjustment is reasonable (Gerya et al., 1998), bearing in mind that we did not correct the temperature values for uncertainties. The nominal, corrected and accepted values are shown in Table 2. Runs for which the original authors had reported “no reaction” were not considered, because there could be many reasons for the reactions not to proceed, and thus, the corresponding values may not refer to equilibrium conditions. Reaction brackets based on runs where directions of reactions had been observed proved to be sufficient for the analysis of phase relationships.

The two thermodynamic datasets demonstrate good agreement with sapphirine-free experiments, except that the description of reaction Opx + Spr = Crd + Spl with the THERMOCALC dataset is not quite satisfactory. Significant differences show up when sapphirine-bearing reactions are considered. As can be seen from Table 2 and Fig. 3, positions of the reactions calculated with our thermodynamic parameters agree with all the experimental brackets, whereas those calculated by Kelsey et al. (2004) are inconsistent with the experimental data of Seifert (1974) for the reaction Opx + Spr = Crd + Spl. The reactions calculated by Kelsey et al. (2004) also miss almost all brackets reported by Newton (1972) and Perkins et al. (1981) for Spr + Qtz (+Opx) = Crd, including that obtained at 1250–1280 °C and 7.2 ± 0.2 kbar in a gas apparatus, as well as brackets for Opx + Sil = Spr + Qtz at 1080, 1150 and 1200 °C by Chatterjee & Schreyer (1972), at 1100–1150 °C by Arima & Onuma (1977), at 1200 and 1400 °C by Newton (1972), and at 1400 °C by Hensen (1972). As a result, the Spr + Qtz stability field calculated with the THERMOCALC dataset is smaller than the field calculated from our dataset, and the stability of the reaction brackets with the pressure values corrected for friction with 5 % error bars (see accepted values in text and in Table 2). Dotted area – preliminary experimental data for reaction r21 (Podlesskii, 1996). Heavy lines – our model; thin lines – Kelsey et al. (2004). Numbers show the calculated sapphirine composition (Nss = 100Xss) at ends of corresponding lines.

Although, differing in calculated equilibrium compositions of sapphirine, our datasets and the dataset of Kelsey et al. (2004) produced coincident orthopyroxene compositions, which implies that the thermodynamic parameters of orthopyroxene must have been well constrained by sapphirine-free experiments, i.e., the Al solubility in Opx associated with Prp, Spr + Fo or Crd + Qtz (Danckwerth & Newton, 1978; Perkins et al., 1981; Gasparik & Newton, 1984; Aranovich & Kosyakova, 1987) based on compositional brackets and electron microprobe analyses of Opx. In contrast, compositions calculated for the Opx + Spr + Qtz assemblage (Table 3) do not agree with the experimental data reported by Hollis & Harley (2003). The calculated Al contents of Opx differ from those experimentally determined both in values and in trends of their changes with T and P. Compared to the experimental determinations, the calculations give NOK (a) a more gentle increase with increasing temperature at 1.2 GPa and (b) an increase with increasing pressure at 1325 °C (where NOK = 100XOK). This result implies negative slopes of the NOK isopleths, i.e., slopes opposite to those reported by Hollis & Harley (2003). Figure 4 illustrates the discrepancy between the calculated and the experimental compositions. The discrepancy is not related to the sapphirine solution model and originates from an irresolvable contradiction between the data by Hollis & Harley (2003) and calculated isopleths for Opx + Sil + Qtz and Opx + Crd + Qtz, which are tightly constrained by the above-mentioned data for Opx + Prp, Opx + Fo + Spr and Opx + Crd + Qtz. Having located reaction curves (r42) and (r43) directly from experimental data shown in Fig. 3 and using the data in Berman & Aranovich (1996), we have estimated the isopleths for Opx + Spr + Qtz (Fig. 4c), which also are contradictory to Hollis & Harley (2003) experiments. Unfortunately, there is no other source of measured compositions for Opx coexisting with Spr + Qtz to serve as a basis for comparison.

We can only assume that experiments by Hollis & Harley (2003) did not attain equilibrium with regard to compositions of orthopyroxene and sapphirine. These authors
reported that no significant compositional trend in sapphirine could be resolved from the experimental data due to sluggish kinetics of this mineral. This may give us a possible explanation for the discrepancy between the calculated and the experimental data. If sapphirine reacted incompletely, then full equilibration of Opx is also in doubt. It should be noted that heterogeneity of the run product compositions slightly increased with increasing temperature, which may indicate that sapphirine started to react more readily only at higher T. It is noteworthy that the highest temperature runs at 1.2 GPa by Hollis & Harley (2003) did produce the Opx compositions consistent with the calculations (see Table 3).

Using criteria based on the appearance of different phases, Arima & Onuma (1977) estimated experimental Al contents of Opx associated with Spr + Qtz. Their lower temperature data indicate significantly lower Al contents compared to those derived with our models. However, it is unlikely their lower temperature Al contents are equilibrium values, since run products below 1350 °C contained Fo + Qtz. The high-temperature data with no Fo + Qtz present in the run products agree with our calculations: experimentally estimated contents of 15–16 wt.% Al2O3 at 1400 °C, and 16–17 wt.% Al2O3 at 1450 °C correspond to 15.4 and 16.0 wt.% Al2O3, respectively, with ideal Spr, and to 15.4 and 16.1 wt.% Al2O3, respectively, with non-ideal Spr.

Our calculations are in reasonable agreement with experiments by Anastasiou & Seifert (1972), who estimated 3–5 wt.% Al2O3 at 900 °C and 5–7 wt.% at 1000 °C for Opx associated with Spr + Crd from the angular position of two X-ray reflections in the powder diffraction patterns of run products. We obtained with both ideal and non-ideal Spr 5.4 ± 0.4 % (uncertainty is related to P–T measurement errors) and 6.8 ± 0.4 %, respectively.
Petrogenetic grids and implications for metamorphic rocks

Possible application of derived grids to petrologic interpretation may be related to sapphirine assemblages with quartz, kyanite and forsterite.

As shown in Fig. 2 and 5, the Spr + Qtz field extends to temperatures below 850 °C, which is closer to the initial estimate by Newton (1972), who supposed the invariant point to be located below 800 °C under anhydrous conditions and whose experimental data together with that of Chatterjee & Schreyer (1972) form a basis of our knowledge on stability limits of this assemblage in MAS (see Table 2). The sequence of reactions that belongs to this invariant point predicted by Chatterjee & Schreyer (1972) from graphical analysis proves to be qualitatively valid, but the calculated relations differ from the prediction in important quantitative details. It can be seen in Fig. 5 that reactions Opx + Sil + Qtz = Crd (r41) and Opx + Sil = Spr + Crd (r45) lie very close to each other in pressure, as do reactions Spr + Opx + Qtz = Crd (r43) and Spr + Qtz = Crd + Sil (r44). This implies that the presence of quartz must have little influence on the stability of Opx + Sil, and an addition of orthopyroxene to Spr + Qtz changes the stability of this assemblage only slightly. Under water-saturated conditions, the Spr + Qtz stability field shrinks due to the enhanced stability of hydrous cordierite, with the calculated invariant point I₄ being shifted along the Opx + Sil = Spr + Qtz reaction curve from 835 °C, 0.667 GPa to 1066 °C, 1.17 GPa (with ideal sapphirine, from 839 °C, 0.669 GPa to 1046 °C, 1.16 GPa). This agrees with experiments and further considerations of Newton (1972, 1995) concerning the magnesian cordierite stability and H₂O activity in high-grade metamorphism. Figure 5 also shows the effect of stabilization of cordierite at $P = P_{CO_2}$ estimated with the model of Aranovich & Podlesskii (1989). However, if we consider experimental data on reaction (r42), which are available only for temperatures above 1050 °C (Table 2; Fig. 3), and not their present interpretation, we would have to entertain the possibility that reaction curves (r41) and (r42) do not intersect to form I₄. This situation could result from the unpredictable non-ideal behavior of sapphirine, whereby Spr + Qtz is stabilized relative to Opx + Sil, and reaction curve (r42) acquires a concavity analogous to curve (r22) in Fig. 3b. With other experimental data unavailable for MAS at lower temperatures, the preliminary data of Podlesskii (1996) for reaction Spr = Opx + Sp + Crn (r21) provide the only obstacle for such modeling. One could easily dismiss these data by assuming that equilibration must have not been achieved in experiments at 700–750 °C. If such a model were proposed, it could have dramatic consequences related to elimination of I₄, which is the starting point of FMAS reaction Spr + Qtz = Opx + Sil + Crd (Podlesskii, 1997; Kelsey et al., 2004). Another issue which may be important for interpretation of petrogenetic conditions is the stability field of Spr + Ky. This has been calculated with our data to exist below 816 °C and 1.015 GPa with ideal sapphirine, and below 862 °C and 1.128 GPa with non-ideal sapphirine, where reaction curve (r31) intersects the sillimanite–kyanite transition curve (Fig. 6). According to our calculations, ideal sapphirine must become significantly more aluminous along

Table 3. Experimental determinations of mineral compositions in assemblage Opx + Spr + Qtz by Hollis & Harley (2003) compared to calculations with internally consistent datasets.

<table>
<thead>
<tr>
<th>T, °C</th>
<th>Orthopyroxene, N_{OK}</th>
<th>Calculated</th>
<th>Sapphirine, N_{SS}</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental Low*</td>
<td>High*</td>
<td>Median</td>
<td>1</td>
</tr>
<tr>
<td>1250</td>
<td>8.1–9.8</td>
<td>10.4–11.3</td>
<td>9.1–10.5</td>
<td>1.2 GPa***</td>
</tr>
<tr>
<td>1275</td>
<td>9.3–10</td>
<td>11.4–11.8</td>
<td>10.3–11</td>
<td>13.0</td>
</tr>
<tr>
<td>1300</td>
<td>9.3–9.5</td>
<td>11.9–12.7</td>
<td>11–11.2</td>
<td>13.3</td>
</tr>
<tr>
<td>1325</td>
<td>11.3–11.4</td>
<td>13.1–14</td>
<td>12.5</td>
<td>13.7</td>
</tr>
<tr>
<td>1350</td>
<td>11.9–12.4</td>
<td>14.7–15</td>
<td>13.4–13.7</td>
<td>14.1</td>
</tr>
<tr>
<td>1325</td>
<td>10–12.2</td>
<td>10.5–13</td>
<td>11–11.5</td>
<td>14.0</td>
</tr>
<tr>
<td>1325</td>
<td>8.2–11.8</td>
<td>10.2–12.4</td>
<td>10.4–11.3</td>
<td>14.2</td>
</tr>
</tbody>
</table>

*Low starting lower-alumina orthopyroxene; high – starting higher-alumina orthopyroxene, the composition data were taken from Fig. 2 and 3 of Hollis & Harley (2003); **1 calculated with data of Table 1 (upper value – ideal sapphirine, lower value – non-ideal sapphirine); 2 – calculated with data from Kelsey et al. (2004). ***Calculated values for pressures with –10 % correction for friction. Calculated values shown bold fall outside of the experimentally determined ranges.

(r31) starting with $N_{SS} = 60$ ($N_{SS} = 100X_{SS}$) at invariant point I$_3$ and ending with $N_{SS} = 33$ at I$_6$. Our estimates show that, with the non-ideal sapphirine solid solution, the Spr + Ky stability field is wider at lower temperatures, with N_{SS} changing from 49 at I$_3$ to 20 at 500 $^\circ$C. Reactions involving the non-ideal sapphirine (r31) and (r61) do not intersect, either under fluid-absent condition, when reaction (r61) enters the And stability field at low temperatures, nor at $P = P_{H_2O}$ and $P = P_{CO_2}$ in the Ky stability field, because sapphirine becomes very alumina-rich and the reaction lines curve away from one another, thus excluding the existence of invariant point I$_6$. While investigating the stability field of gedrite in MASH, Fischer et al. (1999) observed the appearance of this phase together with Spr and Ky at 850 $^\circ$C and 1.1 GPa, which can be considered as evidence supporting our non-ideal sapphirine model. In MASH, Spr + Ky must have a very limited stability field due to appearance of competing assemblages involving other hydrous phases, such as chlorite (Seifert, 1974) or boron-free kornerupine (Wegge & Schreyer, 1994).

The third remarkable assemblage (Spr + Fo) has been calculated to be stable at temperatures below invariant point I$_5$ (769 $^\circ$C, 0.209 GPa with the ideal sapphirine model and 801 $^\circ$C, 0.215 GPa – non-ideal; compare to 735 $^\circ$C,
0.209 GPa estimated by Podlesskii, 1995). Under water-saturated conditions, this assemblage does not appear in our calculations with the ideal sapphirine model at petrologically significant temperatures due to stabilization of cordierite, and the decrease of its stability calculated with the non-ideal model is shown in Fig. 7. In addition, hydrous phases like chlorite may also preclude the coexistence of sapphirine and forsterite in the wet system. Gasparik (1994) also obtained a narrow field of Spr + Fo at low temperatures, but we could not check its compatibility with experimental data on Opx + Spl = Crd + Spl and Opx + Spl = Crd + Fo, because the dataset presented by this author did not allow calculations with water-bearing cordierite.

Figure 8 presents our calculation of phase relations in MAS with the thermodynamic datasets of Holland & Powell (1998) and Kelsey et al. (2004). The former dataset, being a precursor of the latter, would not have been considered, if it had not been used by Ouzegane et al. (2003) as a basis for developing their own grid. As can be seen in Fig. 8, the data of Holland & Powell (1998) imply that Spr + Fo must preclude stability of competing assemblage Opx + Spl almost over the whole P–T space considered, which is in obvious conflict with much experimental and natural evidence of the wide P–T stability range of Opx + Spl. Grew et al. (1994), who predicted existence of invariant point I₅ at low temperatures under decreased water activity, emphasized a rarity of natural occurrences of Spr + Fo. The exaggerated stability of Spr + Fo implied by the THERMOCALC dataset might have been overlooked by Holland & Powell (1998) when they incorporated the sapphirine properties. The successor version presented by Kelsey et al. (2004) also implies an unrealistically wide stability field for Spr + Fo, although smaller than that of Holland & Powell (1998). Ouzegane et al. (2003), attempting “to derive pseudosections suitable for the studied rocks and the estimated P–T conditions” with the THERMOCALC data from Holland & Powell (1998), found that this could be achieved by adding −5 kJ/mol to the enthalpy of Mg₂Al₂Si₂O₂₀ and −10 kJ/mol to that of Mg₃.₅Al₉Si₁.₅O₂₀, thus increasing the stability of sapphirine. Obviously, this energy adjustment must cause even greater stability of Spr + Fo in relation to Opx + Spl, which has not been considered by the authors, who restricted themselves to consideration of certain granulites. Although their petrogenetic grid is undermined by the arbitrary adjustment comparable to univariant reaction energies, it should be noted that Ouzegane et al. (2003) must have considered the extended stability of Spr + Qtz in MAS (~ 850 °C, 0.7 GPa in their Fig. 12a) acceptable. In their interpretation of MAS, Spr + Ky must be stable at ~ 750–1100 °C and 0.8–1.7 GPa.

In other aspects, phase relations implied by successive versions of the THERMOCALC dataset look very similar to each other. As outlined above in relation to Spr + Qtz, the data presented by Kelsey et al. (2004) shift the stability field of this assemblage towards high temperature. This shift is likely due to inadequate fitting of thermodynamic properties to experimental data. At least in MAS, sapphirine can coexist with quartz at temperatures significantly below 900 °C. Calculations with the THERMOCALC dataset, as can be seen in Fig. 8, do not allow sapphirine to coexist with kyanite in MAS. Evidently, this implies that stability of Spr + Ky must be even less possible in FMAS, because Fe preferably enters orthopyroxene, which must inevitably stabilize the competing Opx + Crn assemblage. Baldwin et al. (2007) tried to overcome the discrepancy between the observed presence of sapphirine + kyanite in nature and predictions by THERMOCALC just by excluding sillimanite from the list of phases involved in calculation of P–T relations, and interpreted their textures based on the Ca–FeO–MgO–Al₂O₃–SiO₂ grid, where “reactions dominantly

Fig. 8. The Spr + Fo stability field calculated with the data of Table 1 (non-ideal sapphirine) for fluid-absent conditions (solid lines) and $P = P_{H₂O}$ (dashed lines) using the cordierite model proposed by Aranovich & Podlesskii (1989). The low-temperature stability limit of sapphirine at $P = P_{H₂O}$ (dotted line) is shown according to experimental data of Seifert (1974).
Asami et al. (2007) described an FMAS sapphirine + spinel + kyanite + garnet \((X_{MG} \approx 0.55)\) assemblage meeting textural and chemical criteria of equilibrium in a granulite from the Sør Rondane Mountains, East Antarctica, but they were not successful in finding a stability field for this assemblage using THERMOCALC.

In our opinion, the outlined features of the THERMOCALC dataset simply reflect still insufficient knowledge of some major phase energetics, and in this regard, the statements of Powell & Holland (2008) that “pseudosections are likely to be the most effective form of thermobarometry for granulite facies and UHT rocks”, and of Kelsey (2008) that “calculated phase diagrams allow the true complexity of mineral reaction topologies to be seen”, appear to be somewhat premature. The example of sapphirine demonstrates that calculations of phase relations in complex chemical systems involving poorly constrained thermodynamic properties of minerals do not yet hold the advantage over “conventional” (the term introduced by Powell & Holland, 2008) thermobarometry based on either direct calibrations or thermodynamic datasets for experimentally well-constrained phases.

Concluding remarks

Critical assessment of phase equilibria involving sapphire in MAS, as calculated using thermodynamic datasets, shows that there remain major inconsistencies between calculated and observed stability relationships. Better constraint is still needed for equilibria and thermodynamic properties, using reversal equilibration experiments and determination of equilibrium compositions of minerals. Optimized thermodynamic properties of the sapphire solid solution imply that Spr + Qtz could be stable below 900 °C. Narrow stability fields of Spr + Ky are predicted at lower temperatures, and for Spr + Fo at very low water activity in accord with observed natural occurrences.

Although our description seems to fit most relevant experimental data, it should be noted that it is based on modeled compositions of sapphire, and thus much uncertainty remains. One possible improvement to the sapphire model would be an extension of the solid solution range beyond our limits of 2 > Si > 1 per 20 oxygens, consistent with some natural sapphires and Ge contents in Ga–Ge analogs reported by Barbier (1998).

Recently, Kelsey (2008) recognized that experimental data for systems other than MAS are not applicable to modeling of thermodynamic behavior of iron-bearing sapphire, and switched to natural Fe–Mg partitioning data between sapphire and coexisting orthopyroxene and garnet to get a bridge to FMAS and beyond. In this respect, he followed an approach earlier applied for the same purpose and reasons by Podlesskii (1995, 1997). However, the latter publications have demonstrated that even for FMAS, this method can produce alternative P–T diagrams with much lower temperatures of Spr + Qtz assemblages. They also had common features with the grid of Kelsey et al. (2004), such as the very close spacing of invariant points, which are to a great extent inherited from phase relationships defined by reactions belonging to the MAS invariant point I4.

For modeling reactions involving sapphire outside of MAS, it would be most desirable to obtain data that could define how other major constituents of this mineral, \(Fe^{2+}\) and \(Fe^{3+}\), affect its properties. The thermodynamic
description of the effect of composition and P–T conditions on the stability of different polytypes of sapphirine could be another improvement. Since sapphirine in most cases has the highest Fe$_3^+$/Fe$_{total}$ ratio among coexisting Fe–Mg minerals, including aluminous spinel, these data could also shed light on redox conditions of metamorphism.

Acknowledgments: This work was inspired by Werner Schreyer at initial stages, when K.K.P. was an Alexander von Humboldt research fellow in Bochum. The authors are grateful to Simon Harley and Andrew Christy for their thorough and constructive reviews that stimulated us to improve the clarity of this paper. Our thanks are due also to Edward Grew for his extremely helpful comments and editorial assistance. The study was funded by RFBR grants 06-05-65069, 06-05-64976 and 06-05-64098-a.

References

Asami, M., Grew, E.S., Makimoto, H. (2007): Relict sapphirine + kyanite and spinel + kyanite assemblages in pyrope garnet from the eastern Sor Rondane Mountains, East Antarctica. Lithos, 93, 107-125.

Received 19 March 2008
Modified version received 17 June 2008
Accepted 7 July 2008