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[1] Here we describe a new staggered grid formulation for discretizing incompressible Stokes flow which
has been specifically designed for use on adaptive quadtree-type meshes. The key to our new adaptive
staggered grid (ASG) stencil is in the form of the stress-conservative finite difference constraints which
are enforced at the “hanging” velocity nodes between resolution transitions within the mesh. The new
ASG discretization maintains a compact stencil, thus preserving the sparsity within the matrix which both
minimizes the computational cost and enables the discrete system to be efficiently solved via sparse direct
factorizations or iterative methods. We demonstrate numerically that the ASG stencil (1) is stable and does
not produce spurious pressure oscillations across regions of grid refinement, which intersect discontinuous
viscosity structures, and (2) possesses the same order of accuracy as the classical nonadaptive staggered grid
discretization. Several pragmatic error indicators that are used to drive adaptivity are introduced in order
to demonstrate the superior performance of the ASG stencil over traditional nonadaptive grid approaches.
Furthermore, to demonstrate the potential of this new methodology, we present geodynamic examples of
both lithospheric and planetary scales models.
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1. Introduction

1.1. Computational Geodynamics
[2] Over geological time scales, the dynamics of
the Earth’s mantle and lithosphere can be described

by conservation equations applicable to highly
viscous, creeping fluids. Fluid motion is
largely driven by the heat produced from the
Earth’s core and from radiogenic heat sources
released from the Earth’s mantle. Given our
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present-day understanding of the Earth’s rheo-
logical and compositional structure with depth,
it is apparent that this coupled system is driven
by inherently multiscale processes. Considering
only the compositional layering, we observe a
wide range of relevant length scales. For example,
sedimentary and volcanic processes lead to the
formation of centimetric to kilometric lithological
units, localization of deformation can occur from
the millimetric up to the kilometric scale, topo-
graphic variations occur on the kilometric scale,
tectonic motions involve plates of several thou-
sands of kilometers separated by quasi-discrete
plate boundaries, length scale of mantle hetero-
geneities may be on the order of thousands of
kilometers, and processes such as core formation
take place at planetary scale.
[3] It is well established in the Earth science
community that the use of numerical models to
study the long-term geodynamics is a powerful
tool to further our understanding of the dynam-
ics of coupled thermomechanical systems. Fur-
thermore, regional (lithospheric) scale numerical
models have demonstrated that the inclusion of
an upper/lower crust, topography and surface pro-
cesses can have a profound influence on the dynam-
ics of the lithosphere [Beaumont et al., 2001; Burov
et al., 2001; Gerya et al., 2000; Gorczyk et al.,
2007]. Although the importance of lithosphere-
asthenosphere coupling on geodynamics processes
is well accepted [Burov et al., 2001; van Hunen
et al., 2000; Gerya et al., 2004], many of these
modeling studies focused on the deformation within
the lithosphere and replaced part of the astheno-
sphere with various types of boundary conditions
(i.e., Winkler) to mimic the effect of mantle flow.
Such approximations were necessary to ensure
that the essential physics could be resolved using
the currently available numerical methods and
computational hardware. Specifically, the afore-
mentioned studies that utilized thermomechani-
cal models which employed structured grids, and
consequently, simultaneously resolving the entire
mantle-lithosphere, the crust, and the topographic
variations in a consistently coupled manner, were
computationally intractable.

1.2. Discretization Techniques

[4] Across the large time scales associated with
geologic processes, the underlying rocks (or mate-
rial lithology) are subject to severe mixing and
stirring. To discretize both the viscous flow
equations and simultaneously represent and fol-
low the evolution of such large deformations,

computational geodynamists frequently advocate
the use of a combined mesh-marker approach
[Weinberg and Schmeling, 1992; Poliakov and
Podladchikov, 1992; Zaleski and Julien, 1992;
Fullsack, 1995; Babeyko et al., 2002; Gerya and
Yuen, 2003, 2007; Moresi et al., 2003, 2007].
In such methods, the flow equations are dis-
cretized on the mesh, whilst Lagrangian markers
are utilized to discretize the material lithology and
history variables.
[5] The use of the classical staggered finite differ-
ence (SGFD) scheme [Harlow and Welch, 1965] to
solve the creeping flow equations (Stokes flow) for
lithospheric-scale geodynamic problems has been
demonstrated to be both (i) practical, in terms of
the computational resources required [e.g., Gerya
and Yuen, 2003, 2007; Gerya, 2010; Petersen
et al., 2010], and (ii) reliable, with respect to the
quality of the numerical solution [Duretz et al.,
2011]. The practicality of the discretization stems
from the restriction of a coordinate-aligned, struc-
tured grid and the low-order nature of the sten-
cil which is used to discretize velocity (linear)
and pressure (constant). The low-order discretiza-
tion results in second-order accurate solutions for
velocity and pressure in the L1 norm when the
viscosity is a smooth function and a first-order
accurate method (in both velocity and pressure,
measured in L1) when large discontinuous viscos-
ity variations intersect the pressure control volume
[Duretz et al., 2011]. The latter scenario is of
most relevance in both regional and global geo-
dynamic simulations involving mobile lithospheric
plates [Tackley, 2000; Stadler et al., 2010; Crameri
et al., 2012a].
[6] The simplicity of the staggered grid discretiza-
tion is also arguably its biggest weakness. The
ability to deform the mesh, for example, to con-
form to an evolving topography is not permit-
ted in the classical staggered grid formulations.
This shortcoming has been addressed by a num-
ber of different methods which permit zero nor-
mal stress boundary conditions (or approximate
boundary conditions) to be applied on the upper
surface [Harlow and Welch, 1965; Matsumoto and
Tomoda, 1983; Leveque and Li, 1997; Fedkiw et al.,
1999; Chern and Shur, 2007; Suckale et al., 2010;
Crameri et al., 2012b].

1.3. Toward an Adaptive Finite Difference
Stencil for Stokes Flow

[7] To incorporate local variations in spatial res-
olution throughout the computational domain, for
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Figure 1. (left) Unstructured triangular and (right) block-structured meshes with an increased cell resolution in the
upper left corner of the square domain.

example, if we wished to resolve both the mantle
and the upper/lower crust, several different types of
meshes can be considered. For example, a set of
quadrilaterals (hexahedra in 3-D) with an unstruc-
tured element connectivity or a set of unstructured
triangular (tetrahedra in 3-D) could be employed.
Having such versatility within the choice of mesh
enables one to (i) easily track the free surface
and, if utilizing unstructured meshes, (ii) locally
decrease the element size h in regions of inter-
est. Another alternative mesh permitting local mesh
refinement is a block-structured mesh which can
be conveniently described via a quadtree (octree
in 3-D). See Figure 1 for examples of unstruc-
tured triangular and block-structured meshes with
local refinement.
[8] One of the major arguments to utilize the finite
element (FE) method for adaptive mesh calcula-
tions is that this discretization naturally permits a
large degree of geometric flexibility in defining the
mesh. However, the stencil associated with a stable
finite element discretization, Q2P1 (for example)
possess far more degrees of freedom than the SGFD
stencil. For this reason, much research has focused
on generalizing the SGFD methodology to facilitate
the use of unstructured adaptive meshes.
[9] Fully unstructured generalizations of the
staggered discretization are indeed possible
[Hirt et al., 1974; Rhie and Chow, 1983; Reggio
and Camarero, 1986; Rodi et al., 1989] and fall
under the class of finite volume methods. Whilst
such methods alleviate the limitations of having
a coordinate-aligned structured grid, the result-
ing stencils are larger than the classical SGFD
stencil—thus increasing the storage requirements.

[10] To circumvent the cost and programming com-
plexity associated with generalized staggered grid
formulations, numerous velocity-pressure arrange-
ments were developed. The most attractive being
a co-located (cell-centered or vertex-based) dis-
cretization in which both velocity components were
defined at the same point in space. Co-located
arrangements however suffer from nonphysical
oscillations in the pressure field [Patankar, 1980].
Extensive comparisons of results obtained with
staggered and non-staggered grid arrangements
have been conducted [Perič et al., 1988; Miller and
Schmidt, 1988; Shih et al., 1989; Armfield, 1991;
Aksoy and Chen, 1992; Melaaen, 1992a, 1992b;
Choi et al., 1994a, 1994b]. Remedies to circum-
vent the spurious pressure oscillations associated
with co-located discretizations have been devel-
oped [Rhie and Chow, 1983; Miller and Schmidt,
1988; Majumdar, 1988; Miller and Schmidt, 1988;
Papageorgakopoulos et al., 2000].

[11] We note that all comparisons conducted
between different finite difference stencils and the
stabilization techniques developed for co-located
formulations focus on constant viscosity, Navier-
Stokes equations. The time dependence introduced
in the Navier-Stokes equations permits certain
time-splitting discretizations (or decoupling) to be
employed which further relax the need for prop-
erly coupled velocity-pressure discretizations. In
geodynamic applications, we specifically require
methods which are robust for fluids possessing
highly spatially variable viscosity and which are
in the steady state Stokes regime (non-inertial).
In our experience, the most robust and reli-
able finite difference discretizations for variable
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viscosity Stokes flow are the fully staggered
formulations [Gerya, 2010].

[12] An alternative approach to using an unstruc-
tured staggered grid was the fully adaptive,
block-structured orthogonal staggered grid finite
difference method of Albers [2000] which was
developed specifically for studying mantle convec-
tion, in which the flow problem possessed smooth
variations in viscosity. The methodology developed
in this work is simple and maintains a compact
stencil. At the transition between different grid res-
olutions, such meshes produce “hanging” nodes—
i.e., the nodes which are only contained within the
region of finer resolution. At these hanging nodes,
the stencil adopted in Albers [2000] employed
direct velocity and pressure interpolation. In gen-
eral, this method cannot be applicable for modeling
lithospheric problems with sharply variable vis-
cosity since direct velocity interpolation does not
ensure conservation of stresses across resolution
boundaries with large viscosity changes. For this
common geodynamic modeling situation, a stress-
conservative discretization is required [Gerya and
Yuen, 2003, 2007].

1.4. Present Work

[13] To address the need of a low-order, robust,
and practical adaptive discretization for computa-
tional geodynamics, we extend the methodology
presented in Albers [2000]. To this end, we develop
a fully adaptive, block-structured orthogonal stag-
gered grid finite difference stencil. The crucial
component of the method developed here is the
use of stress-conservative finite difference schemes
across split-cell faces. This proves to be of funda-
mental importance to eliminate spurious pressure
oscillations across cells with split faces. Most
importantly, we examine the stability and order of
accuracy of the stress-conservative adaptive stag-
gered grid finite difference stencil for a range of
viscosity structures.
[14] The outline of the paper is as follows. In
section 2, we describe the governing equations of
creeping flow and define how to construct staggered
grid stencils on quadtree-based adaptive meshes. In
section 3, we demonstrate the stability of the adap-
tive staggered grid discretization and demonstrate
the order of accuracy of the method using several
analytic solutions for variable viscosity Stokes flow
in section 3.2. Furthermore, we highlight the com-
putational advantage obtained using adaptive grids
compared to the classical, nonadaptive staggered
grids in section 4. Practical examples of litho-

spheric and planetary scales models are presented in
section 5. Lastly, in sections 6 and 7, we summarize
the adaptive staggered grid formulation and indi-
cate the future directions and possibilities of this
methodology.

2. Adaptive Staggered Grid Stencil

2.1. Governing Equations

[15] For simplicity in introducing the adaptive stag-
gered grid formulation, here we consider two-
dimensional viscous flow problems in a domain �.
The conservation of mass for an incompressible
fluid is given by

@vx

@x
+
@vy

@y
= 0, (1)

where x, y are spatial coordinates and v = (vx, vy)
are, respectively, the horizontal and vertical veloc-
ity components. The 2-D Stokes equations for
creeping flow take the form:

@�xx

@x
+
@�xy

@y
–
@P
@x

= –�(x, y)gx, (2)

@�yx

@x
+
@�yy

@y
–
@P
@y

= –�(x, y)gy, (3)

where �ij are components of the deviatoric stress
tensor, P is the pressure, �(x, y) is the density which
depends on the spatial coordinates, and gx and gy are
components of the gravitational acceleration. The
deviatoric stress components are given by

�xx = 2�(x, y)P�xx, (4)
�xy = 2�(x, y)P�xy, (5)
�yx = �xy, (6)
�yy = 2�(x, y)P�yy, (7)

in which �(x, y) is the fluid viscosity and P�ij are
components of strain rate tensor defined as

P�xx =
@vx

@x
, (8)

P�xy =
1
2

�
@vx

@y
+
@vy

@x

�
, (9)

P�yy =
@vy

@y
. (10)

[16] We denote the boundary of the volume � via
@�. The conservation of momentum (equations (2)
and (3)) is subjected to a Dirichlet boundary condi-
tion

v = w (11)

along @�D and a Neumann boundary condition

(� – pI)n = s (12)
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Figure 2. Spatial location of horizontal velocity (squares), vertical velocity (triangles), and pressure (circles) on a
block-structured, adaptive staggered grid.

along @�N, where w is the imposed velocity, s is the
imposed stress, n is the outward pointing normal to
the boundary @�, and @� = @�D [ @�N.
[17] In the remainder of this paper, we consider
flow problem in which we either (i) apply Dirichlet
conditions along the entire boundary or (ii) we
impose a “free slip” condition along @� in which
we prescribe zero-flow normal to boundary, v˘n = 0
and zero shear stress tangential to the wall, � ˘ t = 0,
where t is the tangent vector to @�.
[18] With each of these choices for the boundary
condition, the pressure is only defined up to an
arbitrary constant. In the implementation employed
in this work, we define a unique pressure by pre-
scribing four Dirichlet boundary conditions for the
pressure in each corner of the domain.

2.2. Spatial Discretization

[19] Here we describe in detail the formulation of a
2-D staggered grid stencil suitable for discretizing
incompressible Stokes flow on a block-structured,
adaptive mesh. Our stencil is specifically designed
for block-structured meshes (such as that shown in
Figure 1, right) in which transition in resolution
occurs via one level of cell bisection. For instance
in Figure 1 (right), cells with blue boundaries have
side lengths which are half of those of the cells with
pink boundaries.
[20] Figure 2 shows the geometry of the adap-
tive staggered grid used for the formulation of
the momentum and continuity equations in 2-D.
The main principle of constructing this type of
adaptive grid consists of (i) a uniform structure
of computational cells at all levels of resolution
and (ii) using stress-conservative finite differences

both within and between resolution levels. Each
computational cell has five staggered nodal points
(two vx nodes, two vy nodes, and one P node)
where various types of equations are formulated.
Equations (1)–(3) are discretized at P, vx, and vy
master nodes, respectively. Discretization of these
equations within the same resolution level is based
on stress-conservative finite differences suggested
for the uniform rectangular staggered grid [e.g.,
Gerya and Yuen, 2003, 2007; Gerya, 2010]. At
the interface between changes in the grid resolu-
tion, our block-structured adaptive grid formulation
introduces “hanging” velocity nodal points (see the
red symbols in Figure 2). Across different reso-
lution levels, modified staggered grid stencils are
introduced, which utilize values of velocity defined
at the hanging nodes. At hanging nodes, we do
not discretize the momentum equations, rather we
introduce constraints which ensure that mass flux
and momentum are conserved. For this reason, we
prefer to refer to the hanging nodes as “slave”
nodes. Below we explain the modified stencil and
define the constraint equations introduced at the
slave nodes.
[21] Equation (1) is discretized at the P node of
each cell according to the standard finite difference
formula (Figure 2):

coarse grid level:
vD

x – vB
x

�x
+

vH
y – vA

y

�y
= 0, (13)

fine grid level:
vN

x – vL
x

1
2�x

+
vR

y – vG
y

1
2�y

= 0, (14)

where capital letters at v˛x and vˇy denote geomet-
rical points (see blue letters in Figure 2) asso-
ciated with the horizontal and vertical velocity
components, respectively. The following example
explains the logic of an “across-resolution level”
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stress-conservative discretization of equation (3)
for coarser-level vy node H (see blue letter H in
Figure 2). The discrete form of the y momentum
equation at node H is given by

� J
xy – �F

xy

�x
+
�N

yy – �C
yy

3
4�y

–
PN – PC

3
4�y

= –gy�
H, (15)

where superscript letters denote respective geo-
metrical points (see blue letters in Figure 2). The
deviatoric stress components and pressure within
equation (15) are given by

�N
yy =

1
2

�
�M

yy + �O
yy

�
, (16)

PN =
1
2
�
PM + PO� , (17)

�F
xy = 2�F P�F

xy, (18)

� J
xy = 2�J P�J

xy, (19)

�C
yy = 2�C P�C

yy, (20)

�M
yy = 2�M P�M

yy , (21)

�O
yy = 2�O P�O

yy, (22)

and the strain rate components via

P�F
xy =

1
2

 
vL

x – vB
x

3
4�y

+
vG

y – vE
y

1
2�x

!
, (23)

P�J
xy =

1
2

 
vU

x – vD
x

�y
+

vK
y – vH

y

�x

!
, (24)

P�C
yy =

vH
y – vA

y

�y
, (25)

P�M
yy =

vR
y – vG

y
1
2�y

, (26)

P�O
yy =

vT
y – vI

y
1
2�y

. (27)

This discretization essentially means that both �yy
and P for point N are obtained by averaging (inter-
polating) quantities from the points M and O where
they are naturally formulated using standard stag-
gered grid schemes [e.g., Gerya and Yuen, 2007;
Gerya, 2010]. Also we note that the �xy shear stress
component discretization is naturally based on both
coarser- and finer-level velocity nodes. We note
that the coarse-level velocity nodes should be used
within the P�J

xy stencil at the point J where three
coarse cells are in contact with one fine cell. This
ensures symmetry of the respective shear strain rate
stencil, which allows for better accuracy of shear
stress representation in a corner separating regions
of differing cell resolution. In all other circum-
stances, preference should be given to finer-level
slave nodes (see, e.g., P�F

xy). Similarly, discretization

of equation (2) for finer-level vx node N (see blue
letter N in Figure 2) is the following:

�O
xx – �M

xx
1
2�x

+
�S

xy – �H
xy

1
2�y

–
PO – PM

1
2�x

= –gx�
N, (28)

with

�H
xy =

1
2

�
�F

xy + � J
xy

�
, (29)

�S
xy = 2�S P�S

xy, (30)

�M
xx = 2�M P�M

xx , (31)

�O
xx = 2�O P�O

xx, (32)

P�M
xx =

vN
x – vL

x
1
2�x

, (33)

P�O
xx =

vQ
x – vN

x
1
2�x

, (34)

P�S
xy =

1
2

 
vW

x – vN
x

1
2�y

+
vT

y – vR
y

1
2�x

!
. (35)

As before in equation (15), the �xy shear stress
component at H is obtained by averaging (inter-
polating) quantities from the points J and F where
�xy is naturally formulated using standard staggered
grid schemes [e.g., Gerya and Yuen, 2007; Gerya,
2010]. It should also be mentioned that the sug-
gested discretization schemes require that the vis-
cosity � is defined at both the four vertices and the
centroid of each pressure control volume, whereas
the density � is defined at master velocity nodes.
[22] In order to discretize the velocity at finer-level
slave nodes (or “hanging nodes”), two principles
are used: (i) conservation of volume flux across
resolution levels (i.e., across a split-cell bound-
ary) and (ii) stress-based interpolation of velocity
gradients between �xy points. Conservation of vol-
ume flux across the split-cell boundary implies that
volume flux (i.e., the average velocity across the
coarser-cell boundary) should not change between
resolution levels, for example,

vH
y =

1
2

�
vG

y + vI
y

�
. (36)

Stress-based interpolation of velocity gradients
implies that velocity gradient between two slave
nodes on a coarser-cell boundary should be
inversely proportional to the local viscosity simi-
larly to the velocity gradients composing �xy stress
components

�H
�
@vy

@x

�ˇ̌̌
ˇ
H

=
1
2

�
�F
�
@vy

@x

�ˇ̌̌
ˇ
F

+ �J
�
@vy

@x

�ˇ̌̌
ˇ
J

	
, (37)
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where

@vy

@x

ˇ̌̌
ˇ
H

=
vI

y – vG
y

1
2�x

, (38)

@vy

@x

ˇ̌̌
ˇ
F

=
vG

y – vE
y

1
2�x

, (39)

@vy

@x

ˇ̌̌
ˇ
J

=
vK

y – vH
y

�x
. (40)

Again, similarly to P�J
xy, the coarse-level velocity

nodes are used for computing @vy

@x

ˇ̌̌
J
. Combining

equations (36) and (37) gives the following finite
difference formulas for the “slave” (hanging) vy
nodes G and I, respectively:

2�H

 
vH

y – vG
y

1
4�x

!
– �F

 
vG

y – vE
y

1
2�x

!
– �J

 
vK

y – vH
y

�x

!
= 0, (41)

2�H

 
vI

y – vH
y

1
4�x

!
– �F

 
vG

y – vE
y

1
2�x

!
– �J

 
vK

y – vH
y

�x

!
= 0. (42)

[23] We tested a number of other forms of the con-
straint used at the slave nodes. These alternative
constraint formulations were found to be less suc-
cessful, compared to equations (41) and (42), in
consideration of the discretization error in velocity
and pressure. For completeness, the trial slave node
constraints are listed in Appendix A.
[24] The standard staggered grid formulation
results in a compact stencil. This produces a sparse
matrix, with only a few nonzero entries on each
row. The stencil for the discretized momentum
equation contains a total of 11 entries—nine com-
ponents are associated with the velocity degrees
of freedom and two with the pressure degrees of
freedom. The stencil for the discrete continuity
equation contains four entries, all of which are asso-
ciated with velocity degrees of freedom. The adap-
tive stencil described above contains slightly more
entries in the discrete momentum equations. The
total number of entries here is dependent upon how
many neighboring cells possess hanging nodes. The
worst-case scenario (in terms of stencil size) occurs
at node H in Figure 2. Here the adaptive stencil
for the momentum equation contains a total of 15
entries: 12 associated with velocity unknowns and
3 associated with pressure unknowns. The continu-
ity equation for the adaptive stencil always contains
four entries associated with velocity unknowns.
Furthermore, we note that the form of the constraint
used at the slave nodes requires a maximum of five
entries, each associated with velocity unknowns.

3. Stencil Verification

[25] In this section, we examine the behavior of
the errors associated with the ASG stencil using
three-variable viscosity reference problems with
known analytic solutions. First, we define the ref-
erence problems (section 3.1), then we numeri-
cally determine the order of accuracy of the ASG
stencil (section 3.2). Lastly, we examine profiles
taken across the error field associated with one of
the reference problems (section 3.3) and visually
demonstrate that no numerical artifacts or spuri-
ous oscillations occur across split faces between
resolution levels, even when they are intersected
by discontinuous viscosity structures. In addition
to these investigations, we also numerically veri-
fied the stability of the ASG scheme for variable
viscosity problems by an eigenvalue analysis (see
Appendix B).

3.1. Reference Problems

[26] In order to test and measure the numerical
properties of the ASG stencil, three analytical solu-
tions were employed. These solutions correspond
to two-dimensional variable viscosity and incom-
pressible steady state flow problems. The viscos-
ity variations (smooth or sharp) that are inherent
to these solutions are analogous to actual geo-
dynamic problems. Large and smooth viscosity
variations are likely to occur in the asthenosphere
[Stacey et al., 1989; Mitrovica and Forte, 1998],
whereas the rheology of the lithosphere is char-
acterized by material layering [Burov, 2011]. We
therefore regard these reference problems as robust
and representative tests for the ASG stencil in the
framework of geodynamics.
[27] The analytical solution SOLKZ [Revenaugh
and Parsons, 1987] is characterized by a large and
smooth variation of viscosity in one dimension. The
model domain is contained in� = [0, 1]�[0, 1] box.
The flow is driven by internal variations of density,
and assuming that gx = 0, gy = 1, the body force in
the momentum equation f is given by

f = (0, –� sin(kmy) cos(knx))T , (43)

with the parameters � = 1, km = 1.6	 , and kn =
3	 . The viscosity field is continuous and varies
exponentially in the y direction according to

�(x, y) = exp(2B(1 – y)), (44)

with the parameter B = 6.9. The boundary con-
ditions are free slip on all sides of the domain.
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Over the depth of the model domain, this parame-
ter choice produces a maximum viscosity ratio of
�106.
[28] The SOLCX analytical solution [Zhong, 1996]
exhibits a discontinuity in the viscosity field in
the x direction. Similarly to SOLKZ, the domain is
defined as � = [0, 1] � [0, 1] and its boundaries
are free slip. Assuming that gx = 0, gy = 1, the
momentum body force is given by

f = (0, –� sin(kmy) cos(knx))T , (45)

with the parameters � = 1, km = 	 , and kn = 	 . The
viscosity field is defined as

�(x, y) =

(
1 for x � 0.5
106 for x > 0.5

. (46)

The source code which evaluates the velocity and
pressure fields for SOLCX and SOLKZ is distributed
as part of the open source package Underworld
(http://underworldproject.org).
[29] The viscous inclusion test [Schmid, 2002;
Schmid and Podladchikov, 2003], termed SOLVI
in the remainder of the paper, is characterized by
a two-dimensional discontinuous circular viscos-
ity structure. The physical domain is given by
� = [–1, 1] � [–1, 1]. The origin of the circu-
lar inclusion is located at (0, 0) and has a radius,
Rinc = 0.5. The viscosity field is prescribed such
that �(x, y) = 1 in the background and �(x, y) =
103 within the inclusion. Along the boundary of
the domain, we prescribe vx and vy using the ana-
lytic solution. The flow is only entirely driven
by the Dirichlet boundary conditions, thus the
forcing term is zero. The MATLAB source code
which generates the pressure and stress fields under
various shear boundary conditions is available
in Schmid [2002].

3.2. Order of Accuracy of the
ASG Discretization

[30] According to our previous study [Duretz et al.,
2011], we expect the standard staggered grid dis-
cretization to yield second-order global accuracy of
the velocity and pressure in the L1 norm, provided
the model domain contains a smooth viscosity field
(SOLKZ test). On the other hand, when the viscos-
ity field contains discontinuities, the convergence
drops to first order (SOLCX and SOLVI tests). Using
the same order of accuracy methodology described
in Duretz et al. [2011], here we establish whether
the discretization errors associated with ASG sten-
cil exhibit the same characteristics, in regard to

viscosity structure, as the standard staggered dis-
cretization. We refer to Appendix C for the def-
inition of the norms, the a priori error estimate,
and the technique used to numerically evaluate the
discretization errors. We note that throughout the
remainder of this paper, all of the reported errors
computed via the L1 norm have been normalized by
the volume of the domain such that the error mea-
sured possesses the same physical dimensions as
the original quantity.
[31] The grid convergence tests were carried out
using the arbitrary mesh depicted in Figure 3a.
The white region represents the area of highest
resolution (Level 1), h being twice smaller than
in the shaded region (Level 0). Such an adapted
mesh ensures that the grid is not aligned with
the geometry of the viscosity structures defined in
the reference problems described above. In that
way, we avoid any potential superconvergent cases
that may occur when viscosity discontinuities are
aligned with the grid. This condition reflects a gen-
eral case in which material boundaries cut across
the cells. Hence, the circular refined areas crosscut
the sharp viscosity structures that are characteris-
tics of both SOLCX and SOLVI tests. We empha-
size that the mesh used in the order of accuracy
test is not an optimal mesh, i.e., that which mini-
mizes the discretization error. Rather, it was chosen
as a potentially “worst-case scenario” to highlight
any numerical artifacts which might arise when
discontinuous viscosity structures intersect inter-
faces between different mesh resolutions within the
adaptive grid.
[32] The results of the convergence test are
reported in Figure 3. Figures 3b–3d display
the reduction of the L1 error with homogenous
refinement of the mesh for the different test
cases (SOLKZ, SOLCX, and SOLVI). The errors
are plotted against the corresponding coarser-
mesh resolution, hLevel 0. The employed coarse
grids have the same number of nodes NLevel 0 in
both directions, and the grid sequence NLevel 0 is
defined as NLevel 0 = {21, 41, 81, 161}. For ref-
erence, the figure also displays the convergence
of the standard staggered grid using a nonadap-
tive grid sequence that is equivalent to NLevel 0.
The order of accuracy is reported in the top-left
corner of Figures 3b–3d. The continuous viscos-
ity test, SOLKZ, yielded to almost second order
of accuracy for both velocity and pressure fields
(Figure 3b). In case of a one-dimensional dis-
continuity in the viscosity field, the SOLCX
test exhibited first-order velocity and pressure
accuracy (Figure 3c). Similarly, SOLVI leads to
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Figure 3. Grid convergence of the ASG for variable viscosity Stokes problems. (a) The arbitrary mesh used for the
tests. This grid contains two circular areas of refined cells (Level 1). The radii of the circles are R1 = 0.15(xb – xa)
and R2 = 0.25(xb – xa). The grid convergence for (b) SOLKZ, (c) SOLCX, and (d) SOLVI. Dashed lines depict results
obtained using the standard staggered grid discretization with hLevel 0, and solid lines indicate the ASG results obtained
using the locally refined mesh in Figure 3a.

first-order velocity accuracy and a pressure accu-
racy that slightly exceeds first order (Figure 3d).
[33] The results indicate that the ASG stencil con-
serves the convergence properties of the standard
staggered grid. Therefore, the hanging node scheme
derived in section 2.2 does not alter the accuracy
of the method. This is a crucial point since the use
of an inadequate hanging node scheme can severely
degrade the convergence of the ASG. We refer to
Appendix A where this is illustrated.

3.3. Velocity and Pressure Behavior Across
Resolution Transitions

[34] The ASG scheme on quadtree meshes implies
that the numerical resolution h is not smooth and
varies as hLevel n = 2–nhLevel 0 at each grid-level
transition. Such sharp variation in the grid reso-
lution can potentially generate numerical artifacts
(e.g., unphysical solution oscillations in space) in
the vicinity of the grid-level transitions. More-
over, numerical artifacts will possibly be amplified
at material boundaries since viscosity jumps are
likely to produce locally large discretization errors
[Deubelbeiss and Kaus, 2008].

[35] In order to evaluate the behavior of ASG
numerical solution at grid-level transitions which
intersect discontinuous viscosity structures,
we employed the SOLVI test described above
(section 3.1). The mesh structure was chosen such
that the resolution increases from the leftside to
the rightside of the domain. Two mesh resolution
transitions were prescribed at x = –0.2 and x = 0.2,
such that they cut across the material boundary
represented by the inclusion. With the purpose
of verifying the smoothness of the solution field
across grid levels, both pressure and velocity dis-
cretization errors were computed cell-wise from
the analytical solution. The top row in Figure 4
depicts the spatial distribution of discretization
error within the model domain. The transitions
between grid levels do not locally generate large
discretization errors nor spurious oscillations. The
smooth behavior of the error is further illustrated
in the bottom row of Figure 4. These plots show
profiles of the absolute discretization error probed
along the x direction for various values of the y
coordinate. The profiles taken at y = 0.25 cut across
the material boundary and the grid-level transitions.
Nevertheless, the variations of the discretization
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Figure 4. Spatial distribution of discretization errors of the ASG numerical solution using three resolution levels.
(top row) The absolute value of the pressure and velocity discretization errors for SOLVI. The resolution increases
from the left to the right, and grid-level transitions are located at x = –0.2 and x = 0.2 (black dashed line). The pressure
in the four corners is defined as Dirichlet values, therefore leading to zero discretization error (black squares).(bottom
row) Error profiles at y = 0.25, y = 0.5, and y = 0.75. The red line indicates the ASG error profiles.

error (at x � –0.35 and x � 0.35) are related to the
viscosity jumps and do not coincide with the mesh
refinement. The velocity and pressure solutions
provided by the ASG are therefore smooth, and
their corresponding discretization error does not
locally deteriorate due to transitions in the mesh
resolution.

4. Performance of the ASG
Discretization

[36] The purpose of using an adaptive spatial dis-
cretization is that one can locally modify the spatial
discretization to minimize a given objective func-
tion L. The nature of the objective function is
application specific and may relate to the discretiza-
tion error of the velocity and pressure field (in the
case of Stokes flow), or it might be constructed in
a manner to measure the accuracy of some quantity
derived from the numerical solution, e.g., the total
stress around the rim of a clast (c.f. SOLVI).
[37] Using adaptivity, the ASG discretization
should deliver a numerical solution which is as
accurate (with regard to the given objective func-
tion) as a high-resolution standard staggered grid;
however, the ASG mesh will contain far fewer
cells. Thus, the discrete system will contain less

unknowns (Ndof) compared to the nonadaptive dis-
cretization, which has the advantage of significantly
reducing both the CPU time and memory require-
ments of the calculation.
[38] Adaptive procedures can thus be considered
as an optimization problem related to the available
computational resource. The optimization problem
can be expressed by either of the following state-
ments:
[39] C1: Given a tolerance �0, minimize the com-
putational work W required to obtain a discrete
solution vh, ph such that L < �0.
[40] C2: For a fixed amount of computational work
W0, find a solution vh, ph which minimizes L.
[41] The adaptive procedure for a steady state prob-
lem can then be summarized as follows:
[42] 1. Generate an initial mesh, T 0. Specify a
maximum number of adaptive iterations imax. Ini-
tialize the adaptive cycle counter, i = 0.
[43] 2. Solve: Solve the discrete problem on the
current mesh, T i.
[44] 3. Estimate: Analyze the computed solu-
tion. Estimate the error L and evaluate the error on
each cell. If either condition C1 or C2 is satisfied
�! stop.
[45] 4. Mark: Based on the chosen refinement
indicator(s) (e.g., on local error), identify cells
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which should be modified, i.e., coarsened or
refined.
[46] 5. Adapt: Using the cells marked for adap-
tation, generate a new mesh, T i+1.
[47] 6. If i < imax, set i = i + 1 and go to Step 2,
else stop.

4.1. Adaptive Procedure

[48] At each iteration i, the refinement algorithm
identifies the location where resolution needs to
be increased. Refinement is usually based on the
current value of a given function ˆi (i.e., refine-
ment indicator) that can be evaluated in cells’ center
and/or vertices (e.g., velocity gradient). The upper
threshold for refinement ˆi+1

max is iteratively updated
according to

ˆi+1
max = N̂ i + ˛ˆ

�
ˆi

max – N̂ i� . (47)

The parameter ˆi
max = max (|ˆi|), N̂ i is the average

function value defined as N̂ i =
1
n

nP
k=1
ˆi(xk), where

n is the number of points (e.g., pressure or veloc-
ity nodes) where the discrete field ˆi is evaluated,
and ˛ˆ 2 (0, 1] is the refinement factor. During
the cell refinement cycle, cells in which the value of
ˆi exceeds ˆi+1

max are split into four cells. In the fol-
lowing tests, a minimum of two cells separates two
grid-level transitions, and cells that are surrounded
by at least three higher resolution cells are recur-
sively split. The way ˆi

max and N̂ i are computed for
each of the refinement indicators employed in the
following tests is described in Appendix D.

4.2. Adaptive Grid Performance Metric

[49] As shown in section 3.2, the standard stag-
gered grid and the ASG method exhibit the same
velocity and pressure order of accuracy in L1 error
norms. The methods attain second-order accuracy
in presence of continuous viscosity field and degen-
erate to first order in the presence of viscosity
jumps. For the standard two-dimensional staggered
grid, assuming Nx = Ny and identical grid spacing h
in both dimensions, the number of degrees of free-
dom scales as Ndof = 3NxNy – 2Nx – 2Ny + 1 / Nx

2,
and h scales as h / L N– 1

2
dof, in which the domain� is

given by L � L. Therefore, from equation (C6), the
standard staggered grid velocity and pressure errors
are

kverrkL1(�) = kv – vhkL1(�) � D1Ndof
– kv

2 ,

kperrkL1(�) = kp – phkL1(�) � D2Ndof
–

kp
2 , (48)

where D1 = C1Lkv and D2 = C2Lkp are constants,
and kv and kp are the order of accuracy of the

velocity and pressure discretization. The veloc-
ity and pressure error reduction rates, Rv, Rp, are,
respectively, equal to kv

2 and kp

2 , and equation (48)
can be rewritten as

kverrkL1(�) � D1Ndof
–Rv ,

kperrkL1(�) � D2Ndof
–Rp . (49)

Accordingly, for the standard, nonadaptive stag-
gered grid discretization, the L1 errors scale as
(Ndof)–1 if the viscosity field is smooth (Rv, Rp � 1)
and as (Ndof)–1/2 in the presence of viscosity jumps�
Rv, Rp �

1
2

�
.

[50] One advantage of using a spatially adaptive
discretization is the ability to locally reduce cell
sizes close to viscosity discontinuities, thereby
locally reducing the discretization error and glob-
ally reducing the L1 error norms. We can there-
fore expect that for a given number of degrees of
freedom, adaptivity will lead to lower integrated
discretization errors than the nonadaptive grid
solution.
[51] In the following sections, we test various
refinement indicators and evaluate how the L1 dis-
cretization error scales with respect to the number
of degrees of freedom. In all experiments, the initial
mesh (T 0) is quite coarse, with a uniform grid reso-
lution employing Nx = Ny = 21 vertices in the x and
y directions, respectively. Thus, at each stage of the
adaptive cycle, the mesh is primarily modified via
refinement. A maximum number of adaptive cycles
were chosen as imax = 25. Adaptive cycles were
terminated if Ndof > 70, 000. As in section 3.2, we
employ the SOLCX, SOLKZ, and SOLVI tests and
obtain the discretization errors from the analytical
solutions. A complete summary of the convergence
rates for Rv, Rp is provided in Table 1.

4.3. Exact Discretization Error-Based
Adaptivity

[52] Here we use the value of the exact discretiza-
tion error to drive adaptivity. At each adaptive
cycle, the flow and pressure fields along with their
associated errors were evaluated. The refinement
criteria were updated according to equation (47) for
either ˛verr , ˛perr , or both. Subsequently, the mesh
geometry was modified in order to satisfy the cur-
rent refinement criteria and the conditions listed in
section 4.1. The refinement factors, ˛verr and ˛perr ,
were varied between 0.1 and 0.9 for every test. For
each refinement test, we measured the decrease rate
of discretization error (Rv and Rp) with increasing
number of degrees of freedom in logarithmic space;
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Table 1. Convergence of the Volume-Weighted L1 Velocity and Pressure Errors With Increasing Number of
Degrees of Freedoma

SOLKZ SOLCX SOLVI

Refinement Indicator (ˆ) Rv Rp Rv Rp Rv Rp

verr 0.924 0.437 0.472 0.405 0.983* 0.939*

perr 0.763 0.416 0.959* 0.705* 0.970* 0.945*

verr, perr 0.974* 0.491 0.746* 0.730* 1.022* 0.966*

�v 0.714 0.326 0.678* 0.655* 0.927* 0.724*

�p 0.501 0.566 0.376 0.265 0.983* 0.939*

�v,�p 0.981* 0.625 0.641* 0.581* 1.047* 1.094*

�� 0.922 0.554 0.448 0.448 — —
�log10 � — — 0.906* 0.944* 1.040* 0.998*

��,�log10 � — — 0.910* 0.918* — —

�v,�� — — 1.037* 0.870* 0.914* 0.724*

�p,�� — — 0.897* 0.893 * 1.028* 0.985*

�v,�� 0.982* 0.558 0.650* 0.598* — —
�p,�� 0.916 0.990 0.528* 0.525 — —

Uniform mesh 0.949 1.000 0.492 0.536 0.665 0.524

aThe refinement strategies tested were based on exact discretization error (verr, perr), solution contrasts (�v, �p), material properties contrasts
(��,�log10 �

), or a combination of them. Results from reference problems which did not include either density variations or constant/linear viscosity
variations in logarithmic space are excluded. The values of Rv, Rp obtained using a uniform mesh are shown in the last row. Values marked with (*)
indicate a rate which is larger than that obtained using a uniform mesh.

these results are compiled in Table 1 and Figure 6.
The final mesh structures obtained using the exact
discretization error-based adaptivity (both verr and
perr) are depicted in Figure 5.
[53] For SOLCX, refinement based on verr leads to
results that are less efficient than nonadaptive solu-
tions, namely Rv, Rp � 0.5. On the other hand,
refinement based on perr, leads to a pressure dis-
cretization error decrease which is more efficient
than nonadaptive solution with Rv, Rp � 1 > 0.5.
We noticed that for ˛ˆ > 0.8, velocity and pressure
error decrease rates can grow larger than 1 using
refinement based on pressure error. The combina-
tion of both refinement criteria produced refinement
close to the material boundary and in the weak
convecting material which are, respectively, the
sources of the largest pressure and velocity errors.
This combination of refinement criteria produced
an efficient decrease of both integrated velocity and
pressure error, yielding to Rv, Rp � 0.75 > 0.5.
[54] The inclusion problem (SOLVI) yielded results
that are much more accurate than nonadaptive
meshes of a similar number of degrees of freedom.
For refinement based on either verr or perr, the values
of Rv and Rp are greater than 0.9. The combination
of both verr or perr for refinement leads to aggres-
sive refinement around the inclusion rim and in the
surrounding fluid. Values of Rv and Rp reaching

� 1 imply that the errors scale as (Ndof)–1, whereas
nonadaptive solutions only yielded (Ndof)– 1

2 in the
presence of a viscosity jump.

[55] The SOLKZ test produced mediocre results on
adaptive meshes. The use of verr, perr, or both as
refinement criteria leads to results that are less effi-
cient than nonadaptive meshes (Rv, Rp � 1) for
problems with smooth viscosity fields. For this ref-
erence problem, the pressure error reduction rates
are particularly low with Rp � 0.5. The main reason
for obtaining low-error reduction rate is related to
sharp changes in grid resolution (doubling) across
resolution level, which makes finite difference sten-
cil notably asymmetric. Stencil asymmetry lowers
the accuracy of numerical solution for pressure
at the resolution boundaries (typically 2–3 times
higher errors are observed compared to the uni-
form nonadaptive grid), with contribution to global
error being proportional to the total length of the
resolution boundaries. Since the length of resolu-
tion boundaries grows during the refinement pro-
cess, pressure error reduction rates are notably
lowered. The problem of lowered accuracy of
strongly asymmetric staggered grid stencils is well
known [Sundqvist and Veronis, 1970; Crowder and
Dalton, 1971; de Rivas, 1972]. Additional calcula-
tions performed with SOLKZ test have shown the
same character and magnitude of pressure error
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Figure 5. Mesh geometry and discretization errors using adaptivity based on the true discretization error. All tests
employed both verr and perr as refinement criteria. (a, c, and e) The adaptive mesh geometry at the end of each test (up
to eight levels). (b, d, and f) The decrease of L1 discretization error with increasing Ndof. For comparison, nonrefined
results using the standard staggered grid (reg) are shown for comparison (dashed lines). Figures 5a and 5b relate to
SOLCX, Figures 5c and 5d relate to SOLVI, and Figures 5e and 5f relate to SOLKZ.

increase for the case of a simple nonuniform rectan-
gular grid in which vertical resolution is doubled in
a limited y interval. We conclude therefore that this
problem is not specific to ASG and further effort
may be needed in the future to develop more accu-
rate finite difference schemes on staggered grids
with sharply variable grid spacing. In general, adap-
tive strategies based on the true discretization error
are not practical, i.e., without knowledge of the
analytical solution of the given problem or using
a posteriori error estimates. Thus, in order to pro-
vide a more complete test of the ASG scheme,
refinement tests based on the discrete solution and
material properties contrasts were performed.

4.4. Field-Based Adaptivity

[56] Velocity contrasts (�v) are likely to develop in
shear layers or in the vicinity of material bound-
aries. Large pressure contrasts (�p) are represen-
tative of discontinuous viscosity structures. One
might thus expect �v and �p based refinement to
behave comparably to refinement based on velocity
and pressure errors.
[57] For SOLCX, refinement based on the veloc-
ity contrast leads to efficient results (Rv, Rp �
0.7 > 0.5), whereas pressure difference refinement
behaved less efficiently than nonadaptive grid solu-
tions. Combining the two criteria leads to locally

high resolution at the material jump and in the low
viscosity material and results in improved values
of Rv, Rp compared to nonadaptive mesh calcula-
tions. Solution-contrast-based refinement leads to
efficient results when applied to the SOLVI test.
The values of Rv and Rp reached 1 when combining
�v and �p. Regarding the SOLKZ test, none of the
tested solution-contrast-based refinement schemes
yielded efficient error reduction rates. The obtained
values of Rv and Rp ranged between 0.3 and 1 (see
Table 1 and Figure 6a) which are less, or equal to
the results obtained with nonadaptive grids.

4.5. Material Property-Based Adaptivity

[58] Refinement based on material properties con-
trasts enables the mesh to adapt in accordance with
the evolution of the properties of a fluid. For a
Stokes problem, the contrasts of interest are the
viscosity and density contrasts (�log10 � and ��).
Theses quantities are likely to represent reasonable
choices for refinement since they often represent
material interfaces, which are responsible for local-
izing large discretization errors. The test SOLCX is
characterized by viscosity variations, which were
captured using refinement factor values equal to
˛log10 � = ˛� = 0.2. Although �� based refinement
did not produce efficient results, both �log10 � and
the combination of �log10 � and �� as a refinement
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Figure 6. Error reduction rates for as a function of ˛ˆ (equation (47)). Color lines represent different refinement
indicators (ˆ = {�v �p verr perr}). The dashed lines correspond to the nonadaptive solution L1 error reduction rate
which is constant for each given problem. (a) SOLKZ, (b) SOLCX, and the inclusion test (c) SOLVI.
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Figure 7. The mesh structure obtained using viscosity contrasts based refinement for (a) SOLCX and (c) SOLVI. The
decrease of L1 pressure and velocity discretization error with increasing Ndof for (b) SOLCX and (d) SOLVI. Results
for SOLKZ are not presented here. This reference problem includes a linear variation of viscosity in logarithmic space,
which is not captured by our viscosity-based refinement scheme.

criteria yielded error reduction rates of Rv, Rp > 0.9.
The grid structure achieved with viscosity contrast
refinement is depicted in Figure 7a. SOLVI is purely
driven by kinematic boundary conditions. Since no
buoyancy contrast exists, only �log10 � based refine-
ment was tested. Similarly, as for the refinement
indicators discussed in sections 4.3 and 4.4, the
results were successful with Rv, Rp > 1. Both veloc-
ity and pressure error reduction rates scaled as
(Ndof)–1 (Figure 7b). Conversely, SOLKZ does not
include logarithmic viscosity contrasts which could
be captured. The results obtained for �� based
refinement (Table 1) are, once again, less efficient
than the nonadaptive mesh solution.

5. Geodynamic Examples

[59] In this section, we will display simplified
examples of geodynamic applications of ASG for
(1) spontaneous localization of deformation dur-
ing extension of a viscoplastic material and (2)
deformation of a self-gravitating planetary object
associated with movement of an iron diapir. The
main purpose of these examples is to demonstrate
potential of ASG for solving realistic regional and

global numerical modeling problems with com-
plex geometries and nonlinear rheology under con-
ditions of large deformation. In both examples,
ASG stencil is used in combination with stan-
dard Marker-And-Cell (MAC) technique [Gerya
and Yuen, 2003, 2007; Gerya, 2010] to advect and
visualize material properties.

5.1. Extension of Viscoplastic Media

[60] Numerical modeling of extension and shorten-
ing of viscoplastic materials poses significant com-
putational challenges [Buiter et al., 2006; Gerya,
2010] which require that any numerical code is
able to (1) calculate large deformations along
spontaneously forming narrow shear zones, (2)
represent complex boundary conditions, including
free surfaces, and (3) include a complex rheology
involving both viscous and frictional/plastic mate-
rials. These challenges directly reflect the state-
of-the-art requirements for numerical modeling of
lithospheric-scale tectonic processes. We conducted
an extensional numerical experiment of a sim-
plified model resembling the sandbox benchmark
conducted by Buiter et al. [2006] (Figure 8).
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Figure 8. Initial conditions and results for the extension experiment (see text for details). Evolution of the (left)
lithological structure, (middle) viscosity field, and (right) grid structure.

[61] An Eulerian numerical modeling domain of
330�10 km in size (Figure 8) is employed. Initially
a 2 km thick sticky air layer (density 1 kg/m3, vis-
cosity 1019 Pa s) is used to simulate the free surface
condition [e.g., Schmeling et al., 2008; Crameri
et al., 2012b]. The remaining 8 km of the initial
model cross section is composed of viscoplastic
rocks (density 3000 kg/m3, viscosity 1022 Pa s) with
brittle strength (�yield) defined via a Drucker-Prager
yield criterion with strain weakening [e.g., Lavier
et al., 2000; Huismans and Beaumont, 2002; Buiter
et al., 2006] which is given by

�yield = C + 
P, (50)

in which we use


 =



0.6 – 0.05 � for � � 2
0.5 for � > 2 ;

C =



(3 – 0.5 � ) � 107 for � � 2
2 � 107 for � > 2 ,

(51)

where P is dynamic pressure (Pa), 
 is friction
coefficient, C is the rock strength at P = 0 (Pa),
and � is the integrated plastic strain. A weak vis-
cous 6 � 1 km inclusion (density 3000 kg/m3,
viscosity 1020 Pa s) is prescribed at the bottom of
the model to initiate localized deformation [Buiter
et al., 2006]. The initial grid resolution is 30 � 10
cells with 76,800 regularly distributed Lagrangian
markers used for tracing of material properties.
Four levels of resolution of ASG are used in
this model with the finest grid corresponding to
an effective resolution of 240 � 80 cells. Log-
arithmic viscosity contrast �log10 � is used as a

grid refinement (�log10 � � 0.5) and coarsening
(�log10

� � 0.2) indicator. Figure 8 shows the evo-
lution of the model cross section through time. Vis-
coplastic deformation of layered rocks is localized
along spontaneously forming narrow shear zones
where the effective viscosity of rocks is strongly
reduced. ASG resolution is changing with time
and closely following the rock deformation pat-
tern. Maximal grid resolution is always achieved
along the active shear zones and at the free surface.
This model example thus shows that the combina-
tion of ASG with MAC can serve as an efficient
tool for modeling of complex lithospheric defor-
mation with nonlinear rheology and spontaneous
localization phenomena.

5.2. Planetary Deformation

[62] Numerical modeling of a self-gravitating plan-
etary body requires coupling of a gravitational
field and interior deformation, with a freely evolv-
ing planetary surface [Gerya and Yuen, 2007;
Lin et al., 2009; Golabek et al., 2009]. These
requirements can be satisfied with the use of
“spherical-Cartesian” approach (Figure 9) allow-
ing the computation of a self-gravitating body of
arbitrary form on the Cartesian grid with an approx-
imate free surface condition (see details and tests in
Gerya and Yuen [2007], Lin et al. [2009], and Gerya
[2010]). We summarize the modeling procedure
below:
[63] 1. The body is surrounded by “sticky air”
(density 1 kg/m3, viscosity 1020 Pa s) allowing
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Figure 9. Results for the planetary deformation experiment (see text for details).

a high (100) viscosity contrast at the plane-
tary surface which closely approximates the free
surface condition.
[64] 2. The gravity field is computed by solving
the Poisson equation for the gravitational poten-
tial associated with the density field defined by
the current configuration of the markers at each
time step.
[65] 3. During the solution of the momentum
equations (equations (2) and (3)), the components
of gravitational acceleration vector (gx, gy) are com-
puted locally from the gravitational potential at the
corresponding nodal points.
[66] A test experiment shown in Figure 9, applied
this methodology in combination with ASG for
the case of planetary deformation associated with
the propagation of a large iron diapir (density
10,000 kg/m3, viscosity 1020 Pa s) toward the center
of a silicate planet (density 4000 kg/m3, viscos-
ity 1022 Pa s). The gravity potential is defined
in the centers of cells (i.e., in pressure points)
where the Poisson equation is formulated and dis-
cretized [Gerya and Yuen, 2007; Lin et al., 2009;
Gerya, 2010]. The initial grid resolution for the
14, 000 � 14, 000 km computational domain is
20 � 20 cells, with 102,400 randomly distributed
Lagrangian markers used for tracing of material
properties. Four levels of resolution of ASG are
used in this model with the finest grid correspond-
ing to an effective resolution of 160 � 160 cells.
Logarithmic viscosity contrast �log10 � is used as
a grid refinement (�log10 � � 1) and coarsening
(�log10 � � 0.5) indicator. The results of the
experiment show that the spontaneously deform-
ing planetary surface is numerically stable under

conditions of large viscosity contrasts and ongoing
internal deformation inside the planet. The high-
est ASG resolution focuses around the propagating
iron diapir and at the planetary surface. The test
thus demonstrates that the combination of ASG
with MAC can potentially be extended for planetary
scale models [e.g., Golabek et al., 2009; Stadler
et al., 2010] which account for self-gravitation,
freely evolving planetary surface, and large
viscosity contrasts.

6. Discussion

[67] One of the desirable properties of the adap-
tive staggered grid stencil developed here is that it
does not introduce significantly more entries into
the stencil compared to the standard nonadaptive
staggered grid stencil. The continuity stencil used in
the adaptive formulation requires exactly the same
number of entries as the nonadaptive stencil. At the
interface between regions of refinement, the stencil
for the momentum equations grows from 11 entries
to a maximum of 15 entries. We note that this slight
increase in stencil size occurs only at the transitions
in the mesh resolution—away from the transition,
the stencil used reverts to the standard staggered
grid formulation. At hanging (slave) velocity nodes,
the stencil used to define the velocity constraint
only contains five entries. Given that the interface
between mesh resolutions is of one spatial dimen-
sion lower than the physical problem (2-D), the
adaptive stencil will produce only a slight increase
in the total storage requirements. Maintaining a
compact stencil is important to preserve matrix
sparsity. Sparsity is desirable as it reduces the
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memory requirements needed to store the matrix,
the assembly of the matrix can be performed effi-
ciently as only a small number of nonzero entries
have to be computed per stencil, and the spar-
sity is a desirable property for both sparse direct
factorization algorithms and iterative methods.

[68] As already stated, the ASG introduced here
has the benefit that it is a low-order method and
preserves a compact stencil. This results in a
“cheap” computational method, thereby enabling
high-resolution computations to be performed with
only modest computational resources. Furthermore,
we have demonstrated that the quality of the dis-
crete solution obtained for velocity and pressure
for variable viscosity (smooth and discontinuous) is
comparable to the standard staggered grid formula-
tion. On the consideration of memory requirements
alone, the ASG discretization method is superior
to any stable finite element method applied on an
orthogonal block-structured mesh. If we consider
a conforming finite element space applied to the
velocity field on a structured mesh, and we only
consider the size of the stencil associated with
the gradient of the deviatoric stress (i.e., we only
consider velocity-velocity coupling in the discrete
problem), we find for Q1 (bilinear) elements that the
stencil contains 18 entries and for Q2 (biquadratic),
the stencil contains 50 entries. Thus, even with-
out considering the contribution of the pressure
degrees of freedom, the finite element stencil is
larger than that obtained with the ASG method. A
careful and thorough comparison which focuses on
the accuracy of the velocity/pressure fields obtained
using staggered grid methods and the finite ele-
ment method has yet to be performed with sufficient
rigor. Such a comparison must examine the dis-
cretization errors obtained using structured grid
formulations which are coupled with suitable coef-
ficient interpolants to map marker properties (vis-
cosity and density) on to the mesh (such as those
defined in Duretz et al. [2011]). To be a fair compar-
ison, equivalent error measures must be employed.
Answering the question “are finite differences
better than finite elements for block-structured
adaptive meshes?”, in the context of marker-and-
cell-based approaches, requires that such a study
be performed.

[69] Having demonstrated the robustness of this
new ASG formulation, many new avenues for
future research utilizing this technique exist. In par-
ticular, these include the development of robust
posteriori error estimators, extension of the adap-
tive stencil formulation to three dimensions, and the

development of a multilevel preconditioner (geo-
metric or algebraic) which is efficient and robust for
this particular ASG discretization.

7. Conclusion

[70] In this paper, we developed a new finite dif-
ference staggered grid stencil for discretizing the
incompressible Stokes flow equations on block-
structured adaptive meshes. The development of
this particular discretization was spawned by the
proven robustness of the classical, nonadaptive
staggered grid discretization for studying litho-
spheric dynamics and the clear demonstration that
adaptive spatial discretizations are an extremely
useful technique within the domain of computa-
tional geodynamics.
[71] The adaptive staggered grid (ASG) discretiza-
tion introduced here was rigorously demonstrated
to be both numerically stable and possesses
discretization error characteristics which closely
resemble those of the classical nonadaptive stag-
gered grid method. Specifically, we showed that
the adaptive stencil does not introduce any spuri-
ous pressure oscillations when transitions in grid
resolution occur, and in particular when such tran-
sitions intersect discontinuous viscosity structures.
Furthermore, we verified using several variable vis-
cosity reference problems (with known analytic
solutions) that the adaptive stencil is second-order
accurate in velocity and pressure (in the L1 norm)
for cases with continuous viscosity structures and
reduces to first-order accuracy in both variables
when strongly discontinuous viscosity structures
are present. A number of pragmatic error indicators
were examined to demonstrate the superiority of the
ASG method over the nonadaptive staggered grid
approach.

Appendix A: Hanging Node
Schemes Tested
[72] As mentioned in section 2.2, several vari-
ants of the constraint used at slave nodes were
tested. In order to identify which scheme yielded
the most accurate results, we have measured the
grid convergence obtained using each of the dif-
ferent constraint formulations. The results of these
tests are depicted in Figure A1 and enabled us to
conclude that the combination of equations (41)
and (42) with an arithmetic viscosity interpo-
lation (Figure A1a) produced the most reliable
results. The different forms of the constraints are
labeled from A to F and their implementation is
explained below.
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Figure A1. Grid convergence tests for the different hanging treatments. The color dashed lines (labeled A to F
within each panel) correspond the hanging nodes schemes listed in Appendix A, and the black dashed line represent
the nonadaptive mesh case. These tests were carried out for the (a) SOLKZ, (b) SOLCX, and (c) SOLVI. The adaptive
grid described in Figure 3a was employed.
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[73] 1. Arithmetic viscosity mean:
Define the average viscosity as

O� :=
�
�F + �J� (A1)

and utilize the following constrain equations,

O�
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[74] 2. Harmonic viscosity mean:
Define the average viscosity as

O� :=
2

1
2 (1/�F + 1/�J)

(A4)

and use equations (A2) and (A3) to define the
constraints.
[75] 3. Geometric viscosity mean:
Define the average viscosity as

O� := 2 exp
�

1
2
�
ln(�F) + ln(�J)

�	
(A5)

and use equations (A2) and (A3) to define the
constraints.
[76] 4. Direct velocity gradient interpolation:
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[77] 5. No velocity gradient:

vH
y – vG

y = 0, (A8)

vI
y – vH

y = 0. (A9)

[78] 6. Local viscosity interpolation (no volume
flux control between the resolution levels):
Making the following definitions

�˛ :=
�

5
4
�F +

3
4
�J
�

(A10)

�ˇ :=
�

3
4
�F +

5
4
�J
�

(A11)

we have
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(A13)

Appendix B: Solvability and Stability of
the Discretization
[79] Following the application of ASG discretiza-
tion, the discrete form of the Stokes equations can
be expressed as

�
A G
D 0

	 �
v
p

	
=
�

F
0

	
�! Ax = F , (B1)

where A is the discrete gradient of the stress ten-
sor, G is the discrete gradient operator, D is the
discrete divergence operator, and F is the discrete
forcing term. We note that the discrete operators
A, G, D and the right-hand side F have been mod-
ified to enforce the velocity Dirichlet boundary
conditions.
[80] Under the assumption that A is nonsingu-
lar, it follows from a block decomposition of
equation (B1) that A is nonsingular if and only if
the Schur complement, S = DA–1G, is also invert-
ible. In the context of a spatial discretization for
Stokes flow, simply demonstrating that A is nonsin-
gular is not sufficient to guarantee that the discrete
velocity and pressure solution is physically mean-
ingful. To ensure the discrete solution is well posed
(i.e., stable), it is required that A is “uniformly
invertible” as the discretization parameter h (i.e.,
the cell size) approaches zero. This implies that
the distribution of eigenvalues (or some measure of
an appropriate condition number) remains bounded
as h ! 0. Consequently, this further implies S
must also be uniformly invertible as h ! 0. If
the discretization is not stable, artifacts in the pres-
sure field will be observed in the form of spurious
pressure modes—or the so called “checkerboard”
instability. Hence, verifying that the ASG scheme is
stable is essential to establish the robustness of this
spatial discretization for Stokes flow.
[81] In the context of a finite element method,
the stability of the discretization applied to Stokes
equations is given by the Ladyženskaja-Babuška-
Brezzi (LBB) or inf-sup condition [Babuška, 1973;
Brezzi, 1974]. The inf-sup condition has been
formally proven for the classical staggered grid
finite difference method [Shin and Strikwerda,
1997]. Demonstration of the LBB condition can be
achieved via a formal mathematical proof, or via
numerical computations [Malkus, 1981; Chapelle
and Bathe, 1993; Bathe, 2001]. Given the complex-
ity of the grid structure employed in the adaptive
finite difference stencil, here we adopt a numer-
ical approach to verify that the LBB condition
is satisfied.
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Table B1. Extremal Eigenvalues � for a Sequence of Different Adaptive Meshesa

#pdof min(Re(�)) max(Re(�)) min(Im(�)) max(Im(�))

400* 9.999009311391e-06 2.000000000000e+01 –4.140150165238e-15 4.140150165238e-15
640 9.341960940568e-06 2.000000000000e+01 –1.009197067266e-02 1.009197067266e-02
1162* 9.338930025513e-06 2.000000000000e+01 –5.747449164543e-02 5.747449164543e-02
2092 9.338346298167e-06 2.000000000000e+01 –6.398934274588e-02 6.398934274588e-02
2284 9.338346299333e-06 2.000000000000e+01 –6.442340005421e-02 6.442340005421e-02
2584 9.338346307213e-06 2.000000000000e+01 –6.442329265390e-02 6.442329265390e-02
3094 9.338346300710e-06 2.000000000000e+01 –4.922797015270e-02 4.922797015270e-02
3550 9.338346303195e-06 2.000000000000e+01 –3.582211897156e-02 3.582211897156e-02
3820* 9.338346305461e-06 2.000000000000e+01 –5.874622706523e-02 5.874622706523e-02

aMeshes marked with (*) are displayed in Figure B1.

[82] We verified the stability of the ASG dis-
cretization numerically by examining whether S
is uniformly invertible. To this end, we computed
the eigenvalues of S associated with a number
of different adaptive meshes used to solve the
variable viscosityreference problem SOLCX. The
spectrums obtained and the meshes used for each
test are shown in Figure B1. From Figure B1,
we observed that the eigenvalue spectrum on the
adaptive meshes is largely independent of h. The

extremal eigenvalues are summarized in Table B1.
From these results, we see that both the mini-
mum and maximum real eigenvalues are bounded
away from zero and independent of the mesh
used. We also observe that the uniform mesh
(#pdof = 400) has eigenvalues with a small
complex part which is �O(10–15), whilst the adap-
tive meshes have eigenvalues with a larger com-
plex part �O(10–2). Nevertheless, the magnitude
of the complex part of the eigenvalues does not
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Figure B1. Eigenvalue spectrum for the Schur complement DA–1G for a number of different adaptive meshes.
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Table B2. Extremal Singular Values s for a Sequence
of Different Adaptive Meshesa

#pdof min(s) max(s)

400* 9.999009318452e-06 2.002518522834e+01
640 9.194141720418e-06 2.000360552629e+01
1162 8.147117276074e-06 2.000988329822e+01
2092 6.483747171417e-06 2.004073213973e+01

aMeshes marked with (*) are displayed in Figure B1.

fluctuate significantly on the different adaptive
meshes examined.
[83] In general, the adaptive staggered grid dis-
cretization will give rise to a nonsymmetric Schur
complement. Thus, to ascertain whether S is uni-
formly invertible, it is of interest to examine
the singular values of S. In Table B2, we sum-
marize the singular values of S obtained from
the same sequence of adaptive meshes used in
Table B1. We observe that the maximum sin-
gular value is bounded independent of h; how-
ever, we note that the minimum singular value is
slightly decreasing with decreasing cell size h. The
approximately mesh-independent behavior of both
the eigenvalues and singular values of the Schur
complement indicates that the ASG discretization
results in a uniformly invertible operator A, and
thus, the discretization is stable in the regime of
practical interest.

Appendix C: A Priori Error Estimates
[84] The theoretical error estimates for the order
of accuracy of the ASG discretization applied to
Stokes flow are defined in terms of the L2 norm,
which for scalar function q and vector function w
are given by

kqk2
L2(�) =

Z
�

q2 dV, kwk2
L2(�) =

Z
�

�
w2

x + w2
y

�
dV.

(C1)
In addition we also require the H1 norm, for a vector
valued function v which is given by

kvk2
H1(�) = kvxk

2
L2(�) + kvyk

2
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+
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(C2)

[85] Under the condition that the solution is suf-
ficiently smooth, the optimal error bounds for the
discrete Stokes problem are

kv – vhkH1(�) + kp – phkL2(�) � Ch, (C3)

where h is the control volume cell size, v, p rep-
resent the exact velocity and pressure solution,
vh, ph represent the approximate velocity and pres-
sure, and C is a constant independent of the cell
size h. We refer to C for the definition of the L2
and H1 norms. Using the Aubin-Nitsche method,
equation (C3) can be expressed in terms of L2
norms

kv – vhkL2(�) � C1h2, kp – phkL2(�) � C2h. (C4)

[86] For comparison with Duretz et al. [2011], we
rewrite equation (C4) in terms of the L1 norms
which for scalar function w and vector function w
are given by

k
kL1(�) =
Z
�

|
 | dV, kwkL1(�) =
Z
�

(|wx| + |wy|) dV.

(C5)

Applying of Schwarz inequality to equation (C4)
yields

kv – vhkL1(�) � kv – vhkL2(�) � C3h2,
kp – phkL1(�) � kp – phkL2(�) � C4h, (C6)

where C1, C2, C3, C4 are constants independent of
the grid size h. We re-emphasize that throughout
this work, all of the reported errors computed via
the L1 norm have been normalized by the volume
of the domain such that the error measured pos-
sesses the same physical dimensions as the original
quantity.
[87] Here we describe how the integrals in
equations (C6) were evaluated over the domain dis-
cretized via the adaptive staggered grid stencil. All
integrals are evaluated using a one-point quadrature
rule, e.g., given a scalar function f(x), we make the
following approximation

Z
�

f dV �
X

k

f k ��k (C7)

where k indicates a particular grid point in the finite
difference stencil, f k is the value of f at xk, and��k

is the volume associated with grid point k. Each
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Figure C1. Integration domains (��k, denoted by
colors) associated with different stencil points within
adaptive staggered grid discretization. (top) Integration
domains for the x component of the velocity. (bottom)
Integration domains for the pressure unknowns.

discretization point for ux, uy, and p is located at dif-
ferent points in space; thus, the definition of ��k

is different for each component of the velocity field
and pressure.
[88] To define integrals involving the pressure
space (cell centered), ��k is defined as the vol-
ume of the cell associated with pressure degree of
freedom (see Figure C1, bottom). Components of
vector quantities in the staggered grid formulation
are discretized at different locations. For example,
given w = (wx, wy), the x components are located
at the vertical cell faces and the y components are
located at the horizontal cell faces (see Figure C1,
top). Thus, the individual components of a vector
are integrated using a different set of volumes. We
denote this via
Z
�

wx dV �
NuX
˛=1

w˛x ��
˛
x ,

Z
�

wy dV �
NvX
ˇ=1

wˇy ��
ˇ
y ,

(C8)

where Nu, Nv are the number of grid points used to
discretize the x, y components of the vector, respec-
tively. In Figure C1 (top), we denote via different
colors, the domains ��˛x for four different stencil
points. We note that the integration domains ��ˇy
associated with the y component of velocity are
defined in an analogous manner. Hence, from the
definition of the L1 norm of a vector quantity w, we
approximate kwkL1(�) according to

kwkL1(�) �

NuX
˛=1

ˇ̌
w˛x
ˇ̌
��˛x +

NvX
ˇ=1

ˇ̌̌
wˇy
ˇ̌̌
��ˇy . (C9)

Appendix D: Adaptivity Indicator
Definitions
[89] For each of the adaptation strategy employed
in section 4, adaptivity evolves according to
equation (47). However, the manner in which ˆmax
and N̂ are computed differs depending on the nature
of the field which is selected to drive adaptivity.
[90] When adaptivity is driven by velocity (ˆ �
verr) and pressure (ˆ � perr) errors, each velocity
component and pressure error are calculated cell-
wise. The absolute value of the velocity error is
evaluated on all cell edges. On each pressure cell k,
we compute
�
Nverr

x
�

k =
1
nu

nuX
˛=1

���verr
x
�
˛

�� ;
�
Nverr

y

�
k

=
1
nv

nvX
˛=1

����verr
y

�
˛

��� ,

(D1)
where nu, nv are the number of edges associated
with cell k for the x, y velocity components, respec-
tively, verr

i = vexact
i – vapprox

i , and
�
verr

i
�
˛

are the
velocity error components associated with cell k.
The maximum value is defined as

ˆmax := max
�

max
k=1,np

��
Nverr

x
�

k



, max

k=1,np

h�
Nverr

y

�
k

i	
, (D2)

where np is the number of pressure control volumes
in the mesh. We define the mean value as

N̂ :=
1
np

npX
k=1

�
Nverr

x
�

k +
�
Nverr

y

�
k

. (D3)

The pressure error perr = pexact – papprox is evaluated
directly at cell centers

�
perr

k
�

and its maximum is
thus defined such that

ˆmax := max
k=1,np

��perr
k
�� , (D4)

with a mean value given by

N̂ :=
1
np

npX
k=1

��perr
k
�� . (D5)

[91] Adaptivity governed by velocity differences
(ˆ � �v) uses values which are computed at cell
centers and cell vertices. To this end, we define
velocity differences on a cell k via

�
N�vx
�

k =
ˇ̌
vE

x (k) – vW
x (k)

ˇ̌
;

�
N�vy
�

k =
ˇ̌̌
vS

y (k) – vN
y (k)

ˇ̌̌
,

(D6)

where the superscripts E, W, S, and N indicate
the directions east, west, south, and north, respec-
tively. We construct nodal values for velocity
(�vx)i, (�vy)i at each vertex i by computing the
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absolute value of the difference of velocity compo-
nents on the edges connected to vertex i. Then the
maximum is defined as

ˆmax := max
�

max
k=1,np

[( N�vd)k], max
i=1,nvert

[�vd)i]
	

, for d = {x, y},

(D7)
and the mean by

N̂ :=
1

np + nvert

 npX
k=1

�
( N�vx)k + ( N�vy)k

�

+
nvertX
i=1

�
(�vx)i + (�vy)i

�!
,

(D8)

where nvert corresponds to the number of vertices in
the mesh.
[92] Pressure differences were also employed to
control mesh adaptivity (ˆ � �p). In this case,
the absolute value of the pressure differences was
calculated at each cell edge e, using the two neigh-
boring cells c1, c2, which share this edge. Thus, we
define the edge pressure difference as

�pe = kpc1 – pc2k. (D9)

Subsequently the maximum is defined via

ˆmax := max
e=1,nedge

[�pe], (D10)

where nedge stands for the total number of edges in
the mesh. The mean values of the absolute pressure
differences are given by

N̂ :=
1

nedge

nedgeX
e=1

�pe. (D11)

[93] For adaptivity based on material properties,
we used both the density (ˆ � ��) and viscosity
(ˆ � �log10 �) field. Absolute density differences
are calculated for each cell and characterize density
differences existing between the cell center k and
the four vertices i = 1, : : : , 4. The density difference
between cell k and the its four vertices is denoted
via

��k,i = k�k – O�ik, (D12)

where �k is the density at cell k and O�i is the density
defined at the ith node associated with cell k. The
maximum value is calculated as

ˆmax := max
k=1,np
i=1,4

�
��k,i



(D13)

and the mean value such as

N̂ :=
1

4np

npX
k=1

4X
i=1

��k,i. (D14)

Similarly, viscosity variations are evaluated
between cell centers and cell vertices using

��k,i =
����log10

�
�k

O�i

����� (D15)

where �k is the viscosity at cell k and O�i is the vis-
cosity defined at the ith node associated with cell
k. The maximum and mean values are obtained by
replacing ��k,i with ��k,i in equations (D13) and
(D14), respectively.
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