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5 2.1 Introduction

6 According to the common definition, intra-oceanic

7 subduction brings oceanic slabs under the overriding

8 plates of oceanic origin. As a consequence oceanic

9 magmatic arcs are formed worldwide (Fig. 2.1) with

10 typical examples such as the Izu-Bonin-Mariana arc,

11 the Tonga-Kermadec arc, the Vanuatu arc, the Solo-

12 mon arc, the New Britain arc, the western part of the

13 Aleutian arc, the South Sandwich arc and the Lesser

14 Antilles arc (Leat and Larter 2003). Intra-oceanic sub-

15 duction zones comprise around 17,000 km, or nearly

16 40%, of the subduction margins of the Earth (Leat and

17 Larter 2003). Indeed, intra-oceanic arcs are less well

18 studied than continental arcs since their major parts

19 are often located below sea level, sometimes with only

20 the tops of the largest volcanoes forming islands.

21 Intra-oceanic subduction zones are sites of intense

22 magmatic and seismic activities as well as metamor-

23 phic and tectonic processes shaping out arc composi-

24 tions and structures. During an ocean closure (e.g.,

25 Collins 2003) such arcs may collide with continental

26 margins creating distinct structural and compositional

27 record in continental orogens (such as in Himalaya,

28 Burg 2011) which makes them of particular interest

29 for the present book.

30 Several years ago Leat and Larter (2003) published

31 a comprehensive review on intra-oceanic subduction

32 systems. The review focused on tectonic and mag-

33 matic processes in intra-oceanic arcs and was mainly

34based on observational constraints. In addition,

35Schellart et al. (2007) compiled detailed nomenclature

36and taxonomy of Subduction zones worldwide. The

37following major characteristics of intra-oceanic sub-

38duction zones can be summarized (Leat and Larter

392003; Schellart et al. 2007 and references therein)

40• Convergence rates vary from ca 2 cm/yr in the Lesser

41Antilles arc to 24 cm/yr in the northern part of the

42Tonga arc, the highest subduction rates on Earth.

43Typical rates are in the range 5–13 cm/yr. Intra-arc

44variations are almost as large as inter-arc ones.

45• Ages of subducting slabs range from ca 150 Ma

46(Pacific Plate subducting beneath the Mariana arc)

47to close to zero age (along part of the Solomon arc).

48Along-arc variations in slab ages are typically not

49large (�10 Ma). There are indeed large variations

50in the topography of the subducting plates (up to

515 km, Fig. 2.1): some are relatively smooth, some

52contain ridges and seamounts that affect subduction

53and arc tectonics.

54• Sediment thicknesses are notably variable (from 70m

55to >6 km, typically 150–650 m). Sediment cover is

56commonly thinner over basement highs. Variations

57in thickness and composition of subducted sediments

58are probably greatest where arcs are close to, or

59cut across, ocean–continent boundaries.

60• Accretion v. non-accretion. Most modern intra-

61oceanic arcs are non-accreting, i.e. there is little or

62no net accumulation of off-scrapped sediment

63forming accretionary complexes. In other words,

64all the sediments arriving at the trenches are sub-

65ducted (over a period) into the mantle. The two

66exceptions are the Lesser Antilles and Aleutian

67arcs, both of which have relatively high sediment

68inputs and where accretionary complexes have

69formed.
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70 • Back-arc extension. Most of the arcs have closely

71 associated back-arc rifts. Only the Solomon and

72 Aleutian arcs are exceptions in having no apparent

73 back-arc extension. In most cases, the back-arc

74 extension takes the form of well-organized seafloor

75 spreading for at least part of the length of the back-

76 arc. Such spreading appears to follow arc extension

77 and rifting in at least some cases.

78 • Arc thicknesses depend on arc maturity, tectonic

79 extension or shortening, and the thickness of pre-

80 arc basement. Only approximately, therefore, is it

81 true to say that the thin crusts (e.g. of the South

82 Sandwich and Izu-Osgaswara) arcs represent arcs

83 in the relatively early stages of development,

84 whereas arcs with thicker crusts are more mature

85 (e.g. the Lesser Antilles and Aleutian arcs).

86 • Pre-arc basements of the arcs are very variable.

87 Only one intra-oceanic arc (the Aleutian arc) is

88 built on normal ocean crust. The others are built

89 on basements comprising a range of oceanic lithol-

90 ogies, including ocean crust formed at back-arc

91 spreading centres, earlier intra-oceanic arcs, accre-

92 tionary complexes and oceanic plateaux. This also

93points out toward complexity of intraoceanic sub-

94duction (re)initiation scenarios.

95In the recent years significant new literature on

96intra-oceanic subduction appeared (in particular, on

97high-resolution seismic studies of arc structures and

98on numerical modeling of intra-oceanic subduction)

99that should be added to the state-of-the-art knowledge

100which is one of the reasons for writing this chapter.

101Also, taking into account that the present volume

102mainly concentrates on arc collision processes I will

103focus the review on relatively shallow portions of

104intraoceanic subduction-arc system from which the

105record can be preserved in the resulting collision

106zones (e.g. Burg 2011). The following major issues

107will be discussed in the review

108• Initiation of intra-oceanic subduction

109• Internal structure and composition of arcs

110• Subduction channel processes

111• Dynamics of crustal growth

112• Geochemistry of intra-oceanic arcs

113In order to keep a cross-disciplinary spirit of mod-

114ern intra-oceanic subduction studies often combining

Fig. 2.1 Location of modern intra-oceanic subduction zones.

The trenches of these subduction systems are indicated by heavy

black lines, and identified by numbers that correspond to those

of Leat and Larter (2003): 1 – MacQuarie; 2 – Tonga-Kerma-

dec; 3 – Vanuatu (New Hebrides); 4 – Solomon; 5 – New

Britain; 6 – Halmahara; 7 – Sangihe; 8 – Ryuku; 9 – Mariana;

10 – Izu-Bonin (Ogasawara); 11 – Aleutian; 12 – Lesser

Antilles; 13 – South Sandwich
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115 observational constrains with results of numerical

116 geodynamic modelling the later will be used here

117 for visualizing various subduction-related processes

118 instead of more traditional hand-drawn cartoons.

119 2.2 Initiation of Intra-oceanic
120 Subduction

121 It is yet not entirely clear how subduction in general

122 and intraoceanic subduction in particular is initiated.

123 The gravitational instability of an old oceanic plate is

124 believed to be the main reason for subduction (Vlaar

125 and Wortel 1976; Davies 1999). Oceanic lithosphere

126 becomes denser than the underlying asthenosphere

127 within 10–50 Ma after it forms in a mid-ocean ridge

128 due to the cooling from the surface (Oxburg and

129 Parmentier 1977; Cloos 1993; Afonso et al. 2007,

130 2008). However, despite the favourable gravitational

131 instability and ridge-push, the bending and shear resis-

132 tance of the lithosphere prevent subduction from aris-

133 ing spontaneously (McKenzie 1977). Consequently,

134 the following question arises: what forces can trigger

135 subduction (besides the negative buoyancy and ridge-

136 push)? At least 12 hypotheses have been proposed to

137 answer this question:

138 1. Plate rupture within an oceanic plate or at a

139 passive margin (e.g. McKenzie 1977; Dickinson

140 and Seely 1979; Mitchell 1984; M€ueller and

141 Phillips 1991).

142 2. Reversal of the polarity of an existing subduction

143 zone (e.g. Mitchell 1984).

144 3. Change of transform faults into trenches (e.g.

145 Uyeda and Ben-Avraham 1972; Hilde et al. 1976;

146 Karson and Dewey 1978; Casey and Dewey 1984).

147 4. Sediment or other topographic loading at conti-

148 nental/arc margins (e.g. Dewey 1969; Fyfe and

149 Leonardos 1977; Karig 1982; Cloetingh et al.

150 1982; Erickson 1993; Pascal and Cloetingh 2009).

151 5. Forced convergence at oceanic fracture zones

152 (e.g. M€ueller and Phillips 1991; Toth and Gurnis

153 1998; Doin and Henry 2001; Hall et al. 2003;

154 Gurnis et al. 2004).

155 6. Spontaneous initiation of retreating subduction

156 (Fig. 2.2) due to a lateral thermal buoyancy con-

157 trast at oceanic fracture zones separating oceanic

158plates of contrasting ages (e.g. Gerya et al. 2008;

159Nikolaeva et al. 2008; AU1Zhu et al. 2008).

1607. Tensile decoupling of the continental and oceanic

161lithosphere due to rifting (Kemp and Stevenson

1621996).

1638. Rayleigh-Taylor instability due to a lateral com-

164positional buoyancy contrast within the litho-

165sphere (Niu et al. 2003).

1669. Addition of water into the lithosphere (Regenauer-

167Lieb et al. 2001; Van der Lee et al. 2008).

16810. Spontaneous thrusting (Fig. 2.3) of the buoyant

169continental/arc crust over the oceanic plate (Mart

170et al. 2005; Nikolaeva et al. 2010; Goren et al.

1712008).

17211. Small-scale convection in the sub-lithospheric

173mantle (Solomatov 2004).

17412. Interaction of thermal-chemical plumes with the

175lithosphere (Ueda et al. 2008).

176In the recent review by Stern (2004 and references

177therein) two major types of subduction initiation sce-

178narios applicable to intraoceanic subduction are pro-

179posed based on both theoretical considerations and

180natural data: induced and spontaneous. Induced sub-

181duction nucleation may follow continuation of plate

182convergence after jamming of a previously active sub-

183duction zone (e.g. due to arrival of a buoyant crust to

184the trench). This produces regional compression, uplift

185and underthrusting that may yield a new subduction

186zone in a different place. Two subtypes of induced

187initiation, transference and polarity reversal, are dis-

188tinguished (Stern 2004 and references therein). Trans-

189ference initiation moves the new subduction zone

190outboard of the failed one. The Mussau Trench and

191the continuing development of a plate boundary SW of

192India in response to Indo–Asian collision are the best

193Cenozoic examples of transference initiation pro-

194cesses (Stern 2004 and references therein). Polarity

195reversal initiation also follows collision, but continued

196convergence in this case results in a new subduction

197zone forming behind the magmatic arc; the response of

198the Solomon convergent margin following collision

199with the Ontong Java Plateau (Stern 2004 and refer-

200ences therein) and dramatic reorganization of the tec-

201tonic plate boundary in the New Hebrides region

202(Pysklywec et al. 2003 and references therein) are

203suggested to be the examples of this mode.

204Spontaneous nucleation results from inherent gravi-

205tational instability of sufficiently old oceanic lithosphere
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206 compared to the underlying mantle, which is also the

207 main reason for operating of the modern regime of

208 plate tectonics. It is widely accepted (e.g. Stern 2004

209 and references therein) that intra-oceanic subduction

210 can initiate spontaneously either at a transform/fracture

211 zone (Fig. 2.2) or at a passive continental/arc margin

212 (Fig. 2.3), in a fashion similar to lithospheric delami-

213 nation. According to the theoretical prediction (e.g.

214 Stern 2004) and numerical modeling results (e.g.

215 Gerya et al. 2008; Nikolaeva et al. 2008; Zhu et al.

216 2009) spontaneous initiation across a fracture zone

217 separating oceanic plates of contrasting ages associ-

218 ates with an intense seafloor spreading (Fig. 2.2,

219 0.3–1.5 Myr), as asthenosphere wells up to replace

220sunken lithosphere of the older plate. This is the pre-

221sumable origin of most boninites and ophiolites (Stern

2222004 and references therein). Such initiation process

223assumed to have produced new subduction zones along

224the western edge of the Pacific plate during the Eocene

225(Stern 2004 and references therein). Development of

226self-sustaining one-sided subduction is marked by the

227beginning of down-dip slab motion, formation of the

228mantle wedge and appearance of the magmatic arc at

229100–200 km distance from the retreating trench

230(Fig. 2.2).

231Passive continental/arc margin collapse (Fig. 2.3) is

232driven by the geometry of the margin, where relatively

233thick (20–35 km) low-density continental/arc crust is

Fig. 2.2 Dynamics of spontaneous initiation of retreating subduction at a transform/fracture zone separating oceanic plates of

contrasting ages. Results from 2D numerical experiments by Gerya et al. (2008)
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234 bounded laterally by significantly more dense oceanic

235 lithosphere. When during the margin evolution forces

236 generated from this lateral density contrast become big

237 enough to overcome the continental/arc crust strength

238 then this crust starts to creep over the oceanic one

239 (Fig. 2.3, 0.3Myr). This causes deflection of the oceanic

240 lithosphere (Fig. 2.3, 0.3 Myr) and may actually lead to

241 its delamination from the continental/arc lithosphere

242 (Fig. 2.3, 0.3–1.9 Myr) thus triggering retreating sub-

243 duction process (Fig. 2.3, 1.9–3.2 Myr). This type of

244 subduction nucleation has been successfully modelled

245 with both analogue (Mart et al. 2005; Goren et al. 2008)

246 and numerical (Nikolaeva et al. 2010) techniques. No

247 undeniable modern example of such ongoing subduc-

248 tion initiation is yet known: a possible recent exception

249 is suggestion for subduction/overthrusting initiation at

250the eastern Brasilian margin (Marques et al. 2008).

251Indeed, Goren et al. (2008) speculated that such type

252of initiation was relevant in the past for two active

253intra-oceanic subduction systems in which Atlantic

254lithosphere is being subducted: the Lesser-Antilles

255and the South Sandwich subduction systems. Also,

256Masson et al. (1994) and Alvarez-Marron et al.

257(1996, 1997) argued that an arrested subduction zone

258nucleation can be distinguished in the North Iberian

259Margin based on structural and seismic data.

260Both spontaneous and induced subduction initia-

261tion can be potentially distinguished by the record

262left on the upper plates: induced nucleation begins

263with strong compression and uplift, whereas spontane-

264ous one begins with rifting and seafloor spreading

265( AU2Stern et al. 2004).

Fig. 2.3 Dynamics of spontaneous subduction initiation at a passive continental/arc margin. Results from 2D numerical experi-

ments by Nikolaeva et al. (2010)
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266 2.3 Internal Structure of Intra-oceanic
267 Arcs

268 Internal structure and compositions of intra-oceanic

269 arcs are strongly variable depending on both the pre-

270 existing plate structure and on the dynamics of sub-

271 duction and associated crustal growth (e.g. Leat and

272 Larter 2003). In addition, deep parts of the arcs are

273 mainly reconstructed based on seismic data and frag-

274 mentary records left in orogens after arc-continent

275 collisions, which creates further uncertainties for

276 interpretations of intra-oceanic arc structures. As was

277 indicated by Tatsumi and Stern (2006) understanding

278 how continental crust forms at intra-oceanic arcs

279 requires knowledge of how intra-oceanic arcs form

280 and mature with key questions being:

281 1. What is the nature of the crust and mantle in the

282 region prior to the beginning of subduction?

283 2. How does subduction initiate and initial arc crust

284 form?

285 3. How do the middle and lower arc crusts evolve?

2864. What are the spatial changes of arc magma and

287crust compositions of the entire arc?

288In this respect, in addition to robust natural data,

289realistic self-consistent numerical modelling of sub-

290duction and associated crustal growth (e.g., Nikolaeva

291et al. 2008; Kimura et al. 2009; Sizova et al. 2009;

292Gerya and Meilick 2010) can complement the inter-

293pretations of details and variability in arc structures.

294Figure 2.4 shows a schematic cross-section across a

295mature intra-oceanic arc corresponding to the retreat-

296ing subduction regime. The cross-section is based

297on recent results of numerical petrological-thermome-

298chanical modelling (Gerya and Meilick 2010). The

299following major structural components of the arc can

300be distinguished based on this scheme and natural

301data: (a) accretion prism (if present), (b) pre-arc base-

302ment (c) serpentinized fore-arc including subduction

303channel composed of tectonic melange, (d) magmatic

304crust, (e) sub-arc lithosphere (cumulates?, replacive

305rocks?, intercalation of crustal and mantle rocks and

306melts?), (f) back-arc region with new oceanic floor and

307a spreading center and (g) paleo-arc (in the rear part

Fig. 2.4 Schematic cross-section of an intra-oceanic arc associated with retreating subduction. Results from 2D numerical

experiments by Gerya and Meilick (2010)
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308 of the back-arc spreading domain). Obviously this

309 structure is non-unique and significant variations can

310 be expected in both nature (e.g. Tatsumi and Stern

311 2006; Takahashi et al. 2007, 2009; Kodaira et al.

312 2006, 2007, 2008) and models (e.g. Nikolaeva et al.

313 2008; Sizova et al. 2009; Gerya and Meilick 2010),

314 depending on arc history, subduction dynamics and

315 sub-arc variations in melt production intensity, distri-

316 bution and evolution (e.g. Tamura 1994; Tamura et al.

317 2002; Honda et al. 2007; Zhu et al. 2009).

318 Recently new high-resolution data (see Calvert

319 2011) were obtained concerning seismic structure

320 of the arc crust in Izu-Bonin-Mariana system (e.g.

321 Takahashi et al. 2007, 2009; Kodaira et al. 2006,

322 2007, 2008). These data suggest that lateral variations

323 in crustal thickness, structure and composition occur

324 both along and across intra-oceanic arcs (e.g.

325 Figs. 2.4–2.6 in Calvert 2011; Kodaira et al. 2006;

326 Takahashi et al. 2009). Such variations are interpreted

327 as being the results of laterally and temporally variable

328 magmatic addition and multiple episodes of fore-arc,

329 intra-arc and back-arc extension (e.g. Takahashi et al.

330 2007, 2009; Kodaira et al. 2006, 2007, 2008). Seismic

331 models demonstrate notable velocity variations

332 (Fig. 2.6 in Calvert 2011) within the arc middle and

333 lower crusts, which are interpreted to be respectively

334 of intermediate to felsic and mafic compositions (e.g.

335 Takahashi et al. 2007). In the regions of the maximal

336 thickness (around 20 km, Fig. 2.6 in Calvert 2011) the

337 oceanic-island-arc crust is composed of a volcanic-

338 sedimentary upper crust with velocity of less than

339 6 km/s, a middle crust with velocity of ~6 km/s,

340 laterally heterogeneous lower crust with velocities

341 of ~7 km/s, and unusually low mantle velocities

342 (Takahashi et al. 2009; also see crust–mantle transition

343 layer in Fig. 2.6b, c in Calvert 2011). Petrologic mod-

344 eling of Takahashi et al. (2007) suggests that the

345 volume of the lower crust, presumably composed

346 of restites and olivine cumulates remained after the

347 extraction of the middle crust, should be significantly

348 larger than is observed on the seismic cross-sections.

349 Therefore, such mafic-ultramafic part of the lower

350 crust (if at all present in the arcs, e.g. Jagoutz et al.

351 2006) should have seismic properties similar to the

352 mantle ones and consequently look seismically as a

353 part of the mantle lithosphere.

354 There are notable uncertainties in interpreting seis-

355 mic structures of intra-oceanic arcs, which are related

356 to current uncertainties in understanding melt differ-

357entiation processes under the arcs. As summarised by

358Leat and Larter (2003) the major element composition

359of magmas feeding arcs from the mantle has been and

360remain (e.g. Jagoutz et al. 2006) a subject of debate,

361particularly regarding the Mg and A1 contents of

362primary magmas. Mafic compositions in arcs have

363variable MgO content, but with a clear cut-off at

364about 8 wt% MgO or even less (in the case of mature

365arcs). High-MgO, primitive non-cumulate magmas

366have indeed been identified in many arcs, but they

367are always volumetrically very minor (Davidson

3681996). One question is, therefore, whether the MgO

369cut-off point represents composition of the mantle-

370derived parental magmas, or whether the mantle-

371derived parental magmas are significantly more

372MgO-rich (>10% MgO), but are normally unable to

373reach the surface and erupt. It has been argued that

374they have difficulty in traversing the crust without

375encountering magma chambers because of their

376relatively high density (Smith et al. 1997; Leat et al.

3772002). In addition, as argued by Pichavant and

378Macdonald (2003) only the most water-poor primitive

379magmas are able to traverse the crust without adiabat-

380ically freezing.

381It should, however, be mentioned that the above

382explanations are not fully satisfactory in explaining

383the “MgO-paradox”. First, as has recently been

384demonstrated numerically (Gerya and Burg 2007;

385Burg et al. 2009) local density contrast between rising

386dense magmas and surrounding crustal rocks plays

387only a secondary role compared the rheology of the

388crust. According to the numerical results, in case of

389relatively strong lower crust even very dense ultra-

390mafic magmas can easily reach the surface given that

391they are generated below a sufficiently dense and thick

392mantle lithosphere. Second, when differentiation of

393the parental high-MgO mantle-derived magma takes

394place inside the arc crust, significant volumes of high-

395MgO cumulates should be produced. Fractionation

396models indicate that 15–35% crystallization is neces-

397sary to lower the MgO content adequately (e.g., Con-

398rad and Kay 1984). Such cumulates should either (1)

399form a major component below the seismic Moho (e.g.

400Kay and Kay 1985; M€untener et al. 2001; Takahashi

401et al. 2007) or (2) delaminate and sink back into

402the mantle (e.g., Kay and Kay 1991, 1993; Jull and

403Kelemen 2001). The delamination theory is presently

404favoured based on the lack of appropriate upper man-

405tle rocks brought to the surface in continental regions
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Fig. 2.5 Spontaneous development of weak serpentinized sub-

duction channel during intra-oceanic subduction. Left column –

development of the lithological field and isotherms (white lines,
oC). Right column – development of P–T paths for two rock

fragments (see open circle and open rectangle in the left

column). Results from 2D numerical modelling by Gerya et al.

(2002)
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406 (e.g. Rudnick and Gao 2003), the absence of primitive

407 cumulate rocks in the exposed Talkeetna paleo-island

408 arc crust section (Kelemen et al. 2003) and evidence

409 for active foundering of the lower continental crust

410below the southern Sierra Nevada, California (Zandt

411et al. 2004; Boyd et al. 2004).

412An alternative explanation of magma differentia-

413tion processes in the arcs has recently been proposed

Fig. 2.6 Serpentinite melange (a) forming in the spontaneously

evolving subduction channel (Fig. 2.6) and characteristic spatial

trajectories (b) and P–T paths (c) of crustal rocks composing the

melange. Results from 2D numerical modelling by Gerya et al.

(2002)
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414 byAU3 Jagoutz et al. (2007) based on geochemical

415 data from the Kohistan paleo-arc in NW Pakistan.

416 According to this hypothesis the melt rising through

417 the Moho boundary of an arc has already a low-MgO

418 basaltic–andesitic composition, while the primary

419 magma generated in the mantle wedge is a high-MgO

420 primitive basaltic liquid. Fractionation of the mantle-

421 derived melt takes place in the mantle lithosphere

422 within km-scaled isolated conduits (replacive chan-

423 nels). The dunitic ultramafic bodies found in the

424 lowermost section of the Kohistan paleo-arc are inter-

425 preted as remnants of such melt channels through

426 which the low-MgO (i.e. differentiated) lower-crustal

427 intrusive mafic sequence was fed. As suggested by

428 Jagoutz et al. (2007) such differentiation within the

429 upper mantle is an important lower crust-forming pro-

430 cess which can also explain the absence of high-MgO

431 cumulates in the lower crust of exposed island arcs

432 (e.g., Kelemen et al. 2003).

433 2.4 Subduction Channel Processes

434 Subduction channel development is an important

435 component of intra-oceanic arc evolution (Fig. 2.4).

436 Processes taking place in the subduction channel lives

437 notable and directly accessible record at the surface in

438 form of exhumed high- and ultrahigh-pressure rocks

439 complexes (e.g., Ernst 1977; Cloos 1982; Shreve and

440 Cloos 1986; Hermann et al. 2000; Abbott et al. 2006;

441 Federico et al. 2007; Krebs et al. 2008). Subduction

442 channel processes may also contribute to a magmatic

443 record through deep subduction and melting of

444 hydrated rock mélanges formed in the channel (e.g.,

445 Gerya and Yuen 2003; Gerya et al. 2006; Castro and

446 Gerya 2008; Zhu et al. 2009).

447 It is widely accepted that the deep burial of high

448 pressure metamorphic rocks in intra-oceanic settings

449 is due to subduction of these rocks with the downgoing

450 slab. However, the mechanisms of their exhumation

451 remain subject of discussion and several models

452 have been proposed (e.g., Cloos 1982; Platt 1993;

453 Maruyama et al. 1996; Ring et al. 1999). According

454 to the most popular corner flow model (Hsu 1971;

455 Cloos 1982; Cloos and Shreve 1988a, b; Shreve and

456 Cloos 1986; Gerya et al. 2002), exhumation of high-

457 pressure metamorphic crustal slices at rates on the

458order of the plate velocity is driven by forced flow in

459a wedge-shaped subduction channel.

460Gerya et al. (2002) investigated numerically the

461self-organizing evolution of the accretionary wedge

462and the subduction channel during intra-oceanic sub-

463duction (Fig. 2.5). In this model the geometry of the

464accretionary wedge and the subduction channel are

465neither prescribed nor assumed to represent a steady

466state. Instead, the system is free to evolve, starting

467from an imposed early stage of subduction, being

468controlled by the progressive modification of the

469thermal, petrological, and rheological structure of the

470subduction zone. In this evolution, upward migration

471of the aqueous fluid released from the subducting

472slab and progressive hydration of the mantle wedge

473play a dominant role. The following conclusions

474have been made based on numerical results (Gerya

475et al. 2002):

476• Burial and exhumation of high-pressure metamor-

477phic rocks in subduction zones are likely affected

478by progressive hydration (serpentinization) of the

479fore-arc mantle lithosphere (e.g. Schmidt and Poli

4801998). This process controls the shape and internal

481circulation pattern of a subduction channel. Widen-

482ing of the subduction channel due to hydration of

483the hanging wall mantle results in the onset of

484forced return flow in the channel. This may explain

485why the association of high- and/or ultrahigh-

486pressure metamorphic rocks with more or less

487hydrated (serpentinized) mantle material is often

488characteristic for high-pressure metamorphic com-

489plexes. Complicated non-steady geometry of weak

490hydrated subduction channels (Figs. 2.7, 2.9 and

4912.11) was also predicted numerically (Gerya et al.

4922006; Gorczyk et al. 2006, 2007a; Nikolaeva et al.

4932008). This geometry forms in response to non-

494uniform water release from the slab that is con-

495trolled by metamorphic (dehydration) reactions in

496subducting rocks. Depleted mantle rocks from the

497base of the arc lithosphere and newly formed mag-

498matic arc crust can be included into the channels

499(Figs. 2.11 and 2.12) at a mature stage of subduc-

500tion (Nikolaeva et al. 2008).

501• The shape of the P–T path, and the maximum P–T

502conditions achieved by an individual high-pressure

503metamorphic rock, depend on the specific trajec-

504tory of circulation in the subduction channel

505(Fig. 2.5). Both clockwise and counterclockwise
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Fig. 2.7 Exhumation of high- and ultrahigh-pressure rocks

during retreating intra-oceanic subduction of an oceanic plate

originated at slow spreading ridge (left columns) and character-

istic P–T paths of crustal and mantle rocks (right column).

Results from 2D numerical modelling by Gorczyk et al. (2007a)
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506 P–T paths are possible for fragments of oceanic

507 crust that became involved in the circulation. Coun-

508 terclockwise P–T paths are found for slices that are

509 accreted to the hanging wall at an early stage of

510 subduction, and set free by the progress of hydra-

511 tion and softening in a more evolved stage, return-

512 ing towards the surface in a cooler environment. On

513 the other hand, slices that were involved in contin-

514 uous circulation, or that entered the subduction

515 zone when a more stable thermal structure was

516 already achieved, reveal exclusively clockwise tra-

517 jectories. Model also indicates that P–T trajectories

518 for the exhumation of high-pressure rocks in sub-

519 duction channel fall into a P–T field of stability of

520 antigorite in the mantle wedge (Fig. 2.6c).

521 • An array of diverse, though interrelated, P–T paths

522 (Fig. 2.6c) rather than a single P–T trajectory is

523 expected to be characteristic for subduction-related

524 metamorphic complexes. The characteristic size

525 and shape of the units with an individual history

526 depend on the effective viscosity of the material in

527 the subduction channel. Lower viscosities result in

528 smaller characteristic length scales for coherent

529 units and a marked contrasts between adjacent

530 slices, a structure commonly termed melange,

531 while higher viscosities favour the formation of

532 extensive coherent nappe-like slices.

533 These conclusions based on relatively simple low-

534 viscosity serpentinized subduction channel model

535 (Figs. 2.5 and 2.6a) were recently supported by petro-

536 logical studies (e.g. Federico et al. 2007; Krebs et al.

537 2008) of subduction-related serpentinite mélanges.

538 For example, Federico et al. (2007) tested the serpen-

539 tinized channel hypothesis by investigating a serpen-

540 tinite mélange in the Western Alps, which contains

541 exotic mafic and metasedimentary tectonic blocks,

542 recording heterogeneous metamorphic evolutions and

543 variable high-pressure ages. The peak metamorphic

544 conditions range from eclogite- to garnet-blueschist-

545 facies. The structural evidence and the pressure–tem-

546 perature paths of the different blocks suggest coupling

547 between blocks and matrix, at least in the blueschist

548 facies. 39Ar-40Ar dating indicates eclogite-facies peak

549 at ca. 43 Ma and blueschist-facies peak at ca. 43 and

550 40 Ma in different blocks, respectively. These data

551 point to diachronous metamorphic paths resulting

552 from independent tectonic evolutions of the different

553 slices (compare with Figs. 2.5 and 2.6).

554Krebs et al. (2008) presented coupled petrological

555and geochronological evidence from serpentinite

556melanges of the Rio San Juan Complex, Dominican

557Republic (Hispaniola) formed by intra-oceanic Carib-

558bean subduction. It has been demonstrated that dis-

559persed blocks of various types of metamorphic rocks

560in the mélanges provide fossil evidence for the dynam-

561ics of the subduction zone channel between 120 and

56255 Ma. Based on three exemplary samples of eclogite

563and blueschist, a series of different but interrelated

564P–T–time paths was delineated. Eclogites indicate a

565low P/T gradient during subduction and record condi-

566tions in the nascent stages of the subduction zone with

567an anticlockwise P–T path (compare with Fig. 2.5,

5686.4–15.3 Myr). Other blocks record the continuous

569cooling of the evolving subduction zone and show

570typical clockwise P–T-paths (compare with Fig. 2.5,

57115.3–25.3 Myr). Omphacite blueschists correspond

572to the mature subduction zone recording very high

573(“cold”) P/T gradients. Cooling rates and exhumation

574rates of the metamorphic blocks were estimated to be

5759–20�C/Ma and 5–6 mm/a, respectively. The derived

576P–T–time array is compared with the serpentinized

577channel models (Gerya et al. 2002) with convergence

578rates of 10–40 mm/a resulting in an increasingly more

579funnel-shaped subduction channel system with time

580(Fig. 2.5). The numerically derived array of simulated

581P–T–time paths as well as the calculated rates of

582exhumation and cooling agree well with the P–T–time

583data derived from the metamorphic blocks of the Rio

584San Juan serpentinite mélanges when convergence

585rates of 15–25 mm/a are chosen (Krebs et al. 2008).

586This value is also in accord with available paleogeo-

587graphic reconstructions calling for a long-term aver-

588age of 22 mm/a of orthogonal convergence. On the

589basis of the comparison, the onset of subduction in the

590Rio San Juan segment of the Caribbean Great Arc can

591be constrained to approximately 120 Ma. This seg-

592ment was thus obviously active for more than 65 Ma.

593An orthogonal convergence rate of 15–25 mm/a

594requires that a minimum amount of 975–1,625 km of

595oceanic crust must have been subducted. Both petro-

596logical/geochronological data and numerical simula-

597tion underscore the broad spectrum of different

598P–T–time paths and peak conditions recorded by

599material subducted at different periods of time as the

600subduction zone evolved and matured.

601It has also been shown recently that not only high-

602pressure eclogites but also ultrahigh-pressure mantle
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603 rocks (garnet-bearing peridotites) can be present in

604 intra-oceanic subduction melanges (e.g. in Greater

605 Antilles in Hispaniola, Abbott et al. 2006). Gorczyk

606 et al. (2007a) modelled this phenomenon numerically

607 (Fig. 2.7) and concluded that exhumation of such

608 garnet-bearing peridotites can be related to fore-arc

609 extension during subduction of an oceanic plate

610 formed at a slow spreading ridge and characterized

611 by serpentinite-rich crust. In this case subduction

612 channel contains both serpentinites accreted from the

613 subducting plate crust and progressively serpentinized

614 fore-arc mantle. Intense rheological weakening of the

615 mantle wedge takes place due to its strong hydration

616 during subduction of water-rich crust formed at slow

617 spreading ridge. This weakening triggers upwelling of

618 the hydrated peridotites and partially molten perido-

619 tites followed by upwelling of hot asthenosphere and

620 subsequent retreat of the subducting slab. According

621 to numerical modelling of P–T paths this process can

622 explain exhumation of UHP rocks in an intra-oceanic

623 setting from depths of up to 120 km (4 GPa).

624 2.5 Magmatic Crust Growth and
625 Thermal-Chemical Convection
626 in the Mantle Wedge

627 Reymer and Schubert (1984) estimated rates of

628 crustal generation during intra-oceanic subduction as

629 20–40 km3/km/Myr for the western Pacific region

630 based on the total arc crust volume divided by the oldest

631 known igneous age. More recent estimates for the same

632 area by Taira et al. (Izu-Bonin island arc, 1998), Hol-

633 brook et al. (Aleutian island arc, 1999) and Dimalanta

634 et al. (Tonga, New Hebrides, Marianas, Southern and

635 Northern Izu-Bonin, Aleutian island arcs, 2002) are

636 somewhat higher, 40–95 km3/km/Myr and are much

637 higher, 120–180 km3/km/Myr, according to the work

638 of Stern and Bloomer (early stage of IBM development,

639 1992). In particular, the arc magmatic addition rate

640 of the arc of the New Hebrides varies between 87 and

641 95 km3/km/Myr as determined by Dimalanta et al.

642 (2002). They also give values for addition rates of

643 other island arcs, all of which vary between 30 and

644 70 km3/km/Myr. These values are average rates of

645 crust production, calculated by dividing the estimated

646 total volume of produced crust by the time in which it

647 was produced and by the length of the arc.

648It is commonly accepted that dehydration of sub-

649ducting slabs and hydration of the overlying mantle

650wedges are key processes controlling magmatic activ-

651ity and consequently crustal growth above subduction

652zones (e.g., Stern 2002; van Keken et al. 2002; van

653Keken and King 2005). Mantle wedge processes have

654been investigated from geophysical (e.g. Zhao et al.

6552002; Tamura et al. 2002), numerical (e.g. Davies and

656Stevenson 1992; Iwamori 1998; Kelemen et al. 2004a;

657Arcay et al. 2005; Gerya et al. 2006; Nikolaeva et al.

6582008), experimental (e.g., Poli and Schmidt 1995;

659Schmidt and Poli 1998), and geochemical (e.g., Ito

660and Stern 1986; Sajona et al. 2000; Kelley et al.

6612006) perspectives. Indeed, detailed thermal structure

662and melt production patterns above slabs are still

663puzzling. Particularly, the relative importance of slab

664melting (e.g. Kelemen et al. 2004a; Nikolaeva et al.

6652008) versus melting induced by simple thermal con-

666vection (Honda et al. 2002, 2007; Honda and Saito

6672003) and/or thermal-chemical plumes (diapirs) (e.g.

668Tamura 1994; Hall and Kincaid 2001; AU4Obata and

669Takazawa 2004; Gerya and Yuen 2003; Manea et al.

6702005; Gerya et al. 2006; Gorczyk et al. 2007b; Zhu

671et al. 2009) to melt production in volcanic arcs is not

672fully understood.

673Several authors (e.g., Tamura et al. 2002; Honda

674et al. 2007; Zhu et al. 2009) analyzed the spatial

675distribution of volcanism in Japan and concluded that

676several clusters of volcanism can be distinguished in

677space and time (Fig. 2.8). The typical spatial periodic-

678ity of such volcanic clusters is 50–100 km (see the

679spacing between “cigars” in Fig. 2.8b) while their life

680extent corresponds to 2–7 Myr (see the lengths of

681“cigars” in time in Fig. 2.8b). Two trench-parallel

682lines of volcanic density maxima can also be distin-

683guished for some periods of intra-oceanic arc evolu-

684tion (Fig. 2.8a). Spatial and temporal clustering of

685volcanic activity also associates with strongly variable

686(Fig. 2.4 in Calvert 2011) distribution of crustal thick-

687ness along intra-oceanic arcs (e.g. Figs. 2.4 and 2.5 in

688Calvert 2011; Kodaira et al. 2006, 2007) and distribu-

689tion of seismic velocity anomalies in the mantle

690wedges under the arcs (e.g. Zhao et al. 1992, 2002;

691Zhao 2001; Tamura et al. 2002). This further points

692toward the relations between the mantle wedge pro-

693cesses and crustal growth in intra-oceanic arcs.

694Based on 3D numerical models Honda and

695co-workers (Honda et al. 2002, 2007; Honda and

696Saito 2003; Honda and Yoshida 2005) proposed the
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697 development of small-scale thermally driven convec-

698 tion in the uppermost corner of the mantle wedge with

699 lowered viscosity (low viscosity wedge, LVW, Billen

700and Gurnis 2001; Conder and Wiens 2007; Honda and

701Saito 2003; Honda et al. 2002; Honda and Yoshida

7022005; Arcay et al. 2005). These authors suggested that

703a roll (finger)-like pattern of hot (upwellings) and cold

704(downwellings) thermal anomalies emerges in the

705mantle wedge above the subducting slab contributing

706to clustering of magmatic activity at the arc surface.

707These purely thermal mantle wedge convection mod-

708els, however, neglected chemical buoyancy effects

709coming from hydration and melting atop the subduct-

710ing slab and leading to thermal-chemical convection

711and diapirism phenomena (e.g. Tamura 1994; Hall

712and Kincaid 2001; Gerya and Yuen 2003). These

713aspects have been recently studied numerically based

714on petrological-thermomechanical models including

715water transport and melting. These models predict

7161. Spontaneous formation of a low viscosity wedge by

717hydration of the mantle atop the slab (Arcay et al.

7182005; Zhu et al. 2009)

7192. Growth of diapiric structures (“cold plumes”,

720Figs. 2.9 and 2.10) above the subducting slab (e.g.,

721Gerya and Yuen 2003; Gorczyk et al. 2007b; Zhu

722et al. 2009)

7233. Broad variation in seismic velocity beneath intrao-

724ceanic arcs due to hydration and melting (Gerya

725et al. 2006; Nakajima and Hasegawa 2003a, b;

726Gorczyk et al. 2006; Nikolaeva et al. 2008)

7274. Variations in melt production and crustal growth

728processes caused by propagation of hydrated

729plumes in the mantle wedge (Gorczyk et al.

7302007b; Nikolaeva et al. 2008; Zhu et al. 2009)

731Nikolaeva et al. (2008) investigated crustal growth

732processes on the basis of a 2D coupled petrologi-

733cal–thermomechanical numerical model of retreating

734intraoceanic subduction (Figs. 2.11 and 2.12). The

735model included spontaneous slab retreat and bending,

736subducted crust dehydration, aqueous fluid transport,

737mantle wedge melting, and melt extraction resulting in

738crustal growth. As follows from the numerical experi-

739ments the rate of crust formation is strongly variable

740with time and positively correlates with subduction

741rate (Fig. 2.11, bottom diagram). Modelled average

742rates of crustal growth (30–50 km3/km/Ma, without

743effects of dry decompression melting) are close to the

744lower edge of the observed range of rates for real intra-

745oceanic arcs (40–180 km3/km/Ma). The composition

746of new crust depends strongly on the evolution of sub-

747duction. Four major magmatic sources can contribute

Fig. 2.8 Variations in volcanic activity in NE Japan (Honda

and Yoshida 2005; Honda et al. 2007; Zhu et al. 2009). (a)

variations in the spatial density of volcanoes with their age

during the past 10 Myr. (b) the isosurface of 0.0003 volcano/

km2/Myr for the observed density of volcanoes in space and

time. The density of volcanoes notably evolves showing forma-

tion of spatially confined clusters that remain active within

certain period of time that could be possibly related to the

activity of mantle wedge plumes (cf. Fig. 2.10)
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748 to the formation of the crust: (1) hydrated partially

749 molten peridotite of the mantle wedge, (2) melted

750 subducted sediments, (3) melted subducted basalts,

751 (4) melted subducted gabbro. Crust produced from

752 the first source is always predominant and typically

753 comprise more than 95% of the growing arc crust

754 (Nikolaeva et al. 2008). In all studied cases, it appears

755 shortly after beginning of subduction and is a persis-

756 tent component so long as subduction remains active.

757 Significant amount of crust produced from other three

758 sources appear (1) in the beginning of subduction due

759 to the melting of the slab “nose” and (2) at later stages

760 when subduction velocity is low(<1 cm/a), which

761 leads to the thermal relaxation of the slab. Both the

762 intensity of melt extraction, and the age of subducted

763 plate affect the volume of new crust. On a long time

764 scale the greatest volume of magmatic arc crust is

765 formed with an intermediate melt extraction threshold

766 (2–6%) and medium subducted plate ages (70–100 Ma)

767 (Nikolaeva et al. 2008).

768 Recently thermal-chemical mantle wedge convec-

769 tion and related melt production dynamics (Fig. 2.10)

770 were also examined numerically in 3D (Zhu et al.

771 2009; Honda et al. 2010). Honda et al. (2010) analysed

772simple subduction model including moderately buoy-

773ant chemical agent (water) and found that the hydrated

774region tends to stay in the corner of the mantle wedge

775because of its low density and this results in the low

776temperature zone (“cold nose”) there. Moderate chem-

777ical buoyancy present in the mantle wedge may either

778suppress or shift toward the back arc the thermally

779driven small-scale convection under the arc and

780make the dominant mantle flow velocity to be normal

781to the plate boundary. Zhu et al. (2009) examined

782more complex 3-D petrological-thermomechanical

783model of intra-oceanic subduction focussing on geo-

784metries and patterns of hydrous thermal-chemical

785upwellings (“cold plumes”) formed above the slab

786(Figs. 2.9 and 2.10). These numerical simulations

787showed that three types of plumes occur above the

788slab: (a) finger-like plumes that form sheet-like struc-

789ture parallel to the trench (Fig. 2.10a, b); (b) ridge-like

790structures perpendicular to the trench; (c) flattened

791wave-like instabilities propagating upwards along the

792upper surface of the slab and forming zig-zag patterns

793subparallel to the trench.

794Zhu et al. (2009) also computed spatial and tempo-

795ral pattern of melt generation (i.e. crust production)

Fig. 2.9 Development of unmixed and mixed plumes due to

hydration of the mantle wedge by fluids released from the slab.

Plumes rising from the slab are colder then the surrounding

mantle wedge (see Fig. 2.10a for 3D thermal structures around

such plumes). The corrugations along the hydration front reflect

dynamics of slab dehydration controlled by metamorphic reac-

tions. Zoomed area shows lithological structures of mixed and

unmixed plumes. Results from 2D numerical modelling by

Gerya et al. (2006)
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796 intensity above the slab, which appeared to be strongly

797 controlled by the hydrous plume activities (Fig. 2.10c,

798 d). Peaks of the melt production projected to the arc

799 surface at different moments of time (Fig. 2.10c)

800 always indicate individual thermal-chemical plumes

801 growing at that time. Such peaks often form the linear

802 structure close to the trench, and another line of peaks

803 in linear pattern, which is approximate 200 km away

804 from the trench. The former ones are mainly from the

805 depth of 50–70 km; the latter ones are mainly from

806the depth of 140–170 km. Figure 2.10d shows the

807melt productivity in time by visualizing the isosur-

808face (0.6 km3/km2/Myr) of melt production intensity.

809The plume-like structures are reflected by distinct

Fig. 2.10 (continued)

Fig. 2.10 Thermal-chemical plumes (a, b) growing in the

mantle wedge during intra-oceanic subduction and corresponding

variations of melt production (c, d). (a) the 1,350 K isosurface of

temperature at 2.64Myr, note that plumes rising from the slab are

colder than the surrounding mantle wedge. (b) same temperature

isosurface (yellow) with partially molten rocks, which are respon-

sible for plume buoyancy, shown in red. (c) variations in the

spatial intensity of melt production beneath the surface, peaks in

the melt production correspond to individual thermal-chemical

plumes shown in (a). (d) the isosurface of 0.6 km3/km2/Myr

for melt production, which implies crustal growth intensity of

600 m/Myr. Results from 3D numerical modelling by Zhu et al.

(2009)
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Fig. 2.11 Dynamics of a pure retreating intra-oceanic subduc-

tion (left column) and associated magmatic crust growth (right

column). Spontaneous changes in subduction rate (for this

model subduction rate and trench retreat rate are equal) and

crust accumulation rate with time are depicted below. Time is

dated from the beginning of subduction. Subduction results in a

hydration and partial melting of mantle wedge rocks, which

leads to the formation of volcanic arc rocks (yellow) above

the area of melting. Results from 2D numerical modelling by

Nikolaeva et al. (2008)
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810 “cigar-like” features that are bounded in both time and

811 space (Fig. 2.10d). Each “cigar” corresponds to the

812 activity of a distinct plume that (1) increases the melt

813 productivity during the early stage when the growing

814 melt production is related to decompressing and heat-

815 ing of the rising plume material and (2) decreases the

816 melt productivity during the later stage when the tem-

817 perature, the pressure and the degree of melting stabi-

818 lize inside the horizontally spreading and thermally

819 relaxing plume.

820The modelled wavelength (25–100 km) and the

821growth time (2–7 Myr, see the lengths of “cigars” in

822time in Fig. 2.10d) of the thermal-chemical plumes are

823comparable to spatial periodicity (50–100 km) and the

824life extent (2–7 Myr, see the lengths of “cigars” in time

825in Fig. 2.8b) of volcanic clusters and to spatial period-

826icity (50–100 km, Fig. 2.4b in Calvert 2011) of crustal

827thickness variations in intra-oceanic arcs. The exis-

828tence of two contemporaneous trench-parallel lines

829of melt productivity (Fig. 2.10b) is also similar to the

Fig. 2.12 Evolution of degree of melt extraction (left column)

and water content (right column) in the mantle wedge and

subducting oceanic crust. Corresponding lithological field is

depicted on the Fig. 2.11. Results from 2D numerical modelling

by Nikolaeva et al. (2008)
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830 natural observations (see two trench-parallel lines of

831 Quaternary volcanic density maxima in Fig. 2.8a, at

832 6 Ma). To explain such phenomena, Wyss et al. (2001)

833 have proposed an additional source of fluids to be

834 located at the top of the slab (at about 150 km depth).

835 Their proposition is based on the velocity tomography

836 in the mantle wedge above the slab, and on the map-

837 ping of earthquake size distribution within the mantle

838 wedge. Geochemical evidence (Kimura and Yoshida

839 2006) for Quaternary lavas from the NE Japan arc also

840 shows the deeper mantle-derived rear-arc lava coming

841 from 100–150 km depth.

842 2.6 Geochemistry of Intra-oceanic Arcs

843 The role of subduction zones in global geochemical

844 dynamics is generally twofold: first, crustal materials

845 are recycled back into the deep mantle, and second,

846 new crust is produced in magmatic arcs above subduc-

847 tion zones (e.g. Bourdon et al. 2003). Because the

848 physical and chemical changes within the subducting

849 plate and mantle wedge are largely inaccessible to a

850 direct observation, geochemical investigations con-

851 centrate on the input (rocks subducted atop the slabs)

852 and output (magmatic products of island arcs) signals

853 of subduction zones (e.g., Plank and Langmuir 1993;

854 Hauff et al. 2003). For example, as discussed by

855 Kimura and Yoshida (2006), Quaternary lavas from

856 NE Japan arc show geochemical evidence of mixing

857 between mantle-derived basalts and crustal melts at

858 the magmatic front, whereas significant crustal signals

859 are not detected in the rear-arc lavas.

860 Analyses of comprehensive geochemical data sets

861 for the input and output rock-members (Hauff et al.

862 2003) from several arc systems such as Aleutian

863 (AU5 Yogodzinski 2001), Izu-Bonin-Mariana (Tatsumi

864 et al. 2008), New Britain, Vanuatu (Arai and Ishimaru

865 2008), Kamchatka (Churikova et al. 2001; Dosseto

866 et al. 2003; Yogodzinski et al. 2001) and Tonga-

867 Kermadec arcs (Turner and Hawkesworth 1997) lead

868 to the conclusion that subduction-related arc basalts

869 (output signal) characteristically have elevated con-

870 tents of large-ion lithophile element (LILEs) and

871 light rare earth element (LREEs) with depleted

872 heavy REE (HREE) and high field strength elements

873 (HFSEs) compared to subducted crust (input signal)

874 (AU6 McCulloch and Gamble 1991; Elliott et al. 1997;

875Elliott 2003; Plank and Langmuir 1993; Kimura

876et al. 2009). In relation to that, the following processes

877are believed to be responsible for the element parti-

878tioning in intra-oceanic arc magmas (e.g. Kimura et al.

8792009 and reference therein):

880• Extraction of fluids and/or melts from the sub-

881ducted slab; combined slab fluid and melt fluxes

882may be responsible for geochemical variations

883along or across magmatic arcs (Eiler et al. 2005;

884Ishizuka et al. 2006); separate deep and shallow

885slab components have also been proposed (Kimura

886and Yoshida 2006; Pearce and Peate 1995; Pearce

887et al. 2005)

888• Fluid fluxed melting of the mantle wedge responsi-

889ble for generation of high-MgO primitive arc

890basalts (Arculus and Johnson 1981; Davidson

8911996; Elliott et al. 1997; Hawkesworth et al.

8921993; Kelemen et al. 1998; Kimura and Yoshida

8932006; Plank and Langmuir 1993; Poli and Schmidt

8941995; Stern 2002; Stolper and Newman 1994;

895Tatsumi and Eggins 1995; Turner et al. 1997)

896• Slab melt–mantle reaction generating high-MgO

897primitive arc andesites (Kelemen et al. 2004b;

898Tatsumi and Hanyu 2003; Tsuchiya et al. 2005;

899Yogodzinski et al. 1994; Zack et al. 2002)

900• Melting of mantle wedge metasomatized by slab-

901derived fluid or melt (Eiler et al. 2007; Sajona et al.

9021996)

903• Direct supply of felsic melt from eclogitic slab

904melting (Defant and Drummond 1990; Martin

9051999; Martin et al. 2005)

906• Melting of hydrated mantle and subducted tectonic

907melanges in respectively unmixed and mixed ther-

908mal-chemical plumes (Fig. 2.9) rising from the top

909of the slab (Tamura 1994; Gerya et al. 2006; Castro

910and Gerya 2008; Castro et al. 2010)

911Despite the broad variability of involved geochem-

912ical mechanisms currently there is a consensus (e.g.

913Kimura et al. 2009) about the relative significance of

914various processes and it is widely believed that slab

915dehydration or melting combined with the interaction

916of this slab-derived flux with variously depleted man-

917tle generates primary arc magmas with the observed

918geochemical characteristics. These primary magmas

919typically have radiogenic Sr and Pb isotopic composi-

920tion, with less radiogenic Nd in lavas erupted from the

921volcanic front compared to rear-arc magmas appar-

922ently derived from more depleted upper mantle
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923 sources (Elliott et al. 1997; Ishizuka et al. 2003;

924 Kelemen et al. 2004b; Kimura and Yoshida 2006;

925 Manning 2004; Rapp and Watson 1995; Stolper and

926 Newman 1994; Tatsumi and Eggins 1995).

927 Elliott (2003) and other authors (Hawkesworth

928 et al. 1993; Leat and Larter 2003; McCulloch and

929 Gamble 1991; Stern 2002) describe two distinct

930 major slab components present in arc rocks with dif-

931 ferent sources and transport mechanisms: (1) melt of

932 the down-going sediments, and (2) aqueous fluid

933 derived from altered oceanic crust. Direct melting of

934 the slab is also suggested as a possible mechanism for

935 melts generation (e.g. Defant and Drummond 1990;

936 Martin 1999; Martin et al. 2005; Kelemen et al. 2004a;

937 Nikolaeva et al. 2008). Fluids and melts liberated from

938 subducting oceanic crust produce melting above slabs

939 and finally lead to efficient subduction-zone arc volca-

940 nism (Fig. 2.4). The exact composition of the mobile

941 phases generated in the subducting slab have however,

942 remained incompletely known (e.g. Kessel et al.

943 2005). In this respect the fundamental control appears

944 to be (e.g. Kimura et al. 2009) the P–T paths of rocks

945 in the subducting slab, which can be approximated by

946 geodynamic modelling (e.g., Peacock andWang 1999;

947 Gerya and Yuen 2003; Castro and Gerya 2008). For

948 example in the model of Peacock and Wang (1999),

949 subduction of old and cold oceanic plate leads to low

950 slab surface temperature. In contrast, subduction of

951 young and hot oceanic crust typically results in higher

952 slab surface temperatures (Stern et al. 2003).

953 Such contrasting thermomechanical behaviour can

954 presumably be observed in the arcs of Japan (Peacock

955 andWang 1999), where the old Pacific Plate (>120Ma,

956 NE Japan) and the young Shikoku Basin (15–27 Ma,

957 SW Japan) are subducting beneath the Eurasia plate

958 (Kimura and Stern 2009; Kimura et al. 2005; Kimura

959 and Yoshida 2006). Consequently, in NE Japan slab

960 dehydration seems to dominate geochemical signal in

961 the primary arc basalts (Kimura and Yoshida 2006;

962 Moriguti et al. 2004; Shibata and Nakamura 1997),

963 whereas in SW Japan slab melting is proposed to be

964 responsible for generation of high-MgO andesites or

965 adakitic dacites (Kimura and Stern 2009; Kimura et al.

966 2005; Shimoda and Nohda 1995; Tatsumi and Hanyu

967 2003). Recently Kimura et al. (2009) obtained similar

968 results from simulations of geochemical variability of

969 primitive magmas across an intra-oceanic arc based on

970 partitioning of incompatible element and Sr-Nd-Pb

971 isotopic composition in a slab-derived fluid and in

972arc basalt magma generated by an open system fluid-

973fluxed melting of mantle wedge peridotite (Fig. 2.4).

974Similar contrasting geochemical behaviour has been

975also shown (e.g. Kimura et al. 2009 and reference

976therein) between arcs along the western and eastern

977Pacific rims. Arc magmatism due to slab-derived

978fluids is proposed for the western Pacific arcs, includ-

979ing the Kurile, NE Japan, and the Izu-Bonin-Mariana

980arcs (Ishikawa and Nakamura 1994; Ishikawa and

981Tera 1999; Ishizuka et al. 2003; Kimura and Yoshida

9822006; Moriguti et al. 2004; Pearce et al. 2005; Ryan

983et al. 1995; Straub and Layne 2003). High-MgO

984primary mafic magmas from these relatively cold

985subduction zones show geochemical signatures of

986extremely fluid mobile elements such as B, Li, or U

987(Ishikawa and Nakamura 1994; Ishikawa and Tera

9881999; Moriguti et al. 2004; Ryan et al. 1995; Turner

989and Foden 2001). In contrast, slab melting better

990explains the origin of high-MgO intermediate lavas

991in the eastern Pacific (Kelemen et al. 2004b; Straub

992et al. 2008) although the role of slab fluid remains an

993important factor in some of the arcs (Grove et al.

9942006).

995Alternative ideas that explain broad variability of

996slab fluid and slab melt geochemical components in

997arc magmas were proposed recently based on petrolo-

998gical-thermomechanical numerical modeling of sub-

999duction zones (Gerya et al. 2006; Castro and Gerya

10002008; Castro et al. 2010). Gerya et al. (2006) sug-

1001gested that one possibility for transporting two distinct

1002geochemical signatures through the mantle wedge can

1003be related to generation and propagation of partially

1004molten compositionally buoyant diapiric structures

1005(cold plumes, Tamura 1994; Hall and Kincaid 2001;

1006Gerya and Yuen 2003) forming atop the slab. Numeri-

1007cal experiments of Gerya et al. (2006) show that two

1008distinct types of plumes can form in the mantle wedge

1009(Fig. 2.9):

10101. Mixed plumes form atop the slab and consist of

1011partially molten mantle and recycled sediments

1012mixed on length-scales of 1–100 m (i.e. subducted

1013tectonic melange). Magma production from such

1014compositionally heterogeneous plumes may pro-

1015duce a strong crustal melt signature in resulting

1016magmas.

10172. Unmixed plumes form above the slab and consist

1018of hydrated partially molten mantle located at

1019a distance from the slab, which is therefore not
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1020 mechanically mixed with subducted crustal rocks.

1021 Magma production from such hydrated but compo-

1022 sitionally homogeneous plumes may produce a

1023 pronounced slab fluid signature.

1024 These distinct plume types can explain the presence

1025 of different magmas in volcanic arcs (e.g., Stern

1026 2002): magmas with distinct crustal signatures (e.g.,

1027 adakites) and primitive magmas from peridotitic

1028 source (e.g., arc tholeiites). Thermal zoning inside

1029 rapidly rising unmixed cold plumes can result in tran-

1030 sient bimodal magmatism because of both the compo-

1031 sitional and the thermal zoning of these structures

1032 (Fig. 2.10a, b), which would generate basalts from

1033 its water-depleted, hot rinds, and boninites from

1034 its water-enriched, cooler interiors (Tamura 1994).

1035 Rates of plume propagation vary between several cen-

1036 timeters to meters per year (Gerya and Yuen 2003;

1037 Gerya et al. 2004) corresponding to 0.1–3 Myr transfer

1038 time through the asthenospheric portion of the mantle

1039 wedge. This is consistent with U–Th isotope measure-

1040 ments from island arc magmas that suggest short

1041 transfer times for fluids (0.03–0.12 Myr) and slab-

1042 derived melts (several Myr) (Hawkesworth et al.

1043 1997). It is noteworthy that the diapiric transport

1044 (e.g. Tamura 1994; Hall and Kincaid 2001) of various

1045 geochemical components in the mantle wedge does

1046 not require melting of subducted crust immediately

1047 at the slab surface (e.g. Kelemen et al. 2004a). Intense

1048 melting of subducted sediments and oceanic crust in

1049 the mixed plumes occurs in the temperature range of

1050 900–1,400�C (Gerya and Yuen 2003; Gerya et al.

1051 2006; Castro and Gerya 2008; Castro et al. 2010)

1052 after penetration of these structures into the hot portion

1053 of the mantle wedge. This behaviour agrees well with

1054 geochemical models suggesting notable sediment

1055 melting beneath the arc, behaviour which is otherwise

1056 not trivial to reconcile (e.g. Kelemen et al. 2004a) with

1057 low slab surface temperature inferred from thermal

1058 models for subduction zones as discussed by George

1059 et al. (2003).

1060 Mixed cold plumes composed of tectonic melanges

1061 derived from subduction channels can transport the

1062 fertile subducted crustal materials towards hotter

1063 zones of the suprasubduction mantle wedge leading

1064 to the formation of silicic melts. Recently magmatic

1065 consequences of this plausible geodynamic scenario

1066 were evaluated by using an experimental approach

1067 (Castro and Gerya 2008; Castro et al. 2009, 2010).

1068Melt compositions, fertility and reaction between

1069silicic melts and the peridotite mantle (both hydrous

1070and dry) were tested by means of piston–cylinder

1071experiments at conditions of 1,000�C and pressures

1072of 2.0 and 2.5GPa. The results indicate that silicic

1073melts of trondhjemite and granodiorite compositions

1074may be produced in the ascending mixed plume mega-

1075structures. Experiments show that the formation of an

1076Opx-rich reaction band, developed at the contact

1077between the silicic melts and the peridotite, protect

1078silicic melts from further reaction in contrast to the

1079classical view that silicic melts are completely con-

1080sumed in the mantle. It has also been demonstrated

1081experimentally (Castro et al. 2010) that the composi-

1082tion of melts formed after partial melting of sediment-

1083MORB mélanges is buffered for broad range of

1084sediment-to-MORB ratios (from 3:1 to 1:3), producing

1085liquids along a cotectic of granodiorite to tonalite

1086composition in lower-variance phase assemblage

1087Melt+Grt+Cpx+Pl. The laboratory experiments, there-

1088fore, predict decoupling between major element and

1089isotopic compositions: large variations in isotopic

1090ratios can be inherited from a compositionally hetero-

1091geneous source but major element compositions can

1092be dependent on the temperature of melting rather than

1093on the composition of the source (Castro et al. 2010).

1094Important geochemical constrains concerns distri-

1095bution and amount of water above subduction zones

1096that impose strong controls on chemistry of magmatic

1097arc rocks forming at the surface (e.g., Kelley et al.

10982006 and references therein). Flux of water originating

1099from the dehydrating, subducting slab lowers the man-

1100tle solidus (e.g., Kushiro et al. 1968) triggering melt-

1101ing of the mantle wedge beneath arcs and back-arc

1102basins (Fig. 2.4). This is supported by a range of

1103various widespread observations on subduction zone

1104lavas (e.g., Kelley et al. 2006 and references therein),

1105seismological data (e.g. Tamura et al. 2002; Jung

1106and Karato 2001; Iwamori 2007) and numerical mod-

1107elling constrains (Iwamori 1998; Arcay et al. 2005;

1108Nikolaeva et al. 2008; Hebert et al. 2009).

1109Back-arc basins related to intra-oceanic subduction

1110(Fig. 2.4) are natural places to investigate water-related

1111processes in the mantle wedge because these settings

1112can be treated, in many ways, like mid-ocean ridges

1113(Kelley et al. 2006). Particularly, the driest back-arc

1114basin melts (Fig. 2.13) are compositionally equivalent

1115to mid-ocean ridge melts and can be interpreted

1116as melts generated by decompression melting of
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1117 ascending mantle (Fig. 2.4). Geochemical studies of

1118 back arcs related to intra-oceanic subduction (e.g.

1119 Stolper, and Newman 1994; Taylor and Martinez

1120 2003; Kelley et al. 2006) demonstrated the hybrid

1121 nature of the back-arc basin melting process:

1122 MORB-like geochemistry found in relatively dry

1123 back-arc melts is systematically perturbed in wetter

1124 samples affected by the addition of H2O-rich material

1125 from the subducted slab (Fig. 2.13).

1126 Recently Kelley et al. (2006) examined data com-

1127 piled from six back-arc basins and three mid-ocean

1128 ridge regions and evaluated concentration of H2O in

1129 the mantle source based on measured H2O concentra-

1130 tions of submarine basalts collected at different dis-

1131 tances from the trench (Fig. 2.13). This study clearly

1132 demonstrated that water concentrations in back-arc

1133 mantle sources increase toward the trench, and back-

1134 arc spreading segments with the highest water content

1135 are at anomalously shallow water depths, consistent

1136 with increases in crustal thickness and total melt

1137 production resulting from high H2O. In contrast

1138 to mid ocean ridges, back-arc basin spreading com-

1139 bines ridge-like adiabatic decompression melting with

1140nonadiabatic mantle melting paths that may be inde-

1141pendent of the solid flow field and depend on the H2O

1142supply from the subducting plate (Kelley et al. 2006).

1143This conclusion is also consistent with numerical

1144modelling results (e.g. Iwamori 1998; Arcay et al.

11452005; Nikolaeva et al. 2008; Honda et al. 2010) pre-

1146dicting that water-rich mantle sources should mainly

1147concentrate at 100–250 km distances from the trench

1148in proximity of water-rich, depleted and chemically

1149buoyant “cold nose” of the mantle wedge (Figs. 2.11

1150and 2.12).

11512.7 Conclusions

1152The following messages are “to take home” from this

1153chapter:

1154• Modern intra-oceanic subduction zones comprise

1155around 40%, of the convergent margins of the

1156Earth and most of them are not accreting sediments

1157and have back-arc extension.

Fig. 2.13 Mean water content in the mantle source (H2Oo)
versus distance to the trench at back-arc basins (Kelley et al.

2006). The back-arc basin data are regional averages of the

Manus basin Eastern Rifts (MB ER) and the Manus spreading

center/eastern transform zone (MB MSC), the Lau basin central

Lau spreading center (CLSC), the intermediate Lau spreading

center (ILSC), the Mangatolu triple junction (MTJ), the eastern

Lau spreading center (ELSC) and the Valu Fa ridge (VFR), the

East Scotia ridge segments (ESR E2–E4, ESR E5–E8, ESR E9),

and the Mariana trough northern third (NMT), central third

(CMT) and southern third (SMT). The shaded field is the

range of H2Oo in MORB from the same study. The black

arrow indicates the direction that volcanic arcs are predicted to

plot (Kelley et al. 2006)
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1158 • It is not yet entirely clear where and how intra-

1159 oceanic subduction initiates although two major

1160 types of subduction zone nucleation scenarios are

1161 proposed: induced and spontaneous.

1162 • Internal structure and compositions of intra-oceanic

1163 arcs is strongly variable. Both along- and across-arc

1164 variation of crustal thickness and lithological struc-

1165 ture are inferred based on seismological data and

1166 numerical modeling.

1167 • Base of the arc includes crust–mantle transitional

1168 layer of partly enigmatic origin (cumulates?, repla-

1169 cive rocks?, intercalation of various rocks and

1170 melts?) and imprecisely known thickness.

1171 • Major element composition of magmas feeding

1172 arcs from the mantle is debatable, particularly

1173 regarding the MgO content of erupted basaltic

1174 magmas which are too MgO-poor to represent

1175 the parental high-MgO mantle-derived magma.

1176 Magma fractionation and reactive flow models are

1177 suggested to explain this MgO-paradox.

1178 • Exhumation of high- and ultrahigh-pressure crustal

1179 and mantle rocks during intra-oceanic subduction

1180 are strongly controlled by serpentinized subduction

1181 channels forming by hydration of the overriding

1182 plate and incorporation of subducted upper oceanic

1183 crust. Newly formed volcanic rocks and depleted

1184 mantle from the base of the arc lithosphere can be

1185 included into subduction channels at a mature stage

1186 of subduction.

1187 • An array of diverse both clockwise and counter

1188 clockwise P–T–time paths rather than a single P–T

1189 trajectory is characteristic for high-pressure rock

1190 melanges forming in the serpentinized channels.

1191 • Crustal growth intensity in intra-oceanic arcs

1192 (40–180 km3/km/Myr) is variable in both space

1193 and time and should strongly depend on subduction

1194 rate as well as on intensity and character of

1195 thermal-chemical convection in the mantle wedge

1196 driven by slab dehydration and mantle melting.

1197 This convection can possibly include hydrated

1198 diapiric structures (cold plumes) rising from the

1199 slab and producing silicic magmatic rocks by melt-

1200 ing of subducted rock melanges.

1201 • Subduction-related arc basalts (output signal) char-

1202 acteristically have elevated contents of large-ion

1203 lithophile element (LILEs) and light rare earth ele-

1204 ment (LREEs) with depleted heavy REE (HREE)

1205 and high field strength elements (HFSEs) compared

1206 to subducted oceanic crust (input signal).

1207• The exact origin of geochemical variations in arc

1208basalts is debatable and may involve a range of

1209processes such as (a) extraction of fluids and/or

1210melts from the subducted slab, (b) fluid fluxed and

1211decompression melting of the mantle wedge, (c)

1212slab melt–mantle reactions, (d) melting of mantle

1213wedge metasomatized by slab-derived fluid or melt,

1214(e) direct supply of felsic melt from eclogitic slab

1215melting, (f) melting of hydrated mantle and sub-

1216ducted tectonic melanges in thermal-chemical

1217plumes.

1218• Water concentrations in back-arc mantle sources

1219increase toward the trench. Back-arc basin spread-

1220ing combines mid-ocean-ridge-like adiabatic

1221decompression melting with nonadiabatic fluid-

1222fluxed mantle melting depending on the H2O sup-

1223ply from the subducting plate. Numerical modeling

1224results predict that water-rich mantle sources

1225should mainly concentrate at 100–250 km distances

1226from the trench in proximity of water-rich, depleted

1227and chemically buoyant „cold nose„ of the mantle

1228wedge.

1229In conclusion, despite recent progress in both

1230observation and modelling many of the first-order

1231features of intra-oceanic subduction remain only

1232partly known and require further cross-disciplinary

1233efforts.
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